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Abstract. Although it has long been realised that ACID transactions by them-
selves are not adequate for structuring long-lived applications and much re-
search work has been done on developing specific extended transaction models,
no middleware support for building extended transactions is currently available
and the situation remains that a programmer often has to develop application
specific mechanisms. The CORBA Activity Service Framework described in
this paper is a way out of this situation. The design of the service is based on the
insight that the various extended transaction models can be supported by pro-
viding a general purpose event signalling mechanism that can be programmed to
enable activities - application specific units of computations – to coordinate
each other in a manner prescribed by the model under consideration. The differ-
ent extended transaction models can be mapped onto specific implementations
of this framework permitting such transactions to span a network of systems
connected indirectly by some distribution infrastructure. The framework de-
scribed in this paper is an overview the OMG’s Additional Structuring Mecha-
nisms for the OTS standard now reaching completion. Through a number of ex-
amples the paper shows that the Framework has the flexibility to support a wide
variety of extended transaction models. Although the framework is presented
here in CORBA specific terms, the main ideas are sufficiently general, so that it
should be possible to use them in conjunction with other middleware.

1 Introduction

Distributed objects plus ACID transactions  provide a foundation for building high
integrity business applications. The ACID properties of transactions (ACID:
Atomicity, Consistency, Isolation, Durability) ensure that even in complex business
applications the consistency of the application’s state is preserved, despite concurrent
accesses and failures. In addition, object-oriented design allows the design and imple-
mentation of applications that would otherwise be impractical. However, it has long
been realised that ACID transactions by themselves are not adequate for structuring
long-lived applications [1,2]. One well-known enhancement (supported by the
CORBA Object Transaction Service, OTS [3]) is to permit nesting of transactions;
furthermore, nested transactions could be concurrent. The outermost transaction of
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such a hierarchy is typically referred to as the top-level transaction. The durability
property is only possessed by the top-level transaction, whereas the commits of nested
transactions (subtransactions) are provisional upon the commit/abort of an enclosing
transaction. This allows for failure confinement strategies, i.e., the failure of a sub-
transaction does not necessarily cause the failure of its enclosing transaction. Re-
sources acquired within a subtransaction are inherited (retained) by parent transactions
upon the commit of the subtransaction, and (assuming no failures) only released when
the top-level transaction completes, i.e., they are retained for the duration of the top-
level transaction.

The above enhancement is sufficient if an application function can be represented
as a single top-level transaction. Frequently this is not the case. Top-level transactions
are most suitably viewed as “short-lived” entities, performing stable state changes to
the system [1]; they are less well suited for structuring “long-lived” application func-
tions (e.g., running for hours, days, …). Long-lived top-level transactions may reduce
the concurrency in the system to an unacceptable level by holding on to resources for a
long time; further, if such a transaction aborts, much valuable work already performed
could be undone. In short, if an application is composed as a collection of transactions,
then during run time, the entire activity representing the application in execution is
frequently required to relax some of the ACID properties of the individual transac-
tions. The entire activity can then be viewed as a non-ACID ‘extended transaction’.
The spheres of control model [4] describes the underlying concepts of recovery and
commitment for extended transactions. Much research work has been done on devel-
oping specific extended transaction models [e.g., 5 - 8]. Nevertheless, most of the
proposed techniques have not found any widespread usage; indeed, most commercial
transaction processing systems do not even support nesting of transactions. One reason
cited is lack of flexibility [9], in that the wide range of extended transaction models is
indicative that a single model is not sufficient for all applications, so it would be inap-
propriate to ‘hardwire’ a specific extension mechanism. In any case, most transaction
processing monitors are monolithic in structure, so difficult to extend. Thus the situa-
tion remains that a programmer often has to develop application specific mechanisms
to build extended transactions.

There is a way out of this situation by exploiting a middleware based approach; in
the case of CORBA for example, a set of open services are already available for
building distributed applications. Within this context, it is appropriate to examine what
additional functionality is required for flexible ways of composing an application
using transactions, with the support for enabling the application to possess some or all
ACID properties. The CORBA Activity Service Framework described in this paper
provides such functionality through a set of structuring mechanisms to complement
the OTS.

The design of the service is based on the insight that the various extended transac-
tion models can be supported by providing a general purpose event signalling mecha-
nism that can be programmed to enable activities - application specific units of com-
putations – to coordinate each other in a manner prescribed by the extended transac-
tion model under consideration. This has led to the development of an Activity Service
Framework which we believe is sufficient to allow middleware to manage complex
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business transactions that extend the concept of transaction from the well-understood,
short-duration atomic transaction. The different extended transaction models can be
mapped onto specific implementations of this framework permitting such transactions
to span a network of systems connected indirectly by some distribution infrastructure.
The framework described in this paper is an overview the OMG’s Additional Struc-
turing Mechanisms for the OTS standard [10] now reaching completion. The authors
of this paper have been active in all phases this standardisation activity that included
defining the scope of the RFP issued in early ’99 [11] to making the initial submission
and guiding it through to its present form [10]. Although the framework is presented
here in CORBA specific terms, the main ideas are sufficiently general, so that it
should be possible to use them in conjunction with other middleware.

2 Requirements and Approach

2.1 Requirements

We begin with some examples that illustrate that the need for non-ACID behaviour.
(i) bulletin board: posting and retrieving information from bulletin boards can be per-
formed using transactions. While it is desirable for bulletin board operations to be
structured as transactions, if these transactions are nested within other application
transactions, then bulletin information can remain inaccessible for long times. Re-
leasing of bulletin board resources early would therefore be desirable. Of course, if the
application transaction aborts, it may be necessary to invoke compensating activities;
this is consistent with the manner in which bulletin boards are used.
(ii) name server access: Consider the situation where persistent objects have been
replicated for availability. The naming service needs to maintain up-to-date informa-
tion about object replicas to enable clients to be bound to available replicas. For the
sake of consistency it is desirable to structure lookup and update operations on the
naming service as transactions. Application transactions, upon finding out that certain
object replicas are unavailable can invoke operations to update the naming service
database accordingly, while carrying on with the main computation [12]. There is no
reason to undo these naming service updates should the application transaction subse-
quently aborts.
(iii) billing and accounting resource usage: if a service is accessed by a transaction
and the user of the service is to be charged, then the charging information should not
be recovered if the transaction aborts.

These applications share a common feature that as viewed by external users, in the
event of successful execution (i.e., no machine failures or application-level excep-
tional responses which force transactions to rollback), the work performed possesses
all ACID features of traditional transactional applications. If failures occur, however,
non-ACID behavior is possible, typically resulting in non-serializability. For some
applications, e.g., the name service example above, this does not result in application-
level inconsistency, and no form of compensation for the failure is required. However,
for other applications, e.g., the bulletin board, some form of compensation may be
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required to restore the system to a consistent state from which it can then continue to
operate.
(iv) Long-running business activity: Long-running activities can be structured as many
independent, short-duration top-level transactions, to form a “logical” long-running
transaction. This structuring allows an activity to acquire and use resources for only
the required duration of this long-running transactional activity. This is illustrated in
fig. 1, where an application activity (shown by the dotted ellipse) has been split into
many different, coordinated, short-duration top-level transactions. Assume that the
application activity is concerned with booking a taxi (t1), reserving a table at a restau-
rant (t2), reserving a seat at the theatre (t3), and then booking a room at a hotel (t4),
and so on. If all of these operations were performed as a single transaction then re-
sources acquired during t1 would not be released until the top-level transaction has
terminated. If subsequent activities t2, t3 etc. do not require those resources, then they
will be needlessly unavailable to other clients.

Fig. 1. An example of a logical long-running “transaction”, without failure.

However, if failures and concurrent access occur during the lifetime of these indi-
vidual transactional activities then the behaviour of the entire “logical long-running
transaction” may not possess ACID properties. Therefore, some form of (application
specific) compensation may be required to attempt to return the state of the system to
(application specific) consistency. For example, let us assume that t4 aborts (fig. 2).
Further assume that the application can continue to make forward progress, but in
order to do so must now undo some state changes made prior to the start of t4 (by t1,
t2 or t3). Therefore, new activities are started; tc1 which is a compensation activity
that will attempt to undo state changes performed, by say t2, and t3 which will con-
tinue the application once tc1 has completed. tc5’ and tc6’ are new activities that con-
tinue after compensation, e.g., since it was not possible to reserve the theatre, restau-
rant and hotel, it is decided to book tickets at the cinema. Obviously other forms of
transaction composition are possible.
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Fig. 2. An example of a logical long-running “transaction”, with failure.

There are several ways in which some or all of the application requirements out-
lined above could be met. However, it is unrealistic to believe that the “one-size fits
all” paradigm will suffice, i.e., a single approach to extended transactions is unlikely
to be sufficient for all (or even the majority of) applications. Whereas in case of the
last example, a transactional workflow system with scripting facilities for expressing
the composition of the activity with compensation (a workflow) may be the most suit-
able approach, a less elaborate solution might be desirable for the first three examples.

2.2 Approach

As hinted earlier, the approach taken in the CORBA Activity Service is to provide a
low-level infrastructure capable of supporting the coordination and control of abstract,
application specific entities to enable construction of various forms of extended trans-
action models as desired by workflow engines, component management middleware
and other systems. As we shall see, these entities (activities) may be transactional,
they may use weaker forms of serializability, or they may not be transactional at all.
The important point is that a computation is viewed as composed of one or more ac-
tivities and the activity service is only concerned with their control and co-ordination,
leaving the semantics of such activities to the application programmer. As is the case
with other middleware standards, the Activity Service does not specify the implemen-
tation details of how the activities should be coordinated, only providing interfaces for
coordination to occur.

An activity containing component activities may impose a requirement on the Ac-
tivity Service implementation for managing these component activities. It must be
determined whether these component activities worked as specified or failed or termi-
nated exceptionally and how to map their completion to the enclosing activity’s out-
come. This is true whether the activities are strictly parallel, strictly sequential or some
combination of the two. In general, an activity (or some entity acting on its behalf)
that needs to co-ordinate the outcomes of component activities has to know what state
each component activity is in:
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• which are active
• which have completed and what their outcomes were
• which activities failed to complete

This knowledge needs to be related to its own eventual outcome. A responsible en-
tity may be required to handle the sub-activity outcomes, and this can be modelled as
an (distinguished) activity so that control flows can be made explicit. The activity
determines the collective outcome in the light of the various outcomes its component
activities present it with.

Action Signal Set

Application Framework

$FWLYLW\�6HUYLFH�,QWHUIDFHV

$FWLYLW\�6HUYLFH�,PSOHPHQWDWLRQ

Persistence
Service

Logging
Service

etc.

Underlying Implementation Platform

Application
Component

ORB

Action

OTS

Signal Set Activity
Coordinator

etc.

Fig. 3. The role of the Activity Service.

The activity service meets the above requirements in a very simple manner. Basi-
cally, associated with each activity is an activity coordinator that can coordinate the
execution of constituent activities. In general, the coordination required can vary de-
pending upon the phase of the execution of the activity (e.g., starting, terminating), so
associated with a coordinator are one or more signal sets, each such set implementing
a specific coordination protocol. For example, a signal set could implement a two
phase commit protocol. Constituent activities are required to register themselves with
a given signal set of the coordinating activity; this is done by an activity registering an
action with the signal set. At an appropriate time, the coordinating activity triggers the
execution protocol implemented by one of its signal set by invoking a standard opera-
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tion; this leads to the set signalling each registered activity by invoking an operation
on the registered action. The signalled activity can now perform some specific com-
putation and return results (e.g., flush the data on to stable store and return ‘done’),
and this way the protocol advances. These aspects of activity coordination are dis-
cussed at length in the subsequent sections.

A very high level view of the role of the Activity Service is shown in fig. 3. It is not
expected that the operations in the Activity Services interfaces will be used directly by
end-user application programmers. When we talk about application programmers here
we mean those who write for example, application framework for workflow managers
or component management systems or who are extending the functionality of the
Containers of Enterprise Java Beans (EJBs).

3 The Activity Service Framework

3.1 Activities

An activity is a unit of (distributed) work that may, or may not be transactional. Dur-
ing its lifetime an activity may have transactional and non-transactional periods. An
activity may be composed of other activities. Each activity is represented by an activ-
ity object. An activity is created, made to run, and then completed. The result of a
completed activity is its outcome, which can be used to determine subsequent flow of
control to other activities. Activities can run over long periods of time and can thus be
suspended and then resumed later.

Demarcation signals of any kind are communicated to registered entities (actions)
through signals. For example, the termination of one activity may initiate the
start/restart of other activities in a workflow-like environment. Signals can be used to
infer a flow of control during the execution of an application. One of the keys to the
extensibility of this framework is the signal set whose implemented behaviour is pe-
culiar to the kind of extended transaction. The signal set is the entity that generates
signals that are sent to actions and processes the results returned to determine which
signal to send next. Similarly, the behaviour of an action will be peculiar to the ex-
tended transaction model of which it is a part. So as new types of extended transaction
models emerge, so will new signal set instances and associated actions. This allows a
single implementation of this framework to serve a large variety of extended transac-
tion models, each with its own idea of extended transactions, each with its own action
and signal set implementations. The Activity Service implementation will not need to
know the behaviour which is encapsulated in the actions and signal sets it is given,
merely interacting with their interfaces in an entirely uniform and transparent way.

3.2 Activity Coordination and Control

An activity may run for an arbitrary length of time, and may use atomic transactions at
arbitrary points during its lifetime. For example, consider fig. 4, which shows a series
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of connected activities co-operating during the lifetime of an application. The solid
ellipses represent transaction boundaries, whereas the dotted ellipses are activity
boundaries. Activity A1 uses two top-level transactions during its execution, whereas
A2 uses none. Additionally, transactional activity A3 has another transactional activity,
A3’ nested within it.

Fig. 4. Activity and transaction relationship.

3.2.1 Actions and Signals
An activity may decide to transmit activity specific data (Signals) to any number of
other activities at specific times during its lifetime, e.g., when it terminates. The re-
ceiving activities may either have been running and are waiting for a specific Signal,
or may be started by the receipt of the Signals. The information encoded within a
Signal will depend upon the implementation of the extended transaction model and
therefore the definition of the Signal is designed to accommodate this.

struct Signal
{
    string signal_name;
    string signal_set_name;
    any    application_specific_data;
};

To allow activities to be independent of the other activities, and also to allow the in-
sertion of arbitrary coordination and control points, Signals are sent to Actions. An
Action can then use the Signal in an application specific manner and return an indica-
tion of it having done so.

interface Action
{
    Outcome process_signal(in Signal sig)    

raises(ActionError);
};
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3.2.2 SignalSets
To drive the Signal and Action interactions an activity coordinator is associated with
each activity. Activities that require to be informed when another activity sends a
specific Signal can register an appropriate Action with that activity’s coordinator.
When the activity sends a Signal (e.g., at termination time), the coordinator’s role is to
forward this signal to all registered Actions and to deal with the outcomes generated
by the Actions.

interface SignalSet
{
   readonly attribute string signal_set_name;

   Signal get_signal (inout boolean lastSignal);
   Outcome get_outcome () raises(SignalSetActive);

   boolean set_response (in Outcome response,
                          out boolean nextSignal)
                            raises (SignalSetInactive);

   void set_completion_status (in CompletionStatus cs);
   CompletionStatus get_completion_status ();
};

The implementation of the coordinator will depend upon the type of extended
transaction model being used. For example, if a Sagas type model [6] is in use then a
compensation Signal may be required to be sent to Actions if a failure has happened,
whereas a coordinator for a CA action model [13] may be required to send a Signal
informing participants to perform exception resolution. Therefore, to enable the coor-
dinator to be configurable for different transaction models, the coordinator delegates
all Signal control to the SignalSet. Signals are associated with SignalSets and it is the
SignalSet that generates the Signals the coordinator passes to each Action. The set of
Signals a given SignalSet can generate may change from one use to another, for ex-
ample based upon the current status of the Activity or the responses from Actions. The
intelligence about which Signal to send to an Action is hidden within a SignalSet and
may be as complex or as simple as is required. Importantly, a SignalSet is dynamically
associated with an activity, and each activity can have a different SignalSet controlling
it.

The activity coordinator therefore interacts with the SignalSet to obtain the Signal
to send to registered Actions, and passes the results back to the SignalSet, which can
collate them into a single result (fig. 5). When a Signal is sent to an Action, the Sig-
nalSet is informed of the result generated by that Action to receiving and acting upon
that Signal; the SignalSet may then use that information when determining the nature
of the next Signal to send. When a given Signal has been sent to all registered Actions
the SignalSet will be asked by the coordinator for the next Signal to send.
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activity coordinator

signal
set
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Fig. 5. Activity coordinator signalling actions.

Since it may not be possible to determine beforehand the set of Signals that will be
generated by a SignalSet, Actions register interest in SignalSets, rather than specific
Signals. Whenever a SignalSet generates any Signal, those Actions which have regis-
tered interest in that SignalSet will receive the Signal. An Action may register interest
in more than one SignalSet and an activity may use more than one SignalSet during its
lifetime (fig. 6).

As shown in fig. 7, a given SignalSet is assumed to implement a state machine,
whereby it starts off in the Waiting state until it is required by the Activity Coordinator
to send its first Signal, when it then either enters the Get Signal state or the End state
if it has no Signals to send. Once in the End state the SignalSet cannot provide any
further Signals and will not be reused. Once in the Get Signal state the SignalSet will
be asked for a new Signal until it enters the End state. A new Signal is only requested
from the SignalSet when all registered Actions have been sent the current Signal.

Activity
0..* 0..1

Action
0..*

1

Signal
Set

0..*

1..*

0..*

0..*

Signal

1

0..*

Fig. 6. Relationship of SignalSets, Signals, Actions and Activities.
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Waiting

Get Signal

Fig. 7. SignalSet state transition diagram.

With the exception of some predefined Signals and SignalSets, the majority of Sig-
nals and SignalSets will be defined and provided by the higher-level applications that
make use of this Activity Service framework. To use the generic framework provided
within this specification it is necessary for these higher-level applications to impose
application specific meanings upon Signals and SignalSets, i.e., to impose a structure
on their abstract form. Illustrative examples are given in section 4.

3.2.3 Treatment of Failure and Recovery
The failure of an individual activity may produce application specific inconsistencies
depending upon the type of activity.
• if the activity was involved within a transaction, then any state changes it may

have been making when the failure occurred will eventually be recovered auto-
matically by the transaction service.

• if the activity was not involved within a transaction, then application specific
compensation may be required.

• an application that consisted of the (possibly parallel) execution of many activities
(transactional or not) may still require some form of compensation to “recover”
committed state changes made by prior activities. For example, the application
shown in fig. 2.

Rather than distinguish between compensating and non-compensating activities, we
consider that the compensation of the state changes made by an activity is simply the
role of another activity. A compensating activity is simply performing further work on
behalf of the application. Just as application programmers are expected to write “nor-
mal” activities, they will therefore also be required to write “compensating” activities,
if such are needed. In general, it is only application programmers who possess suffi-
cient information about the role of data within the application and how it has been
manipulated over time to be able to compensate for the failure of activities. For exam-
ple, suitable Actions may be created that compensate for work performed by an Ac-
tivity, and triggered only if a specific SignalSet is used (see the example given in
section 4.2).

Recovering applications after failures, such as machine crashes or network parti-
tions, is an inherently complex problem: the states of objects in use prior to the failure
may be corrupt, and the references to objects held by remote clients may be invalid. At
a minimum, restoring an application after a failure may require making object states
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consistent. The advantage of using transactions to control operations on persistent
objects is that the transactions ensure the consistency of the objects, regardless of
whether or not failures occur.

Rather than mandate a particular means by which objects should make themselves
persistent, many transaction systems simply state the requirements they place on such
objects if they are to be made recoverable, and leave it up to the object implementers
to determine the best strategy for their object’s persistence. The transaction system
itself will have to make sufficient information persistent such that, in the event of a
failure and subsequent recovery, it can tell these objects whether to commit any state
changes or roll them back. However, it is typically not responsible for the application
object’s persistence.

In a similar way, we only state what the requirements are on such a service in the
event of a failure, and leave it to individual implementers to determine their own re-
covery mechanisms. Unlike in a traditional transactional system, where crash recovery
mechanisms are responsible for guaranteeing consistency of object data, the types of
extended transaction applications we envision using this service will typically also
require the ability to recover the activity structure that was present at the time of the
failure. This will then enable the activity application to then progress onwards. How-
ever, it is not possible for the Activity Service to perform such complete recovery on
its own; it will require the co-operation of the Transaction Service, the Activity Serv-
ice and the application. Since it is the application logic that imposes meaning on Ac-
tions, Signals, and SignalSets in order to drive the activities to completion during
normal (non-failure) execution, it is predominately this logic that is required to drive
recovery and ensure activity components become consistent.

The recovery requirements imposed on the Activity Service and the applications
that use it can be itemised as follows:
• application logic: the logic required to drive the activities during normal runtime

will be required during recovery in order to drive any in-flight activities to appli-
cation specific consistency. Since it is the application level that imposes meaning
on Actions, Signals, and SignalSets, it is predominately the application that is re-
sponsible for driving recovery.

• rebinding of the activity structure: any references to objects within the activity
structure which existed prior to the failure must be made valid after recovery.

• application object consistency: the states of all application objects must be re-
turned to some form of application specific consistency after a failure.

• recover actions and signal sets: any Actions and SignalSets used to drive the
activity application must be recovered.

Finally, a few words on the delivery of Signals. Minimally, the delivery semantics
for Signals is required to be at least once, although implementations are free to pro-
vide better deliver guarantees. This means that an Action may receive the same Signal
from an Activity multiple times, and must ensure that such invocations are idempo-
tent, i.e., that multiple invocations of the same Signal to an Action are the same as a
single invocation. Stronger delivery semantics - exactly once – can be provided by the
activity service itself making use of  the underlying transaction service.
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4 Examples

In this section we describe how the Activity Service can be used to support a variety
of coordination protocols, ranging from two-phase commit to workflow coordination.

4.1 Two-Phase Commit

We begin with a simple example illustrating how the Activity Service can be used to
implement the classic transaction commit protocol; fig. 8 shows the exchanges in-
volved when the transaction commits. The coordinating activity initiates commit by
invoking get_signal operation of its 2PCSignalSet. The Set returns a ‘prepare’ signal
that is sent to the first registered Action, whose response – done, rather than abort in
this case - is communicated to the Set (operation set_response); the Set returns the
prepare signal again that is then sent to the next registered Action and so forth.

 2PC SignalSet    Action   Activity Coordinator   

get_signal()

 Action   

“prepare”

set_response()

“prepare”

set_response()

get_signal()

“commit”

set_response()

“commit”

set_response()

get_outcome()

Fig. 8. Two-phase commit protocol with Signals, SignalSets and Actions.
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4.2 Nested Top-Level Transactions with Compensations

We next illustrate how coordination of transactional activities with compensation for
failures can be provided using the framework described. Consider the sequence of
transactions shown in fig. 9, and assume as before that solid ellipses represent transac-
tion boundaries and dotted ellipses represents an enclosing activity.

What we want to provide is the situation where within a top-level transaction (A),
the application can start a new top-level transaction (B) that can commit or rollback
independently of A. This scheme (also called open nested transactions [8])  can be
useful if resources are required for only a short duration of the transaction A (as in the
bulletin board example, section 2.1). If A subsequently commits then there is no
problem with application consistency. However, if A rolls back, then it is possible that
the work performed by B may be required to be undone (represented by transaction
!B).

A

B

!B

time

Fig. 9. Nested top-level transactions.

We make the following assumptions: (i) that each enclosing activity has a single
SignalSet that is used when the activity completes (say, the CompletionSignalSet), and
this SignalSet has Success, Failure and Propagate Signals, depending upon whether it
completes successfully (and has no dependencies on other activities), completes ab-
normally (aborts), or completes successfully but has other activity dependencies, re-
spectively; (ii) there is an Action that is responsible for starting !B if it receives the
Failure Signal from an enclosing activity (say, the CompensationAction);  the “state
transitions” for the Action are:
• If it receives the Success Signal then it can remove itself from the system.
• If it receives the Propagate Signal, then encoded within this Signal will be the

identity of an Activity it should register itself with. It must also remember that it
has been propagated.

• If it receives the Failure Signal and it has never been propagated then it can re-
move itself from the system. If the Action has been propagated then it should start
!B running, before removing itself.



The CORBA Activity Service Framework for Supporting Extended Transactions 211

Then the above structure can be obtained in the following manner:
• When transaction A’s activity is begun, it registers with its coordinator the Com-

pletionSignalSet as the one to use when the activity terminates. At this point no
Actions are registered with that activity and hence with the SignalSet.

• When B is begun (and hence it’s enclosing activity is also started), the activity
registers the CompensationAction with B’s activity, i.e., it’s CompletionSignal-
Set.

• If B commits, the enclosing activity will terminate in the successful state, and the
CompletionSignalSet will have the coordinator send the Propagate Signal to the
registered CompensationAction. Encoded within this Signal will be the identity of
the activity to propagate to, i.e., A. The CompensationAction can then enlist itself
with A.

• If B rolls back, the enclosing activity will terminate in the failure state, and the
CompensationAction will do nothing when it receives the Failure Signal.

• If A subsequently commits, it’s enclosing activity’s CompletionSignalSet will
generate the Success Signal (since it has no dependencies on other activities),
which will be delivered to the CompensationAction. In this case, no compensation
is required, so the Action does nothing.

• On the other hand, if A subsequently rolls back, it’s enclosing activity’s Comple-
tionSignalSet will generate the Failure Signal, and the CompensationAction will
start !B to undo B.

4.3 LRUOW: Long Running Unit Of Work

The LRUOW model described in [14] is another extended transaction model to sup-
port long-running transactions. It combines some of the semantics of nested transac-
tions and type-specific concurrency control; it relies on being able to execute long-
running transactions in two phases: the rehearsal phase, where the work is performed
without recourse to serializability and which may take an arbitrary amount of time and
the performance phase, where the work is confirmed (committed)  only if suitable
locks and consistency criteria can be obtained on the data. In order to do this, it is
necessary to have sufficient support from the resources used within the transactions,
and to be able to specify operation predicates.

The LRUOW model could be implemented on the activity service infrastructure
using a Rehearsal SignalSet and a Performance SignalSet. Each LRUOW resource
could register a suitable Action with each SignalSet which would be driven when the
activity completes. The higher-level API proposed in [14] would still be applicable,
but would be mapped down to using these SignalSets and Actions. Each transaction
would also be enclosed within an activity, which would be responsible for propagating
resources from the child to the parent if the transaction completes successfully. This
has the advantage that no modification to existing transaction systems would be re-
quired.
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4.4 Workflow Coordination

Transactional workflow systems with scripting facilities for expressing the composi-
tion of an activity (a business process) offer a flexible way of building application
specific extended transactions. Here we describe how the Activity Service Framework
can be utilised for coordinating workflow activities. The SignalSet required to coordi-
nate a business activity contains four signals, “start”, “start_ack”, “outcome” and
“outcome_ack”.
• start: signal is sent from a “parent” activity to a “child” activity, to indicate that

the “child” activity should start. The application_specific_data part of the signal
contains the information required to parameterise the starting of the activity.

• start_ack: signal is sent from a “child” activity to a “parent” activity, as the return
part of a “start” signal,  to acknowledge that the “child” activity has started.

• outcome: signal is sent from a “child” activity to a “parent” activity, to indicate
that the “child” activity has completed. The application_specific_data part of the
signal contains the information about the outcome of the activity, e.g., whether or
not it completed successfully.

• outcome_ack: signal is sent from a “parent” activity to a “child” activity, as the
return part of an “outcome” signal, to acknowledge that the “parent” activity has
completed.

The interaction depicted in fig. 10 is activity a coordinating the parallel execution
of b and c followed by d.

Referring to fig. 1 we can tie an activity to a single top-level transaction, such that
when an activity begins (e.g., t1) it immediately starts a new transaction. A coordi-
nating activity (implied by the dotted ellipse in the figure) would send appropriate
“start” Signals, and wait for the “outcome” Signals to occur.

To do this, each potential activity registers an Action with a specific SignalSet at
the coordinating activity (the parent); each activity that needs to be started for a spe-
cific event would register an Action with a specific SignalSet, e.g., t2 and t3 would
register with the same SignalSet since they need to be started together, whereas t4
would be registered with a separate SignalSet.

Whenever a child activity is started the parent activity registers an Action with it
that is used to deliver the “outcome” Signal to the parent. Let’s assume that each child
activity has a Completed SignalSet to facilitate this. When a child activity terminates,
it uses the Completed SignalSet to send a Signal to the parent’s registered Action. The
content of this Signal will contain sufficient information for the parent to determine
the outcome of the activity, and use this to control the flow of activities appropriately.

For example, in fig. 2, the parent activity would receive a successful termination
outcome from t1, which would cause it to send “start” Signals to t2 and t3 via their
registered Actions. When they both complete successfully (i.e., sent “outcome” Sig-
nals), it can then start t4. However, if t4 sends a failure outcome, or simply fails to
send any outcome (e.g., it crashes), the parent activity can use this information to start
tc1 in order to do the compensation.
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Fig. 10. Workflow coordination.

The task (i.e., activity) coordination scheme used in the OPENflow transactional
workflow management system [15] is very similar to the above scheme. Here, associ-
ated with each task is a transactional task controller object. The purpose of a task
controller is to receive notifications of outputs of other task controllers and use this
information to determine when its associated task can be started. The task controller is
also responsible for propagating notifications of outputs of its task to other interested
task controllers.

5 Concluding Remarks

Although it has long been realised that ACID transactions by themselves are not ade-
quate for structuring long-lived applications and much research work has been done on
developing specific extended transaction models, no middleware support for building
extended transactions is currently available and the situation remains that a program-
mer often has to develop application specific mechanisms. The CORBA Activity
Service Framework described in this paper is a way out of this situation; it provides a
general purpose event signalling mechanism that can be programmed to enable activi-
ties to coordinate each other in a manner prescribed by the model under consideration.

Through a number of examples we have shown that the Framework has the flexi-
bility to support a wide variety of extended transaction models. The framework is
deliberately designed to give a great deal of flexibility to higher-level services. For
example, coordination points (places where the activity coordinator can communicate
with its enrolled participants) may occur as many times as required and at arbitrary
points during the activity’s lifetime. Although all of the extended transaction models
we present in this paper only require coordination at the end of the activity, others
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(such as split transactions [16]) do not. In addition, we do not know what requirements
will exist for future extended transaction models.

At the time of writing (July 2001), the specification on which this paper is based
has just been adopted by the OMG. Work is also underway (through the Java Commu-
nity Process) to incorporate the Activity Service approach to extended transactions in
the next version of J2EE [17]. No implementations of the framework exist yet, al-
though we know of several that are under development. As such, it is not possible to
give a comparative evaluation of implementing a specific extended transaction model
using this framework and implementing the model without it. This is a topic for fur-
ther investigation.
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