Hyper-Code Revisited:
Unifying Program Source, Executable and Data

E. Zirintsis, G.N.C. Kirby & R. Morrison

School of Computer Science, University of St Andrews,
North Haugh, St Andrews, Fife, KY16 9SS, Scotland
{vangelis,graham,ron}@dcs.st-and.ac.uk

Abstract. The technique of hyper-programming allows program representa-
tions held in a persistent store to contain embedded links to persistent code and
data. In 1994, Connor et al proposed extending this to hyper-code, in which
program source, executable code and data are all represented to the user in
exactly the same form. Here we explore the concept of hyper-code in greater
detail and present a set of abstract language-independent operations on which
various concrete systems can be based. These operations (explode, implode,
evaluate, root and edit) are provided by a single user interface tool that sub-
sumes the functions of both an object browser and a program editor. We then
describe a particular implementation using PJama (persistent Java) and examine
the impact of several language features on the resulting system.

1 Introduction

The hyper-code abstraction was introduced in [1] as a means of unifying the concepts
of source code, executable code and data in a programming system'!. The motivation
is that this may ease the task of the programmer, who is presented with a simpler
environment in which the conceptually unnecessary distinction between these forms
is removed. In terms of Brooks’ essences and accidents [2], this distinction is an
accident resulting from inadequacies in existing programming tools; it is not essential
to the construction and understanding of software systems.

Orthogonal persistence [3] brought about several similar simplifications of the
programmer’s task. One was to unify short-term and long-term data. Another was to
unify data and code, in the sense that executable code became first-class (as a proce-
dure or an object) and could be manipulated in the same way as other data. Hyper-
code builds on these simplifications by further unifying source code and executable
code. The result is that the distinction between them is completely removed: the pro-
grammer sees only a single program representation form throughout the software life-
cycle, during program construction, execution, debugging, and viewing existing pro-
grams and data.

As a consequence, only a single programming tool is required to manipulate this
uniform representation form, rather than the various program editors, data browsers,

!'In that paper it was termed hyper-source.

debuggers, etc needed otherwise. Various processes such as compilation and linking
are also accidental and hidden from the programmer.

In this paper we develop the idea of hyper-code further and attempt to separate the
general issues from the language-specific. We describe it in the context of a frame-
work comprising:

+ Two abstract domains of entities and representations, with a set of operations over
them. These are intended to be sufficiently general to be applicable to any pro-
gramming system, and are used to aid description rather than being visible to pro-
grammers.

* Criteria to be satisfied by any candidate Hyper-Code Representation form (HCR).

* Criteria to be satisfied by any candidate set of operations over HCRs.

* A particular proposed language-independent HCR.

* A particular proposed set of (broadly) language-independent HCR operations.

* An example implementation of these in a concrete hyper-code system for a par-
ticular language (PJama [4]).

We then attempt to draw some conclusions from our experiences in mapping the
general concepts to a specific language, and discuss the effect of certain language
features on such an exercise.

2 Related Work

A number of programming environments and program editors have attempted to
attack accidental complexities. Emacs [5] is a text editing tool that achieves some
integration of the programming process, by allowing various operations such as com-
piling and linking to be invoked from within the editor. However, it does not mask the
presence of such accidental operations, and it does not provide any integration of
source code, executable code and data.

The Metrowerks CodeWarrior [6] and Microsoft Visual Basic [7] programming
environments accelerate the development process by combining an editor, compiler,
linker and debugger into a single application. This gathers source code, libraries,
graphic resources, and other files into a project. An application can be built and exe-
cuted by pressing a single button, thus the environments largely succeed in hiding
accidental operations. They do not, however, integrate source code and data, since
these are viewed and manipulated in completely different forms.

Smalltalk-80 is a graphical, interactive object-oriented environment [8] that hides
most of the accidents of the traditional programming cycle. However, there are differ-
ent tools for editing, browsing and debugging, and breakpoints cannot be set interac-
tively. New code being constructed is represented differently from existing objects.

Hyper-programming, as developed in Napier88 [9] and PJama [10], forms the basis
for the hyper-code program representation to be introduced in the next section. In
those systems, however, there is again a distinction between source code and data,
and there is no interactive debugging support.

Finally, the original hyper-code proposal [1] introduced the fundamental idea of
hyper-code, that of completely unifying program and data. This paper extends that by
developing a general model and describing an implemented system.

3 The Hyper-Code Model

3.1 Design Goals

Software systems may be programmed at various levels of abstraction. The concerns
at each level are different, ranging from fine detail such as register values, memory
accesses etc, to higher level concepts such as abstract data types, process models etc.
The choice of an appropriate level of abstraction depends on the nature of the appli-
cation. This in turn determines the appropriate tools and software entities to be used
to construct the application.

Hyper-code is designed to support programming at a relatively high level of
abstraction, which hides the existence of multiple program representations and tools.
This requires a single program representation form, and associated tool, that are
adequate to support all the activities necessary during the software development
cycle. These operations include:

* constructing new programs, which may operate on existing data and programs;
* editing existing programs;

+ browsing or viewing existing data structures;

+ executing programs, in some cases with debugging and profiling support.

The goal, then, is that the programmer may carry out the entire program develop-
ment cycle without knowledge of the underlying software tools that support it. The
software is viewed in the single consistent hyper-code form in all contexts, whether it
is being written for the first time, constructed from existing components, executed,
debugged, etc. Where errors occur they are reported in terms of hyper-code; existing
persistent data is viewed as hyper-code. This model gives the conceptual simplicity of
direct source code interpretation, while retaining the obvious efficiency benefits of
standard software tools.

Since hyper-code plays such a large part in the software development environment,
two factors are particularly significant to the programmer: the form in which hyper-
code is presented, and the operations that may be performed on it.

3.2 Hyper-Code Representations

It is possible to design hyper-code interfaces for various different languages. The
precise form of the representation used will depend on the language, as will other
aspects of the user interface. We can however identify certain general criteria, derived
in part from the design goals listed above:

+ To support the construction of new programs that operate on existing data values
and programs, the Hyper-Code Representation (HCR) should incorporate denota-
tions for such entities.

* To support browsing or viewing of existing data values, the HCR should allow
their structure to be examined interactively.

* Any detailed view of an existing data value should have the same form as that in
which an equivalent new value could be defined within a program (since there
should only be one single representation form). As a consequence, the representa-
tion of an existing value should be source-code-based and syntactically valid. It
may also be desirable, for interoperability, for the HCR to accommodate third-
party source code. These factors preclude the use of a graphical data representa-
tion.

* It should be possible to initiate execution of a particular HCR instance, and to trace
the execution path if desired.

One (and perhaps the only possible) HCR form that fulfils these criteria is the
hyper-program [9], with the refinement that hyper-links may themselves have internal
structure. A hyper-program may contain both text and hyper-links to existing entities,
thus allowing entities to be bound at composition time, rather than the usual restric-
tion to textual specifications that are resolved later at compilation, linking or run-time.
For hyper-code, a given link may be expanded interactively to view the structure of
the linked entity, without altering the link’s meaning—the expanded link continues to
denote the same entity. Fig. 1 illustrates this HCR form, containing text, denoted by
horizontal lines, and hyper-links, which may or may not be expanded.

‘:‘1‘\“‘“--,

hyper-link 3 hyper-link 2

hyper-link 1

Fig. 1. General Form of an HCR

Here hyper-link 1 has been expanded, so that a representation of the linked entity is
displayed within it in the same style. Hyper-links 2 and 3 have not been expanded.
Nested links can be expanded to arbitrary degree.

3.3 Hyper-Code Operations

The operations provided by any specific hyper-code interface must support at least the
activities identified earlier: editing new and existing programs; browsing data; and
executing programs. Clearly there are many possible sets of such operations. In this
section we will define one such set which has been designed with simplicity in mind.
To aid the description of these hyper-code operations, we first introduce some termi-

nology concerned with programming language entities and representations of those
entities.

Domains and Domain Operations

For a given programming language, let E be the domain of language entities, con-
taining all the first class values defined by the language (the Universe of Discourse)
together with various denotable non-first-class entities. Depending on the language,
the non-first-class entities may include types, classes and executable code.

Let R be the domain of concrete representations of entities in E. These representa-
tions could be textual or have some more complex structure. Each entity in E has at
least one representation in R. A simple example is the integer value two in E and its
representation 2 in R. The programmer interacts with the programming system solely
by viewing and manipulating representations in R. Entities in E are never dealt with
directly, but only through their corresponding representations.

R and E are disjoint. In particular, a representation in R is not itself an entity. Of
course, in some circumstances it may be necessary for an executing program to
manipulate representations of entities (as is common in reflective programming). To
extend the example above, the representation 2 could be manipulated by a program as
a string containing the digit 2, and this string could itself be represented as "2". Thus
we can distinguish the value, a second value that represents the first (both in E), and
the two corresponding representations (in R).

E may be partitioned into a set of executable entities E,,,. and a set of non-execu-

table entities E The former contains programs and program fragments, while

no-exec:

the latter contains first class values, types, classes, etc. E

oxec May be further

partitioned into E,,,._.ocs Eorocno-res A9 E gyocorr depending on whether execution
generates a result, completes with no result, or fails to complete due to an error. The

error may be detected either statically or dynamically.
R may be similarly partitioned, following the structure of E, into R
R R and R)and R

exec-res’ ~-exec-no-res exec-err: no-exec-

We are now in a position to define four domain operations over E and R. Our hy-
pothesis is that these domain operations are sufficiently general to describe any set of
concrete hyper-code operations for any particular language, and we will illustrate
their use in defining our chosen set of hyper-code operations. The domain operations
map between and within the domains E and R, as illustrated in Fig. 2.

exec (containing

* reflect maps a valid representation to a corresponding entity (R = E).

* reify performs the reverse operation, mapping an entity to a corresponding repre-
sentation (E = R).

* execute executes an executable entity, with potential side effects to the state of the
entity domain. This may generate a result (E, ..

no result, or fail due to a static or dynamic error.
* transform maps one representation into another (R = R).

= E), complete successfully with

Domain E Domain R

2 R
reflect | |Z_ o A |— .
B —a|3 -*f

" e N

represantation

execute } + transform

Fig. 2. Domain Operations

The rather abstract definitions of the domain operations above may be interpreted
in various ways for different concrete hyper-code systems, thus imparting various
semantics to the operations. For example, execute could involve strict, lazy or partial
evaluation of an executable entity, depending on the model of computation supported
by the language. The style of representation produced by reify could vary. The trans-
form operation could be unconstrained, allowing any representation to be produced,
or it could limit the possible representations as with a syntax-directed editor.

Specific Hyper-Code Operations

We now propose a small set of concrete hyper-code operations which is sufficient to
fulfil programming requirements, and minimal. Later we will show how these opera-
tions may be mapped to a particular example language, together with a specific HCR
form. The hyper-code operations are:

* explode expands a selected region of a hyper-code representation to show greater
detail. This is itself expressed in the form of a hyper-code representation.

* implode performs the reverse of explode, hiding detail within a hyper-code repre-
sentation.

* evaluate executes a selected hyper-code representation. If there is a result it is
expressed as a new hyper-code representation.

* edit alters a hyper-code representation.

* root returns a selected persistent root as a hyper-code representation.

The actions of these operations can be characterised in terms of the domain opera-
tions:

* explode and implode both replace a selected representation with another, either
more or less detailed. They involve a reflect operation to yield the entity repre-
sented, followed by a reify operation to yield a different representation. The result
isin R.

* evaluate involves various sequences of operations, depending on the particular
sub-domain of the representation being evaluated:

* for R, .c.no-res> it invOlves a reflect operation to yield an executable code entity,
followed by an execute operation to execute that code, which returns no result.

An example is the execution of a traditional “program” such as gcc, which is a
self-contained sequence of statements that perform some action, with no result
being returned directly.

* for R, .. es it involves a reflect operation to yield an executable code entity,
followed by an execute operation to execute that code, followed by a reify
operation to yield a representation of the entity returned as a result of execution.
The result is in R. For example, evaluation of the code fragment represented by
the characters 2+3 yields a result represented by the character 5, as supported in
interactive languages such as Smalltalk-80 [8] and Galileo [11].

« for R, ,.ec» it involves a reflect operation to yield the entity represented,
followed by a reify operation to yield a representation. The result is itself in

R, cxec- This is effectively a null operation defined for completeness; since the
entity is not executable it is returned immediately as the result. Examples in-
clude evaluation of the representation 5 and of a hyper-link denoting an existing
entity. Loosely, these correspond to manifest program literals.

* for R, ... it involves a reflect operation to yield an entity, which is executed
if the error is not detected statically. In either case an error is reported.
* edit involves a transform operation.
* root involves a reify operation on a persistent entity to yield a representation.

Thus traditional self-contained programs lie in R while fragments that

exec-no-res’

return results lie in R The evaluate operation is defined over both forms.

exec-res:

Tracing Evaluation

The remaining design goal that has not yet been addressed is that of tracing the
execution path through an HCR during its evaluation. This requires the HCR to dis-
play an indication of the current point of execution at any given time?, and to provide
some means of viewing the current state of any variables. More generally, it should be
possible to view the entity bound to any identifier, whether mutable or not.

Since the HCR form supports links that may be exploded to view their structure,
the same form can be used for identifiers. This is consistent with the requirement that
a single consistent representation should be provided for data and code in all contexts.
As a consequence, an HCR being evaluated is changed dynamically as evaluation
progresses:

* When evaluation reaches the point at which an identifier is initialised, all subse-
quent occurrences of that identifier in the HCR, within the identifier’s scope, are
replaced by links. Depending on the particular language mapping, the links may be
to a specific identifier entity, or directly to the entity bound to the identifier. In
either case, the bound entity may be viewed by exploding a link. When evaluation
leaves the identifier’s scope, the original textual identifier again replaces the links.

* Where an identifier is bound to a mutable location (variable), the corresponding
links are updated each time the location is updated.

2 Multiple threads can be dealt with by displaying a separate copy of the HCR for each thread.

As a consequence, although the HCR is changed during evaluation, it returns to its
original state after evaluation completes. Where an entity is produced as the result of
an evaluation, its representation is returned to the programmer. Depending on the
interpretation of reify chosen for a particular hyper-code system, the result may be a
single unexploded hyper-link, an exploded hyper-link, or some other fragment of
hyper-code. The programmer chooses whether the result should be returned as a new
HCR or inserted into the original HCR being evaluated.

4 Design and Implementation of a Particular Hyper-Code System

In this section we give a brief overview of the design and implementation® of a
prototype hyper-code system in PJama [4].

4.1 Mapping of Domains

In Java, and hence PJama, the domain of language entities E contains objects, arrays,
primitive values, variables, classes, interfaces, array types and primitive types [12].
We also include code entities, comprising expressions, sequences of statements, or
complete class definitions.

Every entity in E has a corresponding representation in the domain R, being a
combination of text and hyper-links. We chose to allow hyper-linking to any entity
that could be bound to an identifier in a Java program, giving a correspondence be-
tween links and identifiers. As a consequence, all entities can be hyper-linked except
code entities. This is because the Java model (largely, strict evaluation) does not
allow an identifier to be bound to a code expression: an identifier declaration or up-
date causes the expression to be evaluated and the result, rather than the expression, to
be bound. For example, evaluating the statement

inti=1+2;

causes the value 3 to be bound to i, rather than the expression / + 2.

Although unsatisfying in that not every entity in E can be denoted by a hyper-link,
this restriction does not appear to be limiting in practice. Rather, it is intrinsic to the
language model of strict evaluation.

Less obviously, we chose to omit methods and fields from E after experimentation
with various designs. The fact that they are not first-class made it too awkward to
design satisfactory exploded representations for them.

4.2 User Interface

Fig. 3 shows an example of an HCR displayed in a hyper-code window. The first
hyper-link is to the class Person and the second to an instance of that class (classes
and objects are distinguished by different colours).

3 Details are available at http://www-ppg.dcs.st-and.ac.uk/Research/HyperCode/

= =]

Persistence Edit Options

Evaluatel

public class X {

public static Person p = Person;

public String getName() { return p.name; }

3

| KN]
Line: 4, Column: 1

Fig. 3. Example Hyper-Code Representation

Fig. 4 shows the effect of performing the explode operation on the object link and
then again on one of the object links revealed (to the person’s address). Each
exploded link shows a hyper-code representation of the corresponding object. The
representation comprises a call to a newly generated constructor method*
(GeneratePerson.newPerson and GenerateAddress.newAddress respectively), taking
as parameters links to the object’s field values.

This representation fulfils the two main criteria of allowing the structure of the
object to be viewed, and being a syntactically valid code-based representation in
precisely the same form that a programmer might write to construct the object
initially. The only difference is that the hyper-code displayed in any exploded link
cannot be modified by the programmer, since it is a representation of an entity that
already exists. It can of course be copied into another window and the copy modified.

=] [

Persistence Edit Options
Ewvaluate

public class X {

|GeneratePerson .newPerson(Vangelis , Person

public static Person p= [
public String getName() { retumn p.name; }

i

KOl [
Line: 4, Column: 1

[4]

Fig. 4. Effect of Exploding an Object Link

Fig. S shows the effect of exploding a class link and several further links within it.
Each exploded link displays the class’s source code, which itself contains both text
and links. This and the previous figure illustrate the unification of code (classes) and
data (objects), since exactly the same representation form is used in both.

“ This is done since there is no guarantee of a suitable constructor being available.

Persistence Edit Options

Ewvaluate|

public class X { B

public dlass Person extends - {

public java.lang. String name;
public Person spouse;

public _ address;

public javax.swing. Imagelcon picture;

private javax.swing.Im con icon;

public Person(javalang String n, javax.swing.Imagelcon im) { noOfl.egs=2; name = n; picture = in

public static void marry(Person a, Person b) { a.spouse = b; b.spouse = a; }

public void setPicture(javax. swing.Imagelcon im) { picture = im; icon.setTmage(pi cture. getTmage(). g
public javax swing Imagelcon getPicture() { retum picture; }

public javax swing Imagelcon getTeon() { icon.setTmage(picture. petlmage(). getS caledinstance(pi cture.

public static i
public String getName(} { return p.name; }

D |

Line: 4, Column: 1

Fig. 5. Effect of Exploding a Class Link

To write hyper-code operating on existing data, the programmer needs access to
the persistent roots. Fig. 6 shows the result of the root operation: a window displays a
set of hyper-links corresponding to the multiple PJama roots. To operate on one of
these, a copy of the hyper-link can be dragged into any other window where it can
form part of the hyper-code under construction. In the example, a hyper-link to an
array has been exploded so that one of its elements can be dragged to another
window.

|i avax. swing. Imagelcon

|GeneratePerscmArray .newPersonArray(Person ,Person)

java.util. Vector
java.util. Vector

[4]

Ling: 1, Column: @

Fig. 6. Persistent Roots Window

At the time of writing (August 2000) the system as described thus far has been im-
plemented. The tracing and control of execution paths using dynamic replacement of
variables and links has not yet been completed. However it is possible to give an
impression of how this will appear using simulated representations: Fig. 7 shows
snapshots at three successive points in the execution of method m, indicated by the
arrows. In the first, the variable p has not yet been initialised and so is represented
textually. In the second, after p’s initialisation, all uses of the variable are replaced by
hyper-links to its current value, which can be viewed by exploding the appropriate
link. Finally, after completion of the method execution leaves p’s scope and the vari-
ables return to being textual identifiers. Hyper-links to existing entities remain un-
changed during evaluation.

h)ublic class ¢ { h’“blic dlass ¢ { h)ublic class ¢ {
public javalang. String mi) { public javalang String m() { public javalang.String m() {
> javalang String p = "abc"; javalang String p = "abc”; javalang String p = "abc";
int i = p.length(); inti = p.length(); int i = p.length();
retum p + "def"; retum p + "def"; retum p + "def";
} /: }

: /})

Fig. 7. Execution Tracing

4.3 Implementation

For simplicity, the hyper-code system has been implemented using source code trans-
formation. When an evaluate operation is performed, each hyper-link is replaced by a
textual expression to retrieve the linked entity from a hidden persistent data structure
generated by the system. Fragments of code are transformed into complete class defi-
nitions. Instrumentation and control code is inserted in order to track execution paths,
halt at breakpoints, and update variables/hyper-links in the display. The transformed
code is compiled dynamically using the standard compiler, and the resulting classes
loaded and invoked. Full details of the implementation are given in [13].

This scheme has the advantages of simplicity and portability. Alternative tech-
niques such as byte code transformation at class loading time [14, 15] would probably
give considerably better performance for the evaluate operation, at the cost of greater
complexity. Although in other contexts such alternatives also have the advantage of
not requiring class source code, this is not relevant here since the entire hyper-code
scheme relies on source code being present.

5 Discussion

5.1 General Issues

The paper has described hyper-code in a general framework and given a flavour of a
prototype implementation for PJama. Since that is not yet completed, it is not possible
to draw any conclusions as to whether the hyper-code model, by removing some of
the accidental complexities of programming systems, brings any worthwhile benefits
to the programmer. This question could only be answered by conducting a full human
factors analysis on target users.

We have claimed that the description of a programming system in terms of abstract
entity and representation domains and operations is generally applicable. Similarly,
we suggested that a hyper-program form for hyper-code representations is probably
the only form possible given the original criteria for hyper-code. These claims need to
be tested by designing mappings for other languages.

One obvious problem with the hyper-code representation form is its handling of
cyclic data structures: since it imposes a hierarchy on a data structure by displaying
each referenced object within the object referring to it, a cyclic structure can be ex-
panded indefinitely without terminating.

5.2 Operation Sets

The set of concrete hyper-code operations described (explode, implode, evaluate, edit,
root) is just one example of the many possible sets that could support the required
activities. It does appear to be simple and minimal, at least in comparison with some
of the earlier operation sets from which it evolved during this work. For example, in
one version we distinguished between inspection of an entity, which generated a read-
only representation, and modification, in which a representation could be edited and
then reflected into a new entity that would replace the original. This scheme turned
out to be unnecessarily complex and was too closely coupled with issues of mutability
in a particular language. In a later version we defined separate operations for ex-
panding a hyper-link in place and for expanding it to give a new hyper-code fragment.
This was unnecessary given the ability to copy the hyper-code within an exploded
link, so the two operations were replaced by the single explode.

It is not clear whether this operation set is suitable for all languages (without the
root operation for non-persistent languages); it appears to be suitable for PJama and
for another concrete hyper-code system that we have designed for the language
ProcessBase [16]. One possibility for further work is to investigate alternative opera-
tion sets.

5.3 Language Issues

Focusing on implementation of particular concrete hyper-code systems, two issues
may be of interest:

* how do the features of particular languages affect the mapping of those languages
to hyper-code?
+ what would be the features of a language ideally suited to hyper-code?

We now attempt to relate these issues to the experience of designing the PJama
mapping and ProcessBase mappings.

Object Constructors

Since the exploded representation of a Java object takes the form of an expression to
construct an equivalent object, it is problematic to decide which of the constructors of
that class should be used. There is no way for the system to determine whether a
given constructor initialises all of the fields or what other side-effects it causes. This
issue is simpler in ProcessBase since a view (i.e. a record, the closest analogue to an
object) may be constructed with an anonymous constructor that simply initialises all
of the fields. The PJama version attempts to simulate this by generating a new method
to construct the object (Fig. 4) but this is rather unwieldy.

Information Hiding

Java’s encapsulation model of information hiding, specified by the protected and
private modifiers, does not fit neatly with the desired operation of explode, in which
exploding an object link should display a full representation of that object. If the
object contains hidden members, the choice is to display only a partial representation,
in which case the goal of representing the object by a valid expression is not met, or
to attempt to subvert the protection using the AccessibleObject class available in
recent Java versions.

In ProcessBase the only information hiding mechanism is the procedure closure, in
which the access path to data used by the procedure may be hidden from general
access. This means that the issue described above occurs for procedures rather than
objects. The planned system behaviour is that, as with Napier88 [9], the full proce-
dure closure may be viewed when a procedure link is exploded. Thus any data hidden
in the closure will be revealed as a link in the hyper-code. This is both a powerful
mechanism, and a potential problem since it precludes real information hiding.
Clearly, facilities could be provided to apply additional protection mechanisms to the
source code.

These are examples of the more general issue of whether a hyper-code system
should allow the programmer to achieve anything that could not be achieved by writ-
ing conventional programs in the language. In the particular PJama case the system
cannot, since it is itself implemented entirely in the language. More generally, where
the implementer may have control over aspects of the target language implementa-
tion, this is a significant issue.

Mutable Locations

Some complexity is introduced by Java’s standard treatment of variables, where an
identifier may denote either a location or the current value of that location, depending
on its context. For example, a special class of identifier link is required, which
behaves differently from all others in that the linked value changes during evaluation

on each update. Similarly, the programmer can copy a link to the location of a tempo-
rary method variable held on the stack, and paste it in another window. What should
be the semantics of that link after the method has returned? The pragmatic but unsat-
isfactory solution for PJama is that copying the link gives only the corresponding
textual identifier.

Both of these problems are avoided if mutable locations are first-class, as in
ProcessBase, which provides an explicit location constructor. This simplifies mat-
ters—in the first example, the value bound to a link now never changes, although if
that value is a location its contents may. In the second example, the location will
automatically persist beyond the method invocation, and so the link will continue to
denote the same location wherever it is pasted.

Openness

The hyper-code scheme relies on source code being either recorded or generated as
required for all entities, so that the explode operation can show details. This is feasible
in a self-contained persistent system, in which all entities are originally derived from
the evaluation of source code. Clearly however it does not work in an open system
that has to deal with third-party code for which source is not available. This is true for
much of the standard Java class libraries, as well as for most commercial Java soft-
ware. It is possible to generate approximations to the source code by de-compilation
of byte code, but often this will be rendered unusable by deliberate code obfuscation.

Reflection

Java provides good support for introspection over class structure, via the Reflect
package. It does not, however, provide introspection over method code, even at the
byte level, or dynamic access to the compiler. Both of these can be achieved, but
implementation of the hyper-code system would be simpler if they were supported
directly. Another issue is that current Java compilers work only at the granularity of
complete class definitions, so there is considerable overhead involved in processing
small expressions since they must be wrapped up into complete classes.

Desirable and Essential Features for Hyper-Code
Although the framework outlined in this paper is intended to be general enough to fit
all languages, the following mechanisms, in some form, are essential for hyper-code:

* structural reflection over types
* graphical user interface programming

Several further language features are beneficial when designing a hyper-code
system. Some affect the simplicity and elegance of the resulting system, while others
impact on the ease of implementation:

+ anonymous value constructors (not tightly bound to the value’s type)
+ information hiding by access path rather than encapsulation

* first-class locations

* dynamic compiler access

* structural reflection over code

The first four items above are provided by ProcessBase, and we intend to
implement our hyper-code design as part of our research into compliant architectures
[17].

6 Conclusions

This paper has described the following:

+ amotivation for providing simpler programming systems;

* aproposed set of criteria to be fulfilled by any candidate system;

+ a language-independent program representation form (hyper-code) and a set of
operations over it;

* a particular mapping of the above to the Java language.

It is not yet possible to draw any conclusions as to whether hyper-code brings any
worthwhile benefits to the programmer, but it appears that it may deliver a valuable
simplification of the programming process.

The current status of the PJama hyper-code system, as outlined earlier, is that all of
the operations have been implemented, but dynamic evaluation tracing has not (the
implementation is currently underway). A design for ProcessBase has been completed
and is described in [13].

7 Acknowledgements

This builds on earlier work carried out with Richard Connor, Vivienne Dunstan and
Quintin Cutts. It is supported by EPSRC grant GR/M88938 ‘Compliant Systems
Architecture Phase 2°. We thank the referees for their helpful comments.

References

10.

11.

12.

13.

14.

15.
16.

17.

Connor R.C.H., Cutts Q.I., Kirby G.N.C., Moore V.S., Morrison R. Unifying Interaction
with Persistent Data and Program. In: P. Sawyer (ed) Interfaces to Database Systems,
Proc. 2nd International Workshop on User Interfaces to Databases, Ambleside, Cumbria,
1994. Springer-Verlag, 1994, pp 197-212

Brooks F.P. No Silver Bullet — Essence and Accidents of Software Engineering. In: Proc.
Information Processing 86, 1986, pp 1069

Atkinson M.P., Bailey P.J., Chisholm K.J., Cockshott W.P., Morrison R. An Approach to
Persistent Programming. Comp. J. 1983; 26,4:360-365

Atkinson M.P., Daynes L., Jordan MLJ., Printezis T., Spence S. An Orthogonally Persis-
tent Java™ . ACM SIGMOD Record 1996; 25,4:68-75

Stallman R. GNU Emacs Manual. Free Software Foundation, 1997
Metrowerks Inc. CodeWarrior Pro 5, 1999

Microsoft Corporation. Microsoft® Visual Basic® 6.0 Programmer's Guide. Microsoft
Press, ISBN 1-57231-863-5, 1998

Goldberg A., Robson D. Smalltalk-80: The Language and its Implementation. Addison
Wesley, Reading, Massachusetts, 1983

Morrison R., Connor R.C.H., Cutts Q.I., Dunstan V.S., Kirby G.N.C. Exploiting Persistent
Linkage in Software Engineering Environments. Comp. J. 1995; 38,1:1-16

Zirintsis E., Dunstan V.S., Kirby G.N.C., Morrison R. Hyper-Programming in Java. In: R.
Morrison, M. Jordan and M. P. Atkinson (ed) Advances in Persistent Object Systems,
Proc. 8th International Workshop on Persistent Object Systems (POS8) and 3rd Interna-
tional Workshop on Persistence and Java (PJW3), Tiburon, California, 1998. Morgan
Kaufmann, 1999, pp 370-382

Albano A., Cardelli L., Orsini R. Galileo: a Strongly Typed, Interactive Conceptual Lan-
guage. ACM ToDS 1985; 10,2:230-260

Gosling J., Joy B., Steele G. The Java™ Language Specification. Addison-Wesley, ISBN
0-201-63451-1, 1996

Zirintsis E. Towards Simplification of the Software Development Process: The Hyper-
Code Abstraction (PhD Thesis, University of St Andrews). in preparation.

Marquez A., Zigman J.N., Blackburn S.M. Fast Portable Orthogonally Persistent Java.
Software - Practice and Experience, Special Issue on Persistent Object Systems 2000;
30,4:449-479

Chiba S. Load-Time Structural Reflection in Java. In: Proc. ECOOP 2000, 2000

Morrison R., Balasubramaniam D., Greenwood M., Kirby G.N.C., Mayes K., Munro D.S.,
Warboys B.C. ProcessBase Reference Manual (Version 1.0.6). Universities of St Andrews
and Manchester, 1999

Morrison R., Balasubramaniam D., Greenwood R.M., Kirby G.N.C., Mayes K., Munro
D.S., Warboys B.C. A Compliant Persistent Architecture. Software - Practice and Experi-
ence, Special Issue on Persistent Object Systems 2000; 30,4:363-386

