Skip to main content

A Geometric Model for Cortical Magnification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1811))

Abstract

A Riemannian manifold endowed with a conformal metric is proposed as a geometric model for the cortical magnification that characterises foveal systems. The eccentricity scaling of receptive fields, the relative size of the foveola, as well as the fraction of receptive fields involved in foveal vision can all be deduced from it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Bijl. Aspects of Visual Contrast Detection. PhD thesis, University of Utrecht, Department of Physics, Utrecht, The Netherlands, May 8 1991.

    Google Scholar 

  2. Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick. Analysis, Manifolds, and Physics. Part I: Basics. Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 1991.

    Google Scholar 

  3. P. M. Daniel and D. Whitteridge. The representation of the visual field on the cerebral cortex in monkeys. Journal of Physiology, 159:203–221, 1961.

    Google Scholar 

  4. B. Fischer and H. U. May. Invarianzen in der Katzenretina: Gesetzmäßige Beziehungen zwischen Empfmdlichkeit, Größe und Lage rezeptiver Felder von Ganglienzellen. Experimental Brain Research, 11:448–464, 1970.

    Article  Google Scholar 

  5. L. M. J. Florack. Image Structure, volume 10 of Computational Imaging and Vision Series. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.

    Google Scholar 

  6. L. M. J. Florack. Non-linear scale-spaces isomorphic to the linear case. In B. K. Ersbøll and P. Johansen, editors, Proceedings of the 11th Scandinavian Conference on Image Analysis (Kangerlussuaq, Greenland, June 7–11 1999), volume 1, pages 229–234, Lyngby, Denmark, 1999.

    Google Scholar 

  7. L. M. J. Florack, R. Maas, and W. J. Niessen. Pseudo-linear scale-space theory. International Journal of Computer Vision, 31(2/3):247–259, April 1999.

    Article  Google Scholar 

  8. L. M. J. Florack, A. H. Salden, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever. Nonlinear scale-space. In B. M. ter Haar Romeny, editor, Geometry-Driven Diffusion in Computer Vision, volume 1 of Computational Imaging and Vision Series, pages 339–370. Kluwer Academic Publishers, Dordrecht, 1994.

    Google Scholar 

  9. B. M. ter Haar Romeny, L. M. J. Florack, J. J. Koenderink, and M. A. Viergever, editors. Scale-Space Theory in Computer Vision: Proceedings of the First International Conference, Scale-Space’97, Utrecht, The Netherlands, volume 1252 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, July 1997.

    Google Scholar 

  10. J. J. Koenderink. The structure of images. Biological Cybernetics, 50:363–370, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. J. Koenderink. The brain a geometry engine. Psychological Research, 52:122–127, 1990.

    Article  Google Scholar 

  12. J. J. Koenderink and A. J. van Doorn. Receptive field families. Biological Cybernetics, 63:291–298, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  13. T. Lindeberg. Scale-Space Theory in Computer Vision. The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.

    Google Scholar 

  14. S. L. Polyak. The Retina. University of Chicago Press, Chicago, 1941.

    Google Scholar 

  15. R. W. Rodieck. The First Steps in Seeing. Sinauer Associates, Inc., Sunderland, Massachusetts, 1998.

    Google Scholar 

  16. M. Spivak. Differential Geometry, volume 1–5. Publish or Perish, Berkeley, 1975.

    Google Scholar 

  17. J. Sporring, M. Nielsen, L. M. J. Florack, and P. Johansen, editors. Gaussian Scale-Space Theory, volume 8 of Computational Imaging and Vision Series. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.

    MATH  Google Scholar 

  18. F. W. Weymouth. Visual sensory units and the minimal angle of resolution. American Journal of Ophthalmology, 46:102–113, 1958.

    Google Scholar 

  19. A. P. Witkin. Scale-space filtering. In Proceedings of the International Joint Conference on Artificial Intelligence, pages 1019–1022, Karlsruhe, Germany, 1983.

    Google Scholar 

  20. R. A. Young. The Gaussian derivative model for machine vision: Visual cortex simulation. Journal of the Optical Society of America, July 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Florack, L. (2000). A Geometric Model for Cortical Magnification. In: Lee, SW., Bülthoff, H.H., Poggio, T. (eds) Biologically Motivated Computer Vision. BMCV 2000. Lecture Notes in Computer Science, vol 1811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45482-9_58

Download citation

  • DOI: https://doi.org/10.1007/3-540-45482-9_58

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67560-0

  • Online ISBN: 978-3-540-45482-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics