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Abstract. We describe a set of preliminary experiments to evolve spik-
ing neural controllers for a vision-based mobile robot. All the evolution-
ary experiments are carried out on physical robots without human inter-
vention. After discussing how to implement and interface these neurons
with a physical robot, we show that evolution finds relatively quickly
functional spiking controllers capable of navigating in irregularly tex-
tured environments without hitting obstacles using a very simple genetic
encoding and fitness function. Neuroethological analysis of the network
activity let us understand the functioning of evolved controllers and tell
the relative importance of single neurons independently of their observed
firing rate. Finally, a number of systematic lesion experiments indicate
that evolved spiking controllers are very robust to synaptic strength de-
cay that typically occurs in hardware implementations of spiking circuits.

1 Spiking Neural Circuits

The great majority of biological neurons communicate by sending pulses along
the axons to other neurons. A pulse is a small current charge that occurs when
the voltage potential across the membrane of a neuron exceeds its threshold.
The pulse is also known as “spike” to indicate its short and transient nature.
After emitting a spike, a neuron needs some time to reestablish its electrochem-
ical equilibrium and therefore cannot immediately emit a new spike, no matter
how strong its excitatory input is. A typical neuron in the cortex “fires” ap-
proximately 10 spikes per second during resting conditions and can emit up to
300 spikes per second in operating conditions. Other neurons can fire more fre-
quently (for example 500 spikes per seconds) clustered in short periods of time
(“bursting neurons”).

In the field of artificial neural networks we find two different classes of models
that differ with respect to the interpretation of the role of spikes. Connectionist
models of neural networks [19], by far the most widespread models, assume that
what matters in the communication among neurons is the firing rate of a neuron.
The firing rate is the average quantity of spikes emitted by the neuron over a rela-
tively long time window (for example, over 100 ms). This quantity is represented
by the activation level of the neuron. For example, a neuron characterized by a
sigmoid activation function, such as the logistic function f(z) = 1/1 + exp(—z),
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that gives an output of 0.5 would be equivalent to a spiking neuron that emits
approximately half its maximum rate of spikes (150 out of 300 spikes per second,
e.g.). Models of pulsed neural networks [14] instead assume that the firing time,
that is the precise time of emission of a single spike, can transmit important
information for the post-synaptic neuron [23]. Therefore, these models use more
complex activation functions that simulate the emission and reception of spikes
on a very fine timescale.

Spiking circuits have at least two properties that make them interesting can-
didates for adaptive control of autonomous behavioral robots:

— The intrinsic time-dependent dynamics of neuron activation could detect
and exploit more easily (e.g., with simpler circuits or with higher reliabil-
ity) temporal patterns of sensory-motor events than connectionist neural
networks.

— Since the physics of circuits of sub-threshold transistors (i.e., characterized
by gate-to-source voltage differences below their threshold voltage) imple-
mented with analog Very Large Scale Integration technology [I5] match the
properties of spiking neurons, it possible to implement large networks of
spiking neurons in tiny and low-power chips [9].

Designing circuits of spiking neurons with a given functionality is still a
challenging task and the most successful results obtained so far have focused on
the first stages of sensory processing and on simple motor control. For example,
Indiveri et al. [§] have developed neuromorphic vision circuits that emulate the
interconnections among the neurons in the early layers of an artificial retina in
order to extract motion information and a simple form of attentive selection
of visual stimuli. These vision circuits have been interfaced with a Koala robot
and their output has been used to drive the wheels of the robot in order to
follow lines [10]. In another line of work, Lewis et al. have developed an analog
VLSI circuit with four spiking neurons capable of controlling a robotic leg and
adapting the motor commands using sensory feedback [13]. This neuromorphic
circuit consumes less than 1 microwatt of power and takes less than 0.4 square
millimeters of chip area.

Despite these interesting implementations, there are not yet methods for
developing complex spiking circuits that could display minimally-cognitive func-
tions or learn behavioral abilities through autonomous interaction with the envi-
ronment. Furthermore, the potentially complex dynamics that a spiking circuit
with feedback loops can display allows several alternative functioning modali-
ties. For example, a spiking circuit could use inhibitory neurons to modulate the
overall excitation of the network and/or selectively interact with other neurons
to inhibit specific actions. Also, the same circuit could use firing rate instead of
firing time as the preferred functioning modality (this concept will be discussed
in more detail later on in this paper).

Artificial evolution is therefore an interesting method to discover spiking cir-
cuits that autonomously develop desired behavioral abilities for robots without
imposing constraints on their architecture and functioning modality. In this pa-
per, we describe some initial explorations in the evolution of spiking circuits for
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Fig. 1. The function describing the contribution € of a spike from a presynaptic neuron
emitted at time ¢/. The contribution of the spike begins after some delay A (2 ms)
due to the traveling time of the spike and eventually decreases its effect as time ¢ flows
from the firing time ¢/. The synapse time constant 75 is set to 10 ms and the membrane
time constant 7,, is set to 4 ms.

a task of vision-based navigation using a Khepera robot with a linear CMOS
vision system. We will then analyze the evolved spiking circuit and discuss the
most important lessons learned from these experiments. Finally, we will describe
some ideas for future developments in this emerging area of research.

2 The Spike Response Model

The state of a spiking neuron is described by the voltage difference across its
membrane, also known as membrane potential v. Incoming spikes can increase
or decrease the membrane potential. The neuron emits a spike when the total
amount of excitation induced by incoming excitatory and inhibitory spikes ex-
ceeds its firing threshold 6. After firing, the membrane potential of the neuron
resets its state to a low negative voltage during which it cannot emit a new spike,
and gradually returns to its resting potential. This recharging period is called
the refractory period.

There are several models of spiking neurons that account for these properties
with various degrees of detail. In the experiments described in this paper, we have
chosen the Spike Response Model developed by Gerstner [5]. It has been shown
that several other models of spiking neurons, such as the class of Integrate-and-
Fire neurons (where the membrane potential of the neuron is immediately reset
to its resting value after a spike), represent special cases of the Spike Response
Model [g].

In this model, the effect ¢ of an incoming spike on the neuron membrane
is a function of the difference s = t — ¢t/ between current time ¢ and the time
when the spike was emitted ¢t/. The properties of the function are determined
by a) the delay A between the generation of a spike at the pre-synaptic neuron
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Fig. 2. The function describing the refractory period of the neuron after emission of
a spike. Notice the at time 0, the membrane potential is set to a large negative value
(larger than 1.0 shown on the y-axis) to prevent another spike. The refractory period is
a function of time from last spike and its shape is given by the membrane time constant
Tm (here set to 4).

and the time of arrival at the synapse, b) a synaptic time constant 7, and ¢) a
membrane time constant 7,,. The idea is that a spike emitted by a pre-synaptic
neuron takes some time to travel along the axon and, once it has reached the
synapse, its contribution on the membrane potential is higher as soon as it
arrives, but gradually fades as time goes. A possible function €(s) describing this
behavior, shown in figure [[] is [6]

e(s) = {exp[—(s — A) /1] (1 — exp[—(s — A)/TS]()) z i 2 )

In what follows, we will discretize time in small steps of 1 ms each and consider
the effects of €(s) only within a time window of 20 ms. At each time step ¢,
the synaptic contribution to the membrane potential is the sum of all the spikes
arriving at the synapse over a 20 ms time window weighted by the corresponding
value of the function €(s) at each time step. Therefore, if at time step ¢; the pre-
synaptic neuron has emitted three spikes, respectively at s = 4,s = 7,s = 15,
the total contribution E;, computed using equation [l is

Er, = e(4) + €(7) + €(15) = 0.109945 + 0.112731 + 0.028207 = 0.250883  (2)

At the next time step to, assuming that there are no new spikes, we simply
shift all the previous firing times of each spike by one position (respectively at
s =5,8=28,s=16) and obtain a new (lower) value E;, = 0.2458538.
Assuming that at time ¢ the neuron membrane is at resting potential v,., a
spike is emitted if E; > 0, that is if the total contribution of the synapse is
larger than the threshold. Once the neuron has emitted a spike, its membrane
potential is set to a very low value to prevent an immediate second spike and then



42 D. Floreano and C. Mattiussi

e

w2 0.0 |
€3 W3, U
- n
|

O@O

A

s=t-t

Fig. 3. A network of 4 neurons (white circle= excitatory, black circle=inhibitory) cap-
tured at a given time ¢ with the functions € and 7 superimposed. The postsynaptic
neuron has just emitted a spike because the membrane potential v has exceeded its
threshold 6.

it gradually recovers to its resting potential. The speed of recovery depends on
the membrane time constant 7, (that we have already seen in the computation
of the synaptic contribution above). A possible function 7(s), shown in figure 2]
describing the refractory function [6] is

1(s) = —exp[—s/Tm] 3)

We can now put together the equations describing synaptic contributions
and the refractory period to describe the dynamics of a neuron that has several
synaptic connections from excitatory and inhibitory neurons (figure [3)). Each
synaptic connection has a weight w; whose sign, in this example, is given by the
pre-synaptic neuron (positive if the neuron is excitatory, negative if the neuron
is inhibitory). The membrane potential of a neuron i at time ¢ is given by

vilt) =Y wi Y ei(sy) + D milsi) (4)
J ! f

where s, =t — t] is the difference between the time ¢ and the time of firing ¢/
of neuron n. If the membrane potential v;(¢) is equal or larger than the neuron
threshold 6;, the neuron emits a spike and 7; takes a very low value that prevents
an immediate new spike. After that, 7; is computed according to equation [3

It should be noticed that each synapse may have a different synaptic time
constant 75 and a different time delay A, which would affect the shape of its
function €(s), in addition of course to a different weight w. Similarly, each neuron
may have a different membrane time constant 7,, and a different threshold 6,
which would affect the contribution of its incoming synapses and its own spiking
time.
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Fig. 4. Some models for encoding sensory information in spiking neurons (from [17]).
Fictive spike trains recorded from five imaginary neurons. The different stimulus in-
tensities (represented by gray scale) are converted to different spike sequences. (a) In
the frequency code hypothesis [20] neurons generate different frequency of spike trains
as a response to different stimulus intensities. (b) In the temporal coincidence hypoth-
esis [22] spike occurrences are modulated by local field oscillation (gamma). Tighter
coincidence of spikes recorded from different neurons represent higher stimulus inten-
sity. (c) In the delay coding hypothesis [7] the input current is converted to the spike
delay. Neuron 1 which was stimulated stronger reached the threshold earlier and initi-
ated a spike sooner than neurons stimulated less. Different delays of the spikes (d2-d4)
represent relative intensities of the different stimulus.

3 Interfacing Spiking Neurons with a Robot

Interfacing a neural network of sigmoid neurons to a robot is relatively straight-
forward. At regular intervals (100 ms, e.g.), the values read from the sensors of
the robot to set the activation values of the corresponding input units. Similarly,
the activation values of the output units are read at regular intervals to set the
control parameters of the robot actuators, such as the speeds of the wheels.

In a spiking neural network, a single spike is a binary event that can en-
code only the presence or absence of a stimulus. Figure Bl shows three ways to
map the intensity of sensory information into spiking neurons. A classic method
(a) consists of mapping the stimulus intensity to the firing rate of the neuron.
This method is based on the hypothesis that a neuron increases its firing rate to
indicate stronger stimulation. For example, an often-cited result [2] shows that
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the firing rate of a stretch receptor in the frog is a monotonically increasing
function of the strength of the stimulation and saturates near the maximum
firing rate of the neuron[] Another method (b) consists of encoding the sensory
stimulation across several neurons and mapping the intensity of the stimulation
into the number of neurons that spike at the same time. This method is based
on the hypothesis that the brain represents meaningful information by synchro-
nizing spiking activities across several neurons [21] and has been supported by
measurements in the visual and temporal cortex of monkeys [1[22]. A recently
suggested method (c) consists of encoding the strength of the stimulation in the
firing delay of the neuron. The underlying hypothesis is that neurons that receive
stronger stimulation fire earlier than neurons receiving weaker stimulation and
has been supported by measurements in the olfactory neurons [7].

In the experiments reported in this paper, we have used a stochastic version
of the firing rate method. In other words, the intensity of the stimulation is
represented by the probability that the neuron emits a spike in a time interval.
When repetitively measured over relatively long periods of time with respect to
the time interval for the same stimulation intensity, the observed firing rate is
proportional to the strength of the stimulation.

The transformation of spikes into motor commands presents similar issues.
A simple model assumes that muscle stretching is a monotonically increasing
function of the firing rate of one or more motor neurons over a short time window
(from 20 to 60 ms) [I1]. In these experiments, we have taken the firing rate of
the motor neurons measured over 20 ms as speed commands to the wheels of
the robot.

Another issue is the synchronization between the temporal dynamics of the
spiking network and those of the robotic hardware. Biological neurons operate on
the millisecond time scale and electronic spiking neurons can operate even faster,
but current robotics technology may operate on a slower time scale. For example,
in a Khepera robot equipped with a linear camera the visual information can
be accessed every 25 ms at optimal lighting conditions, but in order to allow for
lower illumination it is safer to access it every 50 or 100 ms. Furthermore, since
in our experiments the network of spiking neurons runs on the workstation, we
must allow for the time taken by the sensory signals to be transmitted through
the serial connection and the time taken to send the motor commands to the
wheels of the robot.

One possible solution is to set the elementary unit of time of the spiking
neurons to the maximum time interval necessary to read the sensors and set
the speeds of the wheels. Another solution is to let the neurons operate at their
“natural” time scale (for example, with an update rate of 1 ms) while accessing
the robotic interface at regular longer intervals. In this case, the neurons can

! More detailed studies indicate that this function is best described by a power function
of the general form R = KS™ + C where R is the observed firing rate, K is a
constant of proportionality, and C' is a constant given by the spontaneous firing
rate of a neuron in the absence of stimulation (in our experiments, the spontaneous
activation is 0) [16].
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Fig. 5. Time management diagram (see text).

change their states faster than the sensors and actuators of the robot and may
be left free to develop internal temporal dynamics.

In these experiments, we have chosen the second option (figure [{). Every
100 ms the sensors of the robot are pre-processed, scaled in the range [0, 1], and
used to set the probability of emitting a single spike at that precise time step,
while the wheel speeds are set at the end of the 100 ms interval using the firing
rate of the motor neurons measured during the previous 20 ms. During the 100
ms interval until the next sensory-motor access, all the neurons in the network
are updated every 1 ms (except for the sensory neurons). In the meanwhile
the robot moves using constant speed values (the real speed is given by a PID
controller). We have included time functions in the code that make sure that
the neural network is updated exactly once every millisecond. These functions
allow us to keep the system synchronized when other processes are running in
the background, when we activate new routines during analysis, and when we
use different workstationsB

4 Evolution of Vision-Based Navigation

The experiments described in this paper are a preliminary exploration into the
evolution of spiking controllers and a comparison with evolution of connection-
ist sigmoidal neurons using the same genetic representation and experimental
settings.

We have attempted to evolve vision-based controllers for a navigation task
in a rectangular arena with textured walls (figure B). The walls are filled with
black and white vertical stripes. The width and spacing of the stripes are random
(within the interval [0.5,5] cm). Given the visual angle of the robot camera and
the size of the arena, some areas display higher stripe frequency than other areas.

2 If we had not such functions, a Pentium III at 700 MHz running Linux would update
the networks used in our experiments between 1000 and 1200 times per 100 ms,
depending on the number of active background processes.
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Fig. 6. A Khepera robot equipped with a linear camera is positioned in an arena with
black and white vertical stripes of random size painted on the walls at irregular inter-
vals. The arena is lit from above in order to let the evolutionary experiments continue at
night. The robot is connected to a workstation through rotating contacts that provide
serial data transmission and power supply. The spiking networks and genetic operators
run on the workstation. The robot communicates with the workstation every 100 ms.

We have used a Khepera robot equipped with a linear camera module (fig-
ure [7). The vision system is composed of a linear array of 64 photoreceptors
(left hole) spanning a visual angle of 36 deg and of a light sensor (right hole)
used to adjust the sensitivity of the receptors to the global illumination level.
Each photoreceptor returns a value between 0 (black) and 255 (white). Given
the spacing of the stripes on the wall, we read only 16 photoreceptors equally
spaced on the array. These values are convolved with a Laplace filter spanning
three adjacent photoreceptors in order to detect contrast. Finally, the convolved
image is rectified by taking the absolute values and scaling them in the range
[0,1]. The resulting 16 values represent the probabilities of emitting a single
spike for each corresponding neural receptor at that precise instant only. The
camera values are read every 100 ms (see also figure [3]).

In these experiments we use a network of predefined size where the sign of
the synaptic weight is given by the sign (excitatory or inhibitory) of the pre-
synaptic neuron. In other words, all the connection coming from an excitatory
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Fig. 7. The Khepera robot equipped with a linear vision system composed of 64 pho-
toreceptors. Only 16 photoreceptors are read every 100 ms and filtered through a
Laplace filter in order to detect areas of contrast. The filtered values are transformed
into positive values and scaled in the range [0, 1]. These values represent the probability
of emitting a spike for each corresponding neural receptor.

(inhibitory) neuron are positive (negative). Sensory receptors are always exci-
tatory. We genetically encode and evolve only the signs of the neurons and the
pattern of connectivity among neurons and between neurons and sensory recep-
tors. The network consists of 10 fully-connected neurons, each connected to all
sensory receptors (figure [§)). There are 18 sensory receptors: 16 transmit vision
signals and 2 transmit the error between the desired speeds of the wheels and
the speed measured using on-board optical encodersfl

Four neurons are used to set the speeds of the wheels in push-pull mode. Two
neurons are assigned to each wheel, one neuron setting the amount of forward
speed and the other setting the amount of backward speed. The actual speed of
the wheel is the algebraic sum of the two speeds. This value is mapped into a

3 The error is transformed in positive values in the range [0,1] and used a s a proba-
bility to emit a spike.
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Fig. 8. Architecture of the neural network used in the experiments (only a few neurons
and connections are shown) and genetic representation of one neuron. The network has
10 neurons that can be fully connected among each other. In addition, each neuron
is connected to 18 spiking receptors (16 for vision and 2 for the error between speed
commands and actual speed of the two wheels). Four neurons are used to set the speeds
of the two wheels in push-pull mode. Left: A conventional representation showing the
network architecture. Right: The same network unfolded in time (neurons as circles,
synaptic connections as squares). The neurons on the column receive signals from
connected neurons and receptors shown on the top row. The first part of the row
includes the same neurons at the previous time step to show the connections among
neurons. Sensory receptors do not have interconnections. The signs of the neurons
(white = excitatory, black = inhibitory) and their connectivity is encoded in the genetic
string and evolved.

maximum speed of 80 mm/s. However, since the neurons can fire at maximum
once every 2 ms (because of the very low negative value taken by the neuron
after emitting a spike), in practice the maximum speed is 40 mm/s.

A binary genetic string encodes only the sign of each neuron and the presence
of a synaptic connection. The string is composed of n blocks, one for each of the
n neurons in the network. The first bit of the block encodes the sign of the
neuron and the remaining bits encode the presence/absence of a connection
from the n neurons and from the s receptors. Therefore, the total length [ of
the string is | = n(1 +n + s). In our experiments [ = 10(1 + 10 + 18) = 290.
The other parameters of the neurons and synapses (see section ) are set as
follows: 8 = 0.1, 7,, = 4, 74 = 10, A = 2, and w = 1 for all neurons and all
synapses in the network. The shape of the synaptic and refractory functions
for these parameters are shown in figures [1 and Bl respectively. Given these
values, only the most recent 20 spikes arriving at each synapse are taken into
account for computing the total synaptic contribution according to equation [I1
In addition, some noise is added to the refractory period by multiplying the
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value returned by the refractory function (equation Bl at each time step by a
uniformly random value in the range [0, 1]. Preliminary experiments showed that
without this added noise, the networks go very quickly into locked oscillations
for a very large number of connectivity patterns and parameters.

Each individual of the population is decoded and tested on the robot two
times for 40 seconds each (400 sensory-motor steps). The fitness function @ is
the sum of the speeds of the two wheels v;c¢; and v,;g+ measured at every time
step ¢ (100 ms) only if both wheels rotate in the forward direction averaged over
all T time steps available (7" = 800)

T
P = T Z(Ulteft + ’Uf‘ight) (5)

t

If ve pt OF Vpigne are less than 0 (backward rotation), @' = 0. This fitness function
selects individuals for the ability to go as straight as possible while avoiding the
walls because it takes a few seconds to travel across the arena and if the robot
is stuck against a wall, the wheels can hardly rotate due to the friction on the
floor. The fitness function does not use the active infrared sensors available on
the robot to judge the distance from the walls because the response profile of
these sensors varies depending on the reflection properties of the walls (black
stripes reflect approximately 40% less infrared light than white stripes) and on
the spectrum component of ambient illumination.

A population of 60 individuals is evolved using rank-based truncated se-
lection, one-point crossover, bit mutation, and elitism [1§]. After ranking the
individuals according to their measured fitness values, the top 15 individuals
produce 4 copies each to create a new population of the same size and are ran-
domly paired for crossover. One-point crossover is applied to each pair with
probability 0.1 and each individual is then mutated by switching the value of a
bit with probability 0.05 per bit (that is, on average 14.5 bits are mutated for
each individual). Finally, a randomly selected individual is substituted by the
original copy of the best individual of the previous generation (elitism).

We have run two sets of experiments, each generation taking 80 minutes on
the physical robot. Each set of experiments consists of several evolutionary runs
starting from a different random initialization of the genetic string. In the first
set, we have evolved spiking controllers using the parameters described in this
section. The graph on the left of figure [ shows the average fitness values mea-
sured across six runs for 30 generations of evolutionary spiking networks. Since
the initial populations are randomly created, the networks display on average
50% random connectivity. This value does not change significantly along genera-
tions. The best and average fitness values gradually increase and reach a plateau
around the 30th generation.

In a second set of experiments, we have evolved connectionist sigmoid net-
works. In this case the activation of a neuron v(i) is a value between 0 and 1
computed using the sigmoid function v(i) = 1/1 4 e(=4) where A = > Wijvj.
The receptors take on the values that were used as probabilities of emitting a
spike for the spiking controllers. The network is updated only one time every 100
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Fig. 9. Fitness values obtained on the physical robot Khepera (best fitness = thick
line; average fitness = thin line). Each data point is the average of several evolutionary
runs with different random initializations. Left: Evolution of spiking networks (average
over six runs). Right: Evolution of connectionist sigmoid networks where 10 additional
generations per run were allowed to check for signs of improvement (average over three
runs).

msH All the other parameters and genetic encoding were identical to those used
for the spiking controllers (except for the fact that there is no threshold, synap-
tic function, and refractory function). The graph on the right of figure @ shows
the average fitness values measured across three runs of connectionist sigmoid
networks. Despite allowing for an extra ten generations, none of the evolutionary
runs could improve the fitness values along generations. The occasional higher
values are given by individuals that perform wide circles independently of the
sensory input until they meet a wall where they remain stuck.

The left side of figure shows the architecture and the path of the best
spiking controller of the 30th generation during 40 seconds. The right side of
the figure shows the corresponding neural activity sampled every 100 ms. The
robot moves along a looping trajectory, whose curvature depends on the visual
input, without ever remaining stuck against a wall. The behavior does not change
when the ambient illumination is increased or decreased since the visual input
receives information about contrast, not about the grey levels returned by the
photoreceptors.

If the robot is positioned against a wall (at any location), it slowly starts to
rotate to the right until it gets away from it. Similarly, if a piece of white paper
or one hand is positioned closed enough to its facing direction (2 to 3 cm), it
rotates on the spot until it can get away.

4 We have also performed experiments where the sigmoid networks are updated 100
times between two sensory-motor intervals. These experiments generated the same
results observed with a single update.
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Fig.10. Top Left: Architecture of the best spiking controller after 30 generations.
Black circles = inhibitory neurons, white circles = excitatory neurons. Bottom Left:
Typical trajectory of displayed by this spiking controller. The asterisk indicates the
starting point. The curvature of the trajectory depends on the pattern of stripes seen
by the robot. Right: Corresponding neural activity shown every 100 ms. Each line
represents the resting potential of a neuron membrane. Dashes above the line indicate
a spike, whereas signs below the line indicate that the neuron is inhibited.

5 Analysis of an Evolved Spiking Controller

In this section we analyze the best spiking controller evolved after 30 generations
that has been described above. Since the neural receptors are driven solely by
sensory information, do not have interconnections, and can emit a spike only
every 100 ms (all spikes are shown on the right plot of figure [I0), we focus our
analysis on the remaining ten neurons, whose dynamics are updated every 1 ms.

While the robot was freely moving in the environment for 40 seconds, we
recorded all the spikes emitted by each neuron. Table [l shows that several neu-
rons fire at almost maximum rate, which is 500 spikes per second, that is a
spike every second millisecond because of the effects of the refractory period.
Therefore, these neurons display a consistent self-sustained activity in the Inter
Stimulus Interval (100 ms).

Table 1. Average number of spikes per second of the best spiking controller shown in
figure [I0] measured during 40s of autonomous navigation.

neuron number
112|345 |6|7]|8 10
spikes/s||9|445(453|450|330|40(129|363|0(452

©
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Fig. 11. Inter-spike interval frequencies measured during 10 seconds. The time intervals
between adjacent spikes of a neuron are counted, grouped in incremental bins of 2 ms
(2, 4, 6, 8, ..., 20), and normalized by the total number of spikes emitted by the
neuron.

The firing rates of neurons 7-10 measured over 20 ms are used to set the
speeds of the wheels. The firing rate of neurons 7 and 8 respectively set the
backward and forward speed components of the right wheel, whereas the firing
rates of neurons 9 and 10 set the backward and forward speed components of
the left wheel. The spiking rates of these motor neurons suggests that the neural
network controls the turning angle of the robot by changing the rotation speed
of the right wheel (controlled by neurons 7 and 8) while the left wheel is kept at
constant forward speed (by neuron 10).

The relative frequency of time intervals between spikes of each neuron pro-
vides further information on the the internal dynamics of the network (figure [TT)).
This indicator is obtained by measuring the lengths of the intervals between two
adjacent spikes over a 10 seconds period and grouping the occurrences of these
intervals in bins of 2 ms (2 ms, 4 ms, 6 ms, 8 ms, etc.). These values are then
divided by the total number of spikes fired by each neuron over 10 seconds in
order to obtain a relative frequency. For example, a value of 0.2 in the third
interval bin, means that that 20% of the spikes emitted by the neuron occur at
intervals of 6ms. As expected from the firing rates shown in table [l the data of
figure [T show that most neurons always fire at short intervals (2 and 4 ms). For
example, this is the case of neuron 10 whose regular firing every 2 ms sustains
constant forward speed of the left wheel. Some neurons fire also at longer inter-
vals, but these intervals are rarely longer than 10 ms. Therefore, the dynamics of
the evolved network settle into a stable state within approximately 10 ms after
receiving sensory stimulation. To check this hypothesis, we have slowed down
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Fig. 12. Temporal Spike Correlographs. For each spike emitted by a neuron during a
10 s window, we count the occurrences of spikes emitted at within the preceding 20 ms
(+2 ms to account for synaptic delay) by its pre-synaptic neurons, group them in 20
bins of 1 ms each, and normalize them by the total number of spikes emitted by the
post-synaptic neuron.

the number of network updates between sensory updates from 100 to 50 and did
not observe any difference in the behavior of the robot.

Since each neuron receives, on average, signals from five other neurons (with-
out counting the connections from the sensory receptors), it is worth asking
whether all the pre-synaptic neurons play the same role in causing a spike. To
answer this question, we have developed the Temporal Spike Correlographs (fig-
ure[12). The correlations between the firing time of a neuron and the firing times
of its pre-synaptic neurons within the 20 ms window preceding a spikeﬁ provide
an indication of the most important synaptic channels. These measures, shown
in figure [[2] are obtained as follows for each neuron. When the neuron emits

5 Remember that this is the time window of synaptic integration used in these exper-
iments; see also figure [II
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a spike, we record the presence of a spike coming from each of its pre-synaptic
neurons within a time window of 20 ms displaced by 2 ms in order to account for
the synaptic delay (see equation[d] and figure[T]). We repeat these measures over
a period of 10 seconds arbitrarily chosen while the robot moves in the environ-
ment and count how many times at each millisecond there has been a spike from
each connected pre-synaptic neuron. These counts are then divided by the total
number of spikes emitted by the post-synaptic neuron. We take these values as
the probability that pre-synaptic neuron j emits a spike ¢ ms earlier than post-
synaptic neuron ¢. If a neuron is connected to, say, 5 presynaptic neurons, we
will have 5 series of 20 probabilities each. Figure [I[2] shows these probabilities as
gray levels where white represents the highest probability and black represents
probabilities lower or equal than 0.5.

These probability distributions tell us a number of things. To start with, not
all synaptic channels are equally important. For example, when neuron 3 fires
there is a probability lower or equal than 0.5 that neurons 5, 6, and 9 at any
instant within the 20 ms window of synaptic sensitivity. On the other hand, we
are almost certain of finding a spike every second millisecond coming from neu-
rons 2, 3 (self-connection), and, to a lesser extent, from neuron 10. Considering
that the threshold of the neurons is set to 0.1, a single spike emitted 6 ms earlier
(including the time delay not shown in figure by an excitatory neuron could
cause a post-synaptic spike. In practice, things are more complex because we
should also consider the interplay of excitation and inhibition. However, to a
first approximation we can speculate that synaptic channels shown in black do
not play an important role in controlling the behavior of the neuron.

If we weight the pattern of connectivity among neurons by the importance
of the connections, we get an idea of which neurons are not playing an impor-
tant role in the network. Neurons 1, 5, 6, and 9 either do not make synaptic
connections to other neurons or, when they do, their contribution does not play
an important role in the firing of other neurons (as indicated by the black rows
corresponding to these neurons). In the next section, we will explore these hy-
potheses by performing lesion studies.

Among the remaining six neurons, three (3, 4, and 10) have self-connections
with high spike correlation. Notice that a self-connection does not necessarily
imply high spiking correlation because of the effects of inhibitory channels and /or
of long inter spike intervals (this is the case of neuron 5 and 6, for example).
In the case of neurons 3 and 10 these self-connections are sufficient to generate
a regular spiking activity independently of other inputs because there are not
“important” inhibitory connections and the membrane threshold of 0.1 can be
easily exceeded by their self-generated train of spikes over the 20 ms window (see
also figure ). Instead, the firing rates of neurons 2, 7, and 8 are determined by
a delicate balance of inhibition and excitation coming from other neurons (and
from neural receptors).

Another question is whether the evolved controller exploits spatio-temporal
spike correlations from pre-synaptic neurons, as those postulated by the theories

5 Neuron 9 spiked only 3 times during the 10 seconds of observation.
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of cortical activity based on coincidence detection [1I2212]. If this is the case,
for a given neuron we should observe a precise pattern of spikes across differ-
ent pre-synaptic neurons that occurs regularly. From the distribution of inter
spike intervals (figure [[1)), we know that this pattern must occur within the 15
ms window preceding the spike of the neuron. Although the plots of figure [[2]
clearly show regular occurrences of pre-synaptic spikes, there is not enough evi-
dence that post-synaptic firing is caused by the coincidence of these spikes across
different neurons. We can certainly rule it out for neurons 3 and 10 whose ac-
tivity is mainly self-generated. We can also almost certainly rule it out for other
neurons that fire mostly every second millisecond (2 and 4) because this time
is insufficient to detect spatio-temporal patterns. Finally, we can rule it out for
neuron 9 that almost never spikes. For the remaining five neurons, the analysis
performed above is not sufficient to tell whether these patterns exist and play a
role because their firing condition is the result of complex interactions between
inhibitory and excitatory spikes. The tests described in the next subsection will
help us to answer this question.

5.1 Lesion Studies

In the previous section we have speculated that neurons 1, 5, and 6 do not
play a major role in the network on the basis of their “low contribution” to
the firing of other neurons in the network. To check that hypothesis, we have
systematically lesioned one neuron at a time and tested the lesioned controller
in the environment three times for a duration of 80 seconds each. A lesion is
done by silencing completely the output of the neuron. When neurons 1, 5, or 6
were lesioned the robot reported an average fitness of 0.22, practically identical
to the fitness measured before the lesion (0.23), and no behavioral change was
observed. We then lesioned all neurons 1, 5, and 6 and performed the same
test. In this case the average reported fitness was 0.19, only slightly less than
that observed before the multiple lesion and the behavior was almost the same.
However, this time the trajectory was more straight when far from the walls and
more jerky near the walls. This is probably due to the fact that the combined
spiking rates of these neurons provide non-specific signal boost to the internal
activity of the network. When they are lesioned all together, the robot behavior
is slightly more dependent on the signals sent by visual receptors than on the
internal activity.

Instead, when neuron 2 is lesioned, the robot rotates on the spot without
influence of the visual input. Conversely, when neuron 3 is lesioned, the robot
moves on a more or less straight trajectory (depending on the visual pattern)
until the nearest wall. In both cases, the average fitness in the three tests is close
to 0.0. Borrowing the method of double dissociation from cognitive neuropsy-
chology [4], we can conclude that neuron 2 is responsible for moving straight
on the basis of visual information, whereas neuron 3 generates a turn when the
robot is gets too close to the walls. The role of neuron 2 is further supported
by the pattern of connectivity from the visual receptors. It is the only neuron
that has a full connection from the six vision receptors exactly in the middle
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Fig. 13. Performance tests with synaptic decay. Data points represent average values
(error bars indicate lowest and highest values) over three runs of 80 seconds each
starting from a different location. The fitness value below which the robot is no longer
capable of avoiding walls is approximately 0.15. Left: Synaptic strength is uniformly
set to lower values w for all connections in the network. The first data point represents
the performance of the evolved controller with intact synaptic strength (w = 1). Right:
Synaptic strength is separately decreased for the synapses coming from the neurons
(N) and for the synapses coming from the receptors (R).

of the visual field. Finally, when neuron 4 is lesioned the robot displays almost
the same behavior, but cannot avoid the walls if it gets closer than 3 or 4 cm
to them. Since neuron 4 is inhibitory and affects significantly both neuron 2
and motor neurons 7 and 8 (that control the right wheel to steer the robot),
in normal conditions its role may be that of detecting a near collision and send
stronger inhibition to neuron 2, which would result in a sharper turn.

5.2 Synaptic Decay

Another way to lesion the network consists of changing the strengths of the
synaptic connections. These tests are of particular interest for hardware im-
plementation of spiking neurons because the storage of weights for adaptive
synapses is a major problem. Synaptic strengths are often stored and adapted
by means of coupled capacitors whose voltages tend to decay relatively quickly.
The same problem is found in analog VLSI implementations of adaptive weights.
For example, Lewis et al. [I3] report that their aVLSI neuromorphic Central Pat-
tern Generator can store the values of synaptic weights for a few seconds with a
decay rate of 0.1 V/s.

In order to assess the robustness of the evolved spiking controller with de-
caying synaptic strengths, we have performed three tests with weaker synaptic
weights, at 0.75, 0.5, and 0.25 respectively. Each test consists of setting all the
synaptic strengths (from the neurons and from the receptors) to a fixed value
and measuring the fitness of the robot across three trials of 80 ms each start-
ing at a different location in the environment. The average fitness values are
plotted in the left graph of figure [I3l The first data point shows the fitness of
the evolved controller with its original synaptic strengths (w = 1.0). To some
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Fig. 14. Performance tests with noisy synaptic decay. Data points represent average
values (error bars indicate lowest and highest values) over three runs of 80 seconds
each starting from a different location. The fitness value below which the robot is no
longer capable of avoiding walls is approximately 0.15. Left: A random value from the
interval 0, r is subtracted from the original synaptic strength (w = 1) every millisecond.
The random values are generated anew every millisecond and are different for every
synapse. Right: Same as for the left graph, but the random values are subtracted only
at the beginning of the test and the resulting weights are maintained constant for the
whole duration of the test.

approximation, we can say that fitness values above 1.5 correspond to behaviors
that retain the wall avoidance strategies and, to some extent, the trajectories of
the original evolved controller. These tests indicate that the spiking controller
can withstand uniform weight decay up to 50% of its original values. The lower
fitness values are caused by slower movement or slightly jerkier movements.

In another series of tests, we have decreased the strengths separately for the
synaptic connections among the neurons (N) and for the synaptic connections
from the receptors (R). Four tests have been performed with the following combi-
nations of strengths: N =0.5,R=1.0, N =1.0,R=0.5, N =0.0,R=1.0, and
N = 1.0, R = 0.0. In none of these conditions the spiking controller could manage
to navigate around the environment (graph on the left of figure[[3]). When only
the connections among the neurons are lowered to 0.5 the robot goes straight
but cannot avoid walls and when they are set to 0 it turns on itself. When only
the connections from the sensors are lowered to 0.5 the robot turns on itself (but
in the opposite direction than that used during normal behavior) and, of course,
when they are set to 0.0 it does not move. These tests, combined with those
on uniform synaptic decay, indicate that the evolved controller can withstand
severe decay only if it is uniformly applied to all synapses in the network.

In another series of tests, we have studied the effects of noisy synaptic vari-
ations that may be caused, for example, by external radiation in analog VLSI
microchips. In the first set of tests we change the strengths of each synapses
every millisecond by subtracting a uniformly random number taken from the
interval [0, 7] from the original strength (w = 1). The random numbers are gen-
erated separately for each synapse at each millisecond. Four tests have been
performed with » = 0.25, r = 0.5, r = 0.75, and r = 1.0, respectively. Each test
consists of three experiments of 80 seconds each, as above. The average fitness
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data shown on the left graph of figure (the first data point corresponds to
a control condition without noise) indicate that the performance of the evolved
controller degrades very slowly, but always preserves the same navigation abili-
ties and overall trajectories. The small degradation is caused by the appearance
of slightly jerky movements for » = 0.25 and lower speed for » = 0.25 and
r = 0.75. For r = 1.0, we begin to observe straighter trajectories while still
preserving the ability to avoid walls.

These results definitely rule out the possibility that the evolved controller
may exploit spatio-temporal spike correlations because, if this were the case,
the severe noise conditions of these tests would disrupt the precise contribu-
tions of individual spikes across the synaptic channels and would result in bad
performance.

Since the synaptic noise is applied anew every millisecond, the average value
over relatively long intervals approximates r/2. Therefore, if the network dy-
namics are based on firing rate, instead of firing time, the effects of this type of
noise should be equivalent to those obtained by subtracting from each synapse
a fixed value equal to /2. This is indeed what we observe when we compare the
results of these tests with those obtained with uniform synaptic decay (graph on
the left of figure[13]).

In a second set of tests with noisy synapse, we subtract from each synaptic
strength a uniformly random number taken from an interval [0,r] at the be-
ginning of the test and maintain the resulting values for the whole duration of
the test. Using the same procedure described above, we perform four tests with
r = 0.25, r = 0.5, r = 0.75, and r = 1.0, respectively. The results shown in the
graph on the right of figure [[4l indicate that the controller is badly affected by
non-uniform synaptic decrements. With the exception of r = 0.25, where the
robot is still capable of maintain the basic navigation abilities, all the remain-
ing conditions produce robots that mostly rotate on place. This last set of data
fits the observations obtained with non-uniform synaptic decay across synaptic
groups (neurons and receptors).

To summarize the results on synaptic lesions, we can conclude that the
evolved controller can withstand strong synaptic decay, even if this is gener-
ated by a random process, as long as the decay is uniformly applied across the
whole network.

6 Discussion

Despite the complex dynamics of spiking neurons and the higher number of free
parameters with respect to sigmoid neurons, the results reported in this paper
indicate that evolution can easily discover functional networks by searching the
space of connectivity. Although the values of the neuron parameters have been set
according to data reported in the literature [6] without attempting to optimize
them for this specific implementation, we cannot exclude that different values
would make the network harder or easier to evolve. As we already mentioned,
the presence of noise in the refractory period is the only factor that we found
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crucial for the evolvability of functional networks of spiking neurons. Since this
type of noise affects the recovery time of the neuron, it reduces the probability
that the networks fall into a state of locked oscillations that cannot be disrupted
by sensory inputs.

The experimental data also show that it is harder to find functional networks
of sigmoid neurons evolved under the same constraints. This does not mean
that it is impossible to evolve networks of sigmoid neurons for this task, but
that such networks probably require the variation and precise definition of other
parameters, such as the strengths of the connections (in these experiments, they
were all set to 1). It may also be the case that networks of sigmoid neurons with
synaptic time delays and continuous dynamics [3] could be evolved under the
same conditions used for spiking neurons. Even if that was the case, we think
that spiking neurons represent a more powerful substrate for real-time mapping
of sensory information into motor actions because these networks can potentially
function both firing rate and firing time modes. In firing time mode, the time
of arrival of a spike (or of a precise pattern of spikes distributed across several
synapses) would be sufficient to trigger an appropriate response all the way up
to the motor commands allowing the robot to respond in a few milliseconds to
complex sensory patterns.

We should then ask why we did not find evidence that the neurons of our
evolved spiking controllers responded in firing time mode (although we cannot
exclude that some of their ancestors did). There could be several reasons for
the evolutionary choice of firing rate instead of firing time. One of them is the
relatively low membrane threshold # = 0.1 used in these experiments. Consid-
ering the values chosen for the other parameters, here a post-synaptic spike can
be triggered by a single spike emitted by an excitatory pre-synaptic neuron 5
ms earlier (including the synaptic time delay). Therefore, it is unlikely that the
neurons require multiple spikes across different synaptic channels in order to be-
come active. A solution could be to either set higher threshold values, use smaller
synaptic weights, or change the shape of the synaptic integrator (equation [I).
Of course, these parameters could also be genetically encoded and evolved along
with the pattern of connectivity.

Another reason is that the experimental settings are such to bias the system
towards firing rate mode. Here the network is allowed 100 iterations between
sensory-motor commands, which is sufficient to send several spikes along a con-
nection and thus encode information in firing rate mode. Furthermore, the speeds
of the robot wheels are set using the firing rate measured over a window of 20
ms. It would be interesting to evolve spiking controllers for robots where both
sensory and motor dynamics match the dynamics of the spiking network. At the
sensory level, these features could be provided by neuromorphic vision systems
[9] whereas, at the motor level, one could use the spikes to directly drive the
motors.

We also think that the way in which the sensory information is encoded into
spiking neurons may affect the evolved functioning modality. In section [3] we
have discussed some models of sensory encoding for spiking neurons. Whereas
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sensory information encoded with the frequency model or the temporal coinci-
dence model may be “understood” using a firing rate mode by simply summing
up the quantity of incoming spikes across different channels over some time win-
dow, the delay coding model may force post-synaptic neurons to pay attention
to the time of arrival of spikes in order to disambiguate the nature of the sensory
stimulation.

Despite the relatively general form of the model of spiking neurons used in
these experiments, one may not need all this level of detail when it comes to
evolve networks of spiking neurons to be implemented in physical circuits. In
that case, a simpler Integrate-and-Fire model which is relatively easier to realize
with analog VLSI technology may provide similar functionalities.

7 Conclusion

The experiments described in this article are a preliminary exploration into the
evolvability and properties of spiking neurons as control systems for autonomous
robots. We have shown that artificial evolution can quickly discover small net-
works of spiking neurons to perform a non-trivial vision-based navigation task.
The comparison with networks of sigmoid neurons indicate that, all the factors
being equal, the intrinsic dynamics of spiking neurons provide more degrees of
freedom that can be exploited by evolution to generate viable controllers.

The analysis tools described in this paper have allowed us to understand the
roles played by individual neurons in the evolved network and make predictions
about the influence of their activity on the behavior independently of their ob-
served firing rate. These predictions have been confirmed with lesion studies on
single neurons and groups of neurons.

The evolved network displays remarkable robustness in face of constant or
irregular synaptic decay as long as this happens more or less uniformly across the
entire network. Since this assumption is quite reasonable in the case of hardware
implementation with adaptive or evolvable synaptic weights, we believe that
it represents an interesting method for the evolution of analog VLSI spiking
circuits characterized by tiny size and extremely small energetic consumption.
This technology could be used for micro autonomous robots or for flying robots
where payload and energetic autonomy are a major constraint.
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