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Abstract. Algebraic compilers provide a powerful and convenient mech-
anism for specifying language translators. With each source language
operation one associates a computation for constructing its target lan-
guage image; these associated computations, called derived operations,
are expressed in terms of operations from the target language. Some-
times the target language operations are not powerful enough to specify
the required computations and one may then need to extend the tar-
get language algebras with more computationally expressive operations.
A better solution is to package them in a meta language which can be
automatically composed with the target language operations to ensure
that all operations needed or desired for performing a translation are
provided. In this paper, we show how imperative and functional meta
languages can be composed with a target language in an example which
implements a temporal logic model checker as an algebraic compiler and
show how meta languages can be seen as components to be combined
with a source and target language to generate an algebraic compiler.

1 Introduction

Attribute grammars [7, 1] and algebraic compilers [9] provide powerful and con-
venient mechanisms for specifying language translators. In both, one associates
with each operation in the source language computations for constructing the
target language images of source constructs created by the operation. The com-
plexity of these computations contributes to the complexity of the entire lan-
guage translator specification, and we are thus interested in means of reducing
the specification’s complexity by writing these computations in languages appro-
priate to the translation task at hand. These languages must be computationally
expressive enough to perform the necessary computations, and should provide
convenient programming constructs which simplify the specification process for
the translator implementor. Since algebraic compilers provide solid mathemati-
cal framework which provide a clear distinction between the target language and
the language used to specify the translation, they provide a better context in
which to explore the issues of meta languages.
An algebraic compiler C : LS → LT is a language–to–language translator that

uses an algorithm for homomorphism computation to embed a source language
LS into a target language LT . The computations associated with each source lan-
guage operation that define an algebraic compiler are written in terms using the
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operations from the target language and are called derived operations. In some
cases, the operations provided by the target language are not expressive enough
to correctly specify the translation or exist at such a low level of abstraction,
with respect to the source language, that the specification is excessively difficult
to read and write. In such cases, the target language is extended with additional
operations to make the translation possible or more easily specifiable. In this
paper, we explore how different meta languages can be used in conjunction with
operations of the target language, to correctly and conveniently specify transla-
tors implemented as algebraic compilers without extending the target language.
As an example, we develop a model checker for the temporal logic CTL (com-

putation tree logic) [3] as an algebraic compiler which maps the source language
CTL into a target language of satisfiability sets. Since the operations in the tar-
get language of sets are not powerful enough to specify general computations,
we must use a meta language to provide a more computationally expressive lan-
guage in which to specify this translation. We show how both functional and
imperative style meta languages can be used in the specification, thus giving the
language implementor some choice in choosing an appropriate meta language.
Section 2 describes CTL and model checking. In Section 3 we define algebraic

languages and compilers and show how CTL and models can be specified as
algebraic languages. Section 4 discusses meta languages in algebraic compilers
and specifically the meta languages used to implement a model checker as an
algebraic compiler. Section 5 provides the specification of the model checker as
an algebraic compiler using both a functional and an imperative meta language.
Section 6 contains some comments on meta languages in attribute grammars,
domain specific meta languages, and future work.

2 Model Checking

We present the problem of model checking a temporal logic as a language transla-
tion problem and implement two solutions as generalized homomorphisms using
different meta languages. Model checking [3] is a formal technique used to verify
the correctness of a system according to a given correctness specification. Sys-
tems are represented as labeled finite state transition systems called Kripke mod-
els [8] or simplymodels. Correctness properties are defined by formulas written in
a temporal logic. In this paper, we use CTL [3], a propositional, branching-time
temporal logic as our example. A model checking algorithm determines which
states in a model satisfy a given temporal logic formula, and can thus seen as a
language translator which maps formulas in the temporal logic language to sets
in a set language defined by the model.
A model M is a tuple M = 〈S,E, P :AP → 2S〉, where S is a finite set of

states, S = {s1, s2, . . . , sm}, and E defines directed edges between states and is
a binary relation on S, E ⊆ S × S, such that ∀s ∈ S,∃t ∈ S, (s, t) ∈ E, that
is, every state has a successor. For each s ∈ S we use the notation succ(s) =
{s′ ∈ S|(s, s′) ∈ E}. A path is an infinite sequence of states (s0, s1, s2, . . .)
such that ∀i, i ≥ 0, (si, si+1) ∈ E. AP is a finite set of atomic propositions,



AP = {p1, p2, . . . , pn}, P is a proposition labeling function that maps an atomic

proposition in AP to the set of states in S on which that proposition is true.
Figure 1 shows a model [3] for two processes competing for entrance into a critical
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Fig. 1. Model Example

section. The atomic propositions Ti, Ni, and Ci denote process i, 1 ≤ i ≤ 2, trying
to enter the critical section, not trying to enter the critical section, and executing
in the critical section, respectively.
The set of well-formed CTL formulas is described by the rules [3]:

1. The logical constants, true and false are CTL formulas.
2. Every atomic proposition, p ∈ AP , is a CTL formula.
3. If f1 and f2 are CTL formulas, then so are ¬f1, f1 ∧ f2, AXf1, EXf1,

A[f1Uf2], and E[f1Uf2].

As in [3], we define the satisfaction relation |= of a CTL formula f on a state s
in M , denoted s |= f or M, s |= f and read “s satisfies f”, as follows:

s |= p iff s ∈ P (p)
s |= ¬f iff not s |= f

s |= f1 ∧ f2 iff s |= f1 and s |= f2

s |= AX f1 iff ∀(s, t) ∈ E, t |= f1

s |= EX f1 iff ∃(s, t) ∈ E, t |= f1

s |= A[f1 U f2] iff ∀ paths (s0, s1, s2, . . .), s = s0 and
∃i[i ≥ 0 ∧ si |= f2 ∧ ∀j[0 ≤ j < i⇒ sj |= f1]]

s |= E[f1 U f2] iff ∃ a path (s0, s1, s2, . . .), s = s0 and
∃i[i ≥ 0 ∧ si |= f2 ∧ ∀j[0 ≤ j < i⇒ sj |= f1]]

The set of states {s ∈ S | M, s |= f} is called the satisfiability set of the formula
f for model M . For the model in Figure 1, we can express the mutual exclusion
property that both processes should not be in the critical section at the same
time by the CTL formula ¬(C1∧C2). The absence of starvation property, which
states that if a process is trying to enter the critical section it will eventually be



able to do so, is described for process i by the formula ¬Ti ∨A[true U Ci]. The
model checker verifies that these properties hold on all states in the model.
We present both a functional and imperative version of a CTL model checker

implemented as an algebraic compiler [9] MC : LS → LT where the source
language LS is CTL and the target language LT is a language describing the
subsets of the states of the model M . The algebraic compiler MC translates a
CTL formula f , to the set of states, S ′, on which the formula f holds. That is,
MC(f) = S′ where S′ = {s ∈ S|M, s |= f}.

3 Algebraic compilers

3.1 Σ–algebras and Σ–languages

An operator scheme is a tuple Σ = 〈S,Op, σ〉 where S is a set of sorts, Op
is a set of operator names, and σ is a mapping defining the signatures of the
operator names in Op over the sorts in S. That is, σ:Op→ S∗ × S such that if,
for example, s0, s1, and s2 are sorts S and op is an operator name in Op which
stands for operations which take an element of sort s1 and an element of sort s2
and generates an element of sort s0, then σ(op) = s1 × s2 → s0.
A Σ–algebra is a family of non–empty sets, called the carrier sets, indexed by

the sorts S of Σ and a set of Op named operations over the elements of these sets
whose signatures are given by σ. There may be many different algebras for the
same operator scheme Σ. These algebras are called similar and are members of
the same class of similarity, denoted C(Σ). An interesting member of C(Σ) is the
word or term algebra for Σ. This algebra is parameterized by a set of variables
V = {Vs}s∈S and is denoted WΣ(V ). Its carrier sets contain words formed from
the variables of V and operator names of Op and its operators construct such
words according to the operations signatures defined by σ [4]. Variables in V are
called generators and V is thus said to generate WΣ(V ).
A Σ-language [9] L is defined as the tuple 〈Asem,Asyn,L:Asem → Asyn〉

where Asem is a Σ-algebra which is the language semantics, Asyn is a Σ word
algebra which is the language syntax, and L is a partial mapping called the
language learning function [9, 10]. L maps semantic constructs in Asem to their
expressions as syntactic constructs in Asyn such that there exists a complemen-
tary homomorphism E :Asyn → Asem where if L(α) is defined, then E(L(α)) = α,
α ∈ Asem. E is called the language evaluation function and maps expressions in
Asyn to their semantic constructs in Asem.

CTL as a Σ–language CTL can be specified as the Σ–language Lctl =
〈Asemctl ,A

syn
ctl ,Lctl〉 [12] using the operator scheme Σctl = 〈Sctl, Opctl, σctl〉 where

Sctl = {F}, the set of sorts containing only one sort for “formula”, Opctl =
{true, false, not, and, or, ax, ex, au, eu}, and σctl is defined below:

σctl(true) = ∅ → F σctl(not) = F → F σctl(ax) = F → F

σctl(false) = ∅ → F σctl(and) = F × F → F σctl(ex) = F → F

σctl(or) = F × F → F σctl(au) = F × F → F

σctl(eu) = F × F → F



As CTL formulas are written using atomic propositions from a specific model
M , the syntax algebra Asynctl is parameterized by the set of atomic propositions
AP from M and is denoted as Asynctl (AP ). For example, the formula ¬(C1 ∧C2)
shown above has variables C1 and C2 from AP of the above model and the ∧ and
¬ operations construct the CTL formula (in the syntax word algebra) from these
variables. The syntax (word) algebra Asynctl (AP ) has as its carrier set all possible
CTL formulas written using the atomic propositions in AP . The operations of
this algebra construct formulas (words, if you like) from variables and operator
names. The set of variables AP generates the algebra Asynctl (AP ).
Just as the syntactic algebraAsynctl (AP ) is parameterized by the atomic propo-

sitions AP of the model M , the semantic algebra Asemctl is also parameterized
by M in that the carrier set of the semantic algebra Asemctl is the power set of
the set of states of the model M . The operations in this algebra, while simi-
lar (that is, having the same signature) to those in Asynctl , operate on sets, not
formulas, since the meaning of a CTL formula is in fact its satisfiability set.
Although the operations in the word algebra Asynctl (AP ) are easily defined as
simply concatenating operation names and operands together, the operations
in the semantic algebra Asemctl are not so simply defined. We will thus name
these operations in Asemctl and define them individually. The operation names
{true, false, not, and, or, ax, ex, au, eu} in Opctl are instantiated in A

sem
ctl by the

respective operations {S, ∅, C,∩,∪, Nextall, Nextsome, lfpall, lfpsome} where

– S is the constant set of all states in M and ∅ is the constant empty set.
– C is the unary operator that produces the complement in S of its argument.
– ∩ and ∪ are the binary set union and intersection operators.
– For α ∈ SM the unary operators Nextall(α) and Nextsome(α) are defined by
the equalities Nextall(α) = {s ∈ S|successors(s) ⊆ α} and, Nextsome(α) =
{s ∈ S|successors(s) ∩ α 6= ∅}, respectively, where successors(s) denotes
the successors of the state s in the model M .

– lfpall and lfpsome are inspired by the Y operator for fixed point construction
[5]. For α, β ∈ 2S , lfpall(α, β) computes the least fixed point of the equation
Z = β ∪ (α ∩ {s ∈ S|successors(s) ⊆ (α ∩ Z)}) and lfpsome(α, β) computes
the least fixed point of the equation Z = β ∪ (α ∩ {s ∈ S|(successors(s) ∩
α ∩ Z) 6= ∅}) [3].

Although the algebra Asemctl exists, it is not used directly in the model checking
process. It is only used to explain CTL as an Σctl-language.

A model as an Σ–language As the target language of our algebraic model
checker, we develop a Σ–language based on sets which is parameterized by a
specific model. For a model M , LM = 〈A

sem
M ,AsynM ,LM 〉 using operator scheme

ΣM = 〈SM , OpM , σM 〉 where Sctl = {Set,Node,Boole}, Opctl = {∅,∪,∩, \,
succ, ⊆,=,∈,“{ }” }, and σM is defined below:

σM (∅) = ∅ → Set σM (⊆) = Set× Set→ Boole

σM (S) = ∅ → Set σM (=) = Set× Set→ Boole

σM (∪) = Set× Set→ Set σM (∈) = Set×Node→ Boole



σM (∩) = Set× Set→ Set σM (succ) = Node→ Set

σM (\) = Set× Set→ Set σM ({ }) = Node→ Set

The operators here are mostly self–descriptive. ∅ and S generate respectively
the empty set and the full set of states S. The binary operators ∪, ∩, and \
are respectively set union, intersection and difference. We also have the subset
(⊆), set equality (=), and membership operations (∈) and the successor function
succ and singleton set creation function denoted by {}. These operators build set
expressions in the syntax algebra AsynM and sets in the semantic algebra AsemM .

3.2 Algebraic compilers

An algebraic compiler [9, 10] C:LS → LT which maps the language LS = 〈A
syn
S ,

AsemS ,LS〉 into the language LT = 〈AsynT ,AsemT ,LT 〉 is a pair of (generalized)
homomorphisms (Hsyn:A

syn
S → AsynT , Hsem:A

sem
S → AsemT ) defined such that

the diagram in Figure 2 commutes. In general, the operator schemes of the
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Fig. 2. An algebraic compiler.

algebras in these two languages may not be similar, as is the case with the
operator schemes Σctl and ΣM for the languages Lctl and LM we intend to use
in our model checker. Thus, a homomorphism, which associates a single target
algebra operation with each source algebra operation is not possible. Instead,
for each source algebra operation, we must build an appropriate operation from
several target algebra operations. Such operations are called derived operations.
Derived operations are written using words from the target word algebra using
a set of meta variables. We will use subscripted versions of the sort names from
the source language operator scheme as meta variables. The word “S \ F1”, is a
word in the algebra AsynM ({F1}) which represents the unary derived operation for
taking the complement of a set with respect to the full set of states S. The meta
variable F1 is the “formal parameter” of the derived operation. We will associate
this derived operation with the CTL operation not since given the satisfiability
set of a formula f , it will generate the satisfiability set of the formula not f .

To define a generalized homomorphism [6]H from algebra AΣS
with operator

scheme ΣS = 〈SS , OpS , σS〉 to algebra AΣT
with the possibly dissimilar operator

scheme ΣT = 〈ST , OpT , σT 〉 we must define two mappings:



1. a sort map, sm:SS → ST which maps source algebra sorts to target algebra
sorts. In a generalized homomorphism, an object of sort s of ΣS will be
mapped to an object of sort sm(s) of ΣT .

2. a operator map, om:OpS → WΣT
(S′
S), which maps operators in the source

algebra to derived operations written as words in the target syntax algebra
with meta variables S′

S – the source sorts with subscripts.

The derived operations, which take operands from the target algebra, have the
same signatures as their counterparts in the source algebra, and thus we implic-
itly create an intermediate, hybrid algebra ASTΣS

which has the same operator
scheme ΣS as the source algebra, but whose carrier sets are populated by values
from the target algebra and whose operations are the derived operations defined
by the operator map om. The generalized homomorphism H:AΣS

→ AΣT
is

thus the composition of an embedding homomorphism from AΣS
to the interme-

diate algebra ASTΣS
, (em:AΣS

→ ASTΣS
) with an identity injection mapping from

the intermediate algebra to AΣT
, (im:ASTΣS

→ AΣT
) [9, 17]. The mapping im is

an identity mapping that maps elements in sort s, s ∈ SS in A
ST
ΣS
to the same

value in sort sm(s) ∈ ST in AΣT
. Thus H = im ◦ em. Since both the syntax

and semantic generalized homomorphisms of Figure 2 are implemented in this
manner, the intermediate algebras form an intermediate Σ–language and thus,
the diagram of Figure 2 becomes the commutative diagram in Figure 3.
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Fig. 3. An algebraic compiler with the intermediate language displayed.

Given a mapping g which maps generators of the source algebra into the
target algebra, g = {gs: s→ sm(s)}s∈Ss

, g can be uniquely extended to a homo-
morphism H:AΣS

→ AΣT
[6, 9]. The algorithm for implementing a generalized

homomorphism from a ΣS algebra generated by G = {gs}s∈SS
is

H(a) = if a ∈ gs for some s ∈ SS then gs(a)
else if a = f(a1, a2, . . . , an) for some f ∈ OpS

then om(f)(h(a1), h(a2), . . . , h(an)).

This is all made clear by examining it in the context of our model checker as
an algebraic compiler. For starters, the sort map sm simply maps the sort F in



Σctl to the sort Set in ΣM . The generators G are the set of atomic propositions,
GF = AP , and gF is the function P which maps atomic propositions to their
satisfiability sets. What is left then, is to define the operator map om which
maps CTL operators in Opctl to derived operations over satisfiability sets. We
saw above how the word “S \ F1” could be used to define the derived operation
for the CTL operation not:F1 → F0. The use of the indexed sort name F (F1) as
the meta variable is to show the correspondence between the parameters of the
source and derived operations. The subscripts are used to distinguish between
multiple parameters of the same sort, different sorts will have different names.
Consider now, the CTL operation ax. We cannot write a correct derived op-

eration using only the operators from the target language. We need additional
constructs with which to compose a derived operation. It is at this point that we
can begin to speak of meta languages used in the specification of algebraic com-
pilers instead of just meta variables. By introducing some functional language
constructs into the language in which we write derived operations, we may like
to write the derived operation for ax as

om(ax:F1 → F0) = filter (λ n . succ(n) ⊆ F1 ) S

where “filter” is a generic operation which applies a boolean function (given
by the λ–expression) to each element of a container type, returning a similar
container type which contains only those elements from the original which, when
provided to the boolean function, generate a value of true. Where F1 is the
satisfiability set of a CTL formula f , the derived operation denoted by this term
will compute the satisfiability set of the CTL formula ax f , by extracting from
S, those states that satisfy the condition that all of their successors satisfy f .
Instead of extending the target algebra with these operations, we show in

the following section how a meta language containing these constructs can be
used in conjunction with the target language to write the appropriate derived
operations. The advantage of keeping the meta language separate from the target
language is that we can populate an algebraic language processing environment
with several reusable meta languages which a language designer may use to build
translators.

3.3 Evaluation of derived operations

Derived operations are specified by words from the target language syntax alge-
bra AsynT (S′

S) over a subscripted set of meta variables from the source signature
set of sorts SS . In Figure 3, the same words from A

syn
T (S′

S) are used to define the
operations of the syntax algebra AsynST and the semantics algebra A

sem
ST . Thus, we

could build a generalized homomorphism h′:AsynS → AsemST which maps words
in AsynS directly to values in AsemST . Thus, h

′ is the composition of the embed-
ding morphism emsyn:A

syn
S → AsemST and the LST evaluation function EST , i.e.

h′ = emsyn ◦EST . In the case of our model checker, such a homomorphism would
map CTL formulas directly to their satisfiability sets in the intermediate seman-
tic algebra. For efficiency reasons this may be desirable and is often the way we
will actually implement model checkers as algebraic compilers.



4 Meta languages in algebraic compilers

A meta language LML used in an algebraic compiler is essentially a parame-
terized Σ–language. Like all Σ–languages, it has an operator scheme ΣML =
〈SML, OpML, σML〉 where SML and OpML are a set of sorts and operator names
as seen above. The signatures of these operator names, however, may include
parameters as well as sorts from SML. That is, σML:OpML → PS∗

ML × PSML,
where PSML where PSML = SML ∪ Param, Param is a set of parameter
names. The meta language has additional constructs that we will use to write
the derived operations of the algebraic compiler. In the functional instance of
the model checker, these meta language operations will include the “filter” and
λ–expression operators we saw above, in the “imperative” instance, the meta
language constructs will include if and while statements, assignment statements,
and a for each loop operation. These meta operations, in combination with the
target language operations of set intersection, union, membership, etc., are used
to write the derived operations specifying the model checker.
To write derived operations using meta (LML) and target (LT ) language

operations, an instantiation of the meta language is created (by the language
processing environment) from these two languages. This language is denoted
LMLT = 〈Asem

MLT ,A
syn

MLT ,LMLT 〉 with operator scheme ΣMLT . To instantiate a
meta language the following tasks must be performed:

1. Instantiate the operator scheme ΣMLT . ΣMLT = 〈SMLT , OpMLT , σMLT 〉
where the set of sorts SMLT is the union of the meta and target sorts
SML ∪ ST , the operator names OpMLT are the union of meta and target
operator names OpML ∪ OpT , and signatures in σMLT are created by re-
placing parameters in σML signatures with sort names in ST and adding the
target languages signatures in σT . In our model checker, the target language
sorts Node and Set replace the parameters in the meta language signatures.

2. Instantiate the syntax algebra Asyn
MLT . We must instantiate the operations

for the syntax algebra, but these are can be automatically constructed using
a prefix format for these “word constructing” operations.

3. Instantiate the semantic algebra Asem
MLT . We must also instantiate the op-

erations of this algebra. Either they are explicitly constructed for the new
types, a kind of ad hoc polymorphism, or, preferably, the existing meta lan-
guage operations are generic (polymorphic or polytypic) [2] and can thus
automatically work on the data-types from the target algebra.

Derived operations for the generalized homomorphism are now written in
Asyn
MLT (S

′
S), the instantiated meta language word algebra with meta variables

S′
S , instead of the syntax algebra A

syn
ST (S

′
S) of the intermediate hybrid language

LST as done before. Thus, the operator map om used in defining the generalized
homomorphism has the signature om : OpS → Asyn

MLT (S
′
S). The sort map sm is

the same as before, so that target images of source language constructs are still
objects of sorts in the target language, not the meta language.
When building such an algebraic compiler the hybrid intermediate language

LST from Figure 3 is replaced by the hybrid intermediate language LSMLT =



〈Asem
SMLT ,A

syn

SMLT ,LSMLT 〉 as shown in Figure 4. Like LST , this language has
the same operator scheme ΣS as the source language, but has operations built
using the operations from LMLT . The embedding morphisms emsyn and emsem
in Figure 4 are computed in the same manner as those in Figure 3. We also add
an extra pair of identity injection mappings between LSMLT and LMLT .
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Fig. 4. An algebraic compiler with a meta language level.

Just as the intermediate hybrid language LST in Figure 3 is automatically
created, so it LSMLT = 〈Asem

SMLT ,A
syn

SMLT ,LSMLT 〉. However, we do need to
explicitly create the meta language LMLT . But, this makes sense, whereas before
we specified the source and target language of the algebraic compiler and wrote
derived operations in the target syntax algebra with meta variables, we must now
specify the meta language we wish to use as well. The derived operations are
then written in the instantiated meta language syntax algebra. An appropriate
set of algebraic language processing tools can automatically instantiate the meta
language, provided the existing meta language operations are generic, but we
must at least specify which meta language is to be composed with the selected
target language in order to write derived operations and generate the algebraic
compiler from these specifications.

4.1 A functional meta language

As alluded to above, we can use a functional meta language in specifying our al-
gebraic model checker MC:Lctl → LM . This allows us write derived operations
for the temporal logic operators ax, ex, au, and eu using functional language con-
structs and thus provide concise specifications for our model checker. Although a
full functional meta language would have many higher order functions, like map

and fold, we only describe here the operations which are used in our algebraic
specification. We do however use λ expressions and higher order functions filter,
limit and iterate which are defined below.



Our functional meta language LFM = 〈 AsemFM , A
syn
FM , LFM 〉 has operator

scheme ΣFM = 〈SFM = {Boole, V ar, Func(→), List([ ])}, OpFM = {not, and,
filter, λ, limit, iterate}, σFM 〉, where σFM is defined below:

σFM (not) = Boole → Boole

σFM (and) = Boole×Boole → Boole

σFM (filter) = (a→ Boole)× b→ b

σFM (λ) = V arb × a → (b→ a)
σFM (limit) = [a] → a

σFM (iterate) = (a→ a)× a → [a]

The Boole sort is for boolean variables, V ar for variables used in λ–expressions,
Func for functions between two types, denoted a→ b for respective source and
target types a and b, and List, denoted [a] for lists of elements of type a. filter is
a generic operation which applies a boolean function to each element (parameter
a) of a container type (parameter b), and constructs the container type with only
those original elements which evaluate to true under the boolean function. λ is
the operation for creating functions from λ–expressions. The parameter a in this
signature represents an expression of type a with a free variable of type b which
when combined with a variable of type b, (V arb) generates a function of type
b→ a. limit is a function which lazily evaluates a list of elements, returning the
first element in the list which is followed by a element of the same value (limit
[1, 2, 3, 3, ...] evaluates to 3). iterate is also lazy and repeatedly applies a unary
function first using a given initial value and then to the value returned from the
previous application That is, iterate f x = x cons (iterate f (f x)) (for example
iterate inc 3 = [3, 4, 5, 6, ...]).
We can instantiate this meta language with the model language LM by writ-

ing new operator signatures by replacing the parameters a and b in σFM with
sort names Set and Node from the operator scheme ΣM of LM . Since the filter
operation is generic [2], we do not need to explicitly implement versions of this
function for sets.

4.2 An imperative meta language

We can similarly design an imperative meta language LIM = 〈 AsemIM , A
syn
IM ,

LIM 〉 that has operator scheme ΣIM = 〈SIM , OpIM , σIM 〉. The sort set contains
sorts SIM = {Expr, Stmt, StmtList, V ar,Boole} for expressions, statements,
statement lists, etc., as are familiar in imperative languages. A set of operators
OpIM would thus include the set {if, while, assign, block, for each, not, and, ...}.
These operator’s signatures and others as defined by σIM are shown below:

σIM (not) = Boole → Boole

σIM (and) = Boole×Boole → Boole

σIM (foreach) = V ar × Expr × Stmt→ Stmt

σIM (if) = Boole× Stmt → Stmt

σIM (while) = Boole× Stmt → Stmt

σIM (assign) = V ar × Expr → Stmt

σIM (block) = StmtList → Stmt



σIM (list1) = Stmt → StmtList

σIM (list2) = StmtList× Stmt→ StmtList

σIM (expr1) = Expr → a

σIM (expr2) = Expr → Boole

σIM (valof) = Stmt → Expr

The familiar imperative language operations are present here. Of interest is the
generic for each operation which will iterate through all elements of a container
type, and perform some statement for each element and the valof operation
which embeds statements in expressions using the value of the last assignment.

5 Model checker specification

In this section we can show the specifications for the algebraic model checker
using the functional and imperative meta languages. We will write the translation
specifications for each CTL operation op ∈ Opctl, by writing the signature of the
operation, σctl(op), followed by its derived operation in the target, om(op), but
we will drop the om for convenience. The operation’s signatures are written
with the output sort of each operation to the left and the operation name split
between the input sorts in a BNF notation. (In fact, some algebraic tools like
TICS [11] use this specification to generate a parser for the source language.)
The meta variables used in the derived operations are indexed source language
sorts found in the source operation signature. In the derived operations, a meta
variable for an input sort represents the target image of the corresponding source
language component. These specifications are processed by an algebraic language
processing environment to automatically generate the model checker [12, 13].

5.1 Functional meta language specification

The functional version of the algebraic model checker maps CTL formulas in
Asynctl (AP ) to their satisfiability sets. For the non–temporal operators in Lctl we
have straightforward derived operations shown below:

F0 ::= true F0 ::= false F0 ::= not F1 F0 ::= F1 and F2

S ∅ S \ F1 F1 ∩ F2

The operation true has the derived operation S (shown directly below it) indi-
cating that the satisfiability set of true is the full set of states S in the modelM ;
false has derived operation ∅ indicating that the satisfiability set of false is the
empty set. The derived operation associated with not shows that the satisfiabil-
ity of not f is the set difference of S and the satisfiability set of f , denoted by
the sort name F1. Similarly, and is defined by the intersection of the satisfiability
sets of the two sub formulas, respectively denoted F1 and F2.
In the derived operation for ax, seen below, we see the use of some meta

language constructs. Here, we define the satisfiability set of ax f by filtering the
set of states by a function which selects only those nodes such that all of their
successors are in the satisfiability set of f .



F0 ::= ax F1 filter (λ n . succ(n) ⊆ F1 ) S

The derived operation for au is similar, but uses the limit and iterate operations
to implement a type of least fixed point operator of the function specified by the
λ–expression.

F0 ::= a [ F1 u F2 ]
limit ( iterate (λ z . z ∪ ( filter (λ n . (succs(n) ⊆ z)) F1 )) F2 )

The atomic propositions, specified as variables AP in Asynctl (AP ), are mapped to
their satisfiability set by P , the model labeling function.

F0 ::= p P (p)

5.2 Imperative meta language specification

Since the non–temporal CTL operators do not use any meta language constructs
in their derived operations, they are the same here as in the functional specifica-
tion. Thus, we show only the temporal operators ax and au. We use an additional
meta variables $tempi in these derived operations which are replaced by a new
temporary variables for each use of a derived operation.

F0 ::= ax F1 F0 ::= a [ F1 u F2 ]
valof { valof {
$temp := ∅ $temp1 := ∅; $temp2 := F2 ;
for each n in S while ( not $temp1 == $temp2 ) {
if ( succ(n) ⊆ (F1) then $temp1 := $temp2 ;
$temp := $temp ∪ { n } for each n in F1 do

F0 := $temp } if (succ(n) ⊆ $temp1 ) then
$temp2 := $temp2 ∪ {n} }

F0 := $temp1 }

These derived operations are the imperative versions of the functional derived
operations given above in Section 5.1. Here, the while and for each operators
are used to implement a least fixed point operation to compute satisfiability sets.

6 Comments and future work

The meta languages described here are just the required subsets of general pur-
pose meta languages which would populate an algebraic language processing
environment. Meta languages should be reusable components in such an envi-
ronment so that algebraic compiler designers can choose from a collection of
existing meta languages in which to write their translator specifications. A well–
stocked environment would have functional and imperative style meta languages
giving the language designer some choice based on personal preference of lan-
guage style.
More importantly, however, we would also expect this environment to con-

tain domain specific meta languages [18] with specialized constructs to address



issues found in specific domains commonly encountered in language processing
as well as other domains, such as temporal logic model checking, which also have
solutions as algebraic compilers. Traditional language processing tasks with spe-
cific domains include type checking, optimization and parallelization, and code
generation. In a type checker, for example, the target algebras would have oper-
ators for the base types and type constructors and carrier sets containing types
or type expressions. A domain specific meta language for type checking which
has specific constructs for managing symbol tables and environments would be
helpful to the implementor and reusable in different compilers. In the case of
the model checker, a domain specific meta language would include a least fixed
point operator, since this domain would make good use of such a construct.

We opened this paper with a mention of attribute grammars and comment
here on meta languages within attribute grammars since they take a slightly
different form than in algebraic compilers. Algebraic compilers rely on an ex-
plicit definition of the target language and use target language operations for
writing derived operations. These operations thus provide a starting point for
adding meta language features. Attribute grammars, to their detriment, make no
explicit mention of the target language and thus do not have a set of target lan-
guage operations to provide as a starting point for writing semantic functions for
defining attribute values. Instead, they provide a single general purpose language
for writing semantic functions. This language doesn’t suffer the expressiveness
problems we saw above, but it does lock the user into a single “meta language”
for defining attribute values. We have thus argued [18] that a choice of domain
specific meta languages in attribute grammars is also desirable for many of the
same reasons as they are beneficial in algebraic compilers.

We are pursuing this work in an effort to find appropriate meta languages for
defining language constructs for the Intentional Programming (IP) [15] system
under development at Microsoft. IP is an extensible programming environment
which allows programmers to define their own language constructs, called inten-
tions, and add them to their programming environment. We are interested in
exploring different meta languages, in the broad sense of the term, for defining
such intentions. Since the same domains of type checking, optimization, code
generation, etc., are encountered in IP, domain specific meta languages will be
useful in this system as well. They are especially important here since appropri-
ate domain specific meta languages raise the level of abstraction in which the
intention designer works and will thus make designing intentions a more reason-
able process that experienced programmers could perform to create their own
language extensions. To experiment with different meta languages, we are cur-
rently developing a set of lightweight prototype tools using algebraic compilers
and attribute grammars which use domain specific meta languages.

Our choice of model checking as an example isn’t as esoteric as it may ap-
pear. Model checking has been used to perform data flow analysis on program
control and data flow graphs [16] and to find optimization and parallelization
opportunities in program dependency graphs [14]. In both cases, temporal logic
acts as a specification language for certain patterns in a graph representation of



the program which are found by a model checker. Thus, temporal logic does have
applications as a domain specific meta language in algebraic compilers, attribute
grammars and IP.
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