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Abstract. We present a solution to guarantee scalable causal ordering
through matrix clocks in Message Oriented Middleware (MOM). This
solution is based on a decomposition of the MOM in domains of causality,
i.e. small groups of servers interconnected by router servers. We prove
that, provided the domain interconnection graph has no cycles, global
causal order on message delivery is guaranteed through purely local order
(within domains). This allows the cost of matrix clocks maintenance
to be kept linear, instead of quadratic, in the size of the application.
We have implemented this algorithm in a MOM, and the performance
measurements confirm the predictions.

1 Introduction

Message-oriented middleware (MOM) is growing in importance with the develop-
ment of new applications made of loosely coupled autonomous components that
communicate on large-scale networks. This class of applications (including stock
exchange quotations, electronic commerce services, web-content provisioning) is
characterized by asynchronous exchanges, heterogeneity, and requirements for
scalability and evolution. MOM provides an infrastructure that transmits mes-
sages and events to the widely spread components of a service, gluing them
together through logical coupling [1].

Asynchronous interaction over large-scale networks is a major source of non-
determinism. Message ordering provides a way of reducing this non-determinism,
as it allows the application designer to assert properties such as causal delivery
of messages or atomic (uniform) broadcast. Industrial specifications and imple-
mentations of MOM are now integrating this aspect. For example, the CORBA
Messaging reference specification [2] defines the ordering policy as part of the
messaging Quality of Service.

However, usual message ordering mechanisms pose scalability problems, as
an increase of the number of nodes and/or the distance between them degrades
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the performance of classical clock-synchronization algorithms. A common or-
dering mechanism uses logical time [3] to order events according to the causal
order [4]. The causal precedence relation induces a partial order on the events
of a distributed computation. It is a powerful concept, which helps to solve a
variety of problems in distributed systems like algorithms design, concurrency
measurement, tracking of dependent events and observation [5].

In many applications, causal order based on logical time is not enough to
capture the dependencies needed by the application’s logic. Vector clocks bring
progress over logical (scalar) timestamps by inducing an order that exactly re-
flects causal precedence [6,7,8]. Matrix clocks [9,10] extend vector clocks by cap-
turing a global property, namely ”what A knows about what B knows about
C”. Such shared knowledge is needed in many instances involving close coop-
eration, such as replica update management and collaborative work. However,
matrix clocks require O(n3) global state size for a n-node system, and change
propagation still needs O(n2) message size [11]. This precludes the use of matrix
clocks for large-scale systems (several hundreds or thousands of nodes).

A solution to achieve scalability on a MOM is to divide the node interconnec-
tion graph in several smaller interconnected groups. Inter-group communication
is performed by special nodes called causal router servers, which link two or more
groups and are responsible for transmitting messages while maintaining global
causal consistency. This solution reduces the amount of necessary information
that needs to be stored and exchanged to maintain causality. However, to be
scalable, it requires that all computations should be kept local; an algorithm
that requires the cooperation of all nodes does not scale well.

This paper proposes a solution based on the splitting of the MOM in do-
mains of causality, which improves performance while reducing causality related
costs. We have proved the following property : iff there is no cycle in the
domain interconnection graph1, local causal ordering in each domain
guarantees global causal ordering. Thus, through a purely local (domain-
wise) algorithm, the scalability of causal ordering through matrix clocks in a
MOM is greatly improved. With a suitable choice of domains, the communica-
tion costs are now linear (instead of quadratic) with respect to the application
size (number of nodes). We have implemented this algorithm in AAA2, a MOM
developed in our group. The results of the performance measurements confirm
the predictions.

This paper is organized as follows. Related work on MOM scalability is sur-
veyed in Section 2. Section 3 presents the AAA MOM and Section 4 introduces
the domains of causality and presents the proof of the main result on domain-
based causality. Section 5 describes the implementation of causality domains
in the AAA MOM. Section refPerformance-evaluation presents performance re-
sults. We conclude in Section 7.

1 For a precise characterization of this property, see Section 4.2
2 The AAAMOMwas developed in the Sirac laboratory in collaboration with the Bull-
INRIA Dyade consortium, and is freely available on the Web with an implementation
of the JMS interface. http://www.objectweb.org/joram/
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2 Related Work

Many solutions have been proposed to lower the cost of causal ordering by re-
ducing the amount of control information. A first group of solutions is based on
vector clocks, which require causal broadcast and therefore do not scale well.
These solutions include [12], in which nodes are grouped in hierarchically struc-
tured clusters, and [13] in which nodes are organized in a Daisy architecture.

A solution based on Hierarchical Matrix Timestamps (HMT) is proposed in
[14]. The HMT stores information about other nodes in the same domain and
summarizes information about other domains. But this technique is specially
adapted to update propagation in replicated databases using a weak consistency
algorithm3 and is not suitable for causal communication.

An original solution for causal delivery is introduced in [15]. This solution
does not use a logical clock and implements the causal history relation with
lists of causally linked messages. The nodes interconnection graph is split in
subnets separated by vertex separators. This approach allows cycles in the subnet
interconnection graph and reduces the size of exchanged information. It does not
reduce the amount of control information necessary within a subnet, which is
detrimental to scalability.

A last set of solutions is based on the interprocess communication topology.
In [16], processes are assumed to communicate mostly with processes of the
same group, and the causal history can be omitted for messages exceptionally
addressed to a process of another group. The same idea was developed in [17].
The algorithm proposed improves the FM class of algorithms4 and brings up
some solutions to reduce the clock size. One solution uses the communication
path : a process only keeps the information about the set of processes with
which it may communicate. But this algorithm does not ensure the global causal
delivery of messages.

From this brief survey, we may conclude that both the message size (on
the network) and control information size (on the nodes) are crucial as far as
scalability is concerned and must be treated with the same importance. The next
two sections present our solution, using the AAA MOM as a test bed.

3 The AAA Environment

The AAA (Agent Anytime Anywhere) MOM [18] is a fault-tolerant platform that
combines asynchronous message communication with a programming model us-
ing distributed, persistent software entities called agents. Agents are autonomous
reactive objects executing concurrently, and communicating through an event-
reaction pattern [19]. Agents are persistent and their reaction is atomic, allowing
3 Each replica autonomously updates local copies and periodically propagates the log
of update operations to other replicas.

4 The authors define the FM algorithms as all the causal ordering algorithms which
use a logical clock (counter, vector or matrix) and mark each event (message) with
a timestamp information.
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recovery in case of node failure. The Message Bus (i.e. the MOM) guarantees
the reliable, causal delivery of messages. The MOM is represented by a set of
agent servers (or servers for short) organized in a bus architecture (see Fig. 1).

Fig. 1. Two interconnected Agent Servers details.

The combination of the agents and bus properties provides a solution to
transient nodes or network failures, while causal ordering decreases the non-
determinism of asynchronous exchanges. Each server is made up of three com-
ponents, the Engine, the Channel and the Network, which are implemented in the
Java language. The Engine guarantees the Agents’ properties and the Channel
ensures reliable message delivery and causal order. The causal order algorithm
uses a matrix clock on each server, which has a size of n2 for n servers. This
causes two problems :

– Network overload, due to timestamp data exchange for clock updates. Even
if only modifications of the matrix are sent instead of the full matrix (the
Updates optimized algorithm described in Appendix A, which a similar ap-
proach can be found in [20].), the message size is O(n2) in the worst case.

– High disk I/O activity to maintain a persistent image of the matrix on each
server in order to recover communication in case of failure.

The Network component is responsible to send the messages (basic communi-
cation layer). Our solution, presented in the next section, uses a decomposition
approach to solve these two problems.

4 Domain-Based Causality

To solve the problem of the control information size for matrix clocks, we pro-
pose to replace single bus architecture by a virtual multi-bus (or Snow Flake)
architecture [21]. Causality is only maintained on each individual bus, also called
a domain of causality. The idea of splitting the set of servers is not new, but the
published solutions either use vector clocks and broadcast [12,13], or use matrix
clocks but only reduce the message timestamp size [14,15]. A quite similar so-
lution based on group composition was used in [22], but the authors only prove
that if the groups topology is a tree the end-to end ordering is respected, but
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not the opposite. Moreover the ordering algorithm was not given, and no im-
plementation exists. In our paper we prove that if the domains interconnection
graph is cyclic then the global causality is not respected and vice-versa.

Our solution, combined with the Updates optimization, reduces both the
message timestamp size and the control information size on servers. In addition,
the modularity of the architecture allows it to be adapted to any physical or
logical topology.

We have found that if causality is enforced in each domain, then it is auto-
matically respected globally, provided there is no cycle in the domain inter-
connection graph. The proof of this property is presented in Section 4.3.

4.1 Domain of Causality

A domain of causality is a group of servers in which the causal order is respected.
Adjacent domains are interconnected by a specific server, which has the function
of router and is responsible of message transmission between domains while
respecting causality. Such a server, which is in at least two domains, is called a
causal router-server. In our system, the architecture is not imposed5. Domains
may be freely organized in any acyclic graph and the logical architecture can be
easily mapped on the real network topology6 to improve the delivery algorithm.
This technique reduces the size of the information exchanged on the network
and furthermore decreases the size of the control information on the servers.
Both factors improve the scalability of the MOM (a performance analysis and
experimental results are given in section 6).

As an example (see Fig. 2) an 8-server MOM is logically split in four domains.
Domain A includes {S1,S2,S3}, domain B includes {S4,S5}, domain C includes
{S7,S8} and domain D and E includes respectively {S3, S6} and {S1,S4}.

Causal message ordering is enforced in each single domain. When a client
(agent) connected e.g. to server 1 needs to communicate with a client connected
to server 8, the message must be routed (like an IP packet on a network) using
paths S1→S3 (domain A), S3→S6 (domain D), S6→S8 (domain C). Message
routing is ensured by the system and is completely invisible to the clients, which
are not aware of the interconnection topology. A server that needs to send a
message to a server in another domain must send it to a causal-router-server
(servers S1, S3, S4 and S6 in Fig. 2).

4.2 Domain-Based Computations

A distributed domain-based system is defined by a set P = {p1, ..., pn} of pro-
cesses and a set D = {d1, ..., dn} of domains. The distribution of processes among
domains is defined by a subset R of P×D : process p is in domain d (noted p ∈ d)
5 As opposed to the solution of [13], which imposes a daisy architecture and [12], which
imposes a hierarchic architecture.

6 In practice, most network are connected to form a spanning tree specifically to avoid
cycles.



316 P. Laumay et al.

Fig. 2. Example of domains of causality

iff (p, d) ∈ R. Processes communicate through messages. A computation is de-
fined by a set of messages M = {m1, . . . , mq}. For each message m, there is
a process src(m), the sender, and a different process dst(m), the receiver. The
global history (or trace) of the computation is defined by the set of events associ-
ated with message send and receive. We assume that a process can only exchange
messages with processes in the same domain (interdomain communication is ex-
amined later). Within a process p, we define a local order on messages sent or
received by p : let m, m′ be two such messages; then m <p m′ means that (in
the local time of process p) the sending or receiving of m precedes the sending
or receiving of m′.

Causal precedence is usually defined between events; we extend it to messages
as follows. Let m, m′ be messages; m causally precedes m′ (noted m ≺ m′) iff
one of the following three conditions holds :

– m and m′ are sent by a process p, and m is sent before m′ : src(m) =
p ∧ src(m′) = p ∧ m <p m′.

– m is received by a process p, and p later send m′ : dst(m) = p ∧ src(m′) =
p ∧ m <p m′.

– there is a message n such that m ≺ n ∧ n ≺ m′.

We are only interested in correct traces, i.e. traces for which relation ≺ is
a partial order (m �= m′ ∧ m ≺ m′ ⇒ ¬(m′ ≺ m)). A correct trace respects
causality iff the order in which messages are received by each process p agrees
with the causal order : dst(m) = p ∧ dst(m′) = p ∧ m ≺ m′ ⇒ m <p m′. A trace
respects causality in domain d iff its restriction to d (i.e. its subset restricted
to messages with source and destination in d) respects causality. As mentioned
before, messages can only be exchanged between processes in the same domain.
However, since a process may be included in several domains, indirect commu-
nication is possible, through a chain of messages, between processes in different
domains. In order to formalize this indirect communication, we introduce the
notions of path and chain.

A (process) path (of length c) from process p1 to process pc is a nonempty
sequence (p1, ..., pc) of processes such that any two consecutive processes in this
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sequence are in the same domain : ∀i < c, ∃d ∈ D, pi ∈ d ∧ pi+1 ∈ d. We call
p1 the source of the path and pc its destination. A direct path is one in which
all processes are different (no loops); a minimal path is a direct path such that
i+1 < j ⇒ ¬(∃d | pi ∈ d∧pj ∈ d) (the path does not ”linger” in a domain). As a
direct consequence, a minimal path of length > 2 has its origin and destination in
different domains. A cycle is a direct path such that there is a domain including
the source and the destination of the path, and there is no domain including all
processes in the path. This generally corresponds to a cycle in the domain graph
(two domains are connected in this graph if there is a process included in both
domains) but not always (for example, if a domain is included in another one, a
situation that does not occur in practice).

A chain (of length k) in a trace is a nonempty sequence (m1, ..., mk) of
messages such that each message (after the first one) is sent by the process that
received the preceding message, after the receive : ∀i < k, ∃p ∈ P, dst(mi) =
p ∧ src(mi+1) = p ∧ mi <p mi+1. We call src(m1) the source of the path and
dst(mk) its destination. The path associated with a chain is (src(m1), src(m2),
..., src(mk), dst(mk)); this sequence is indeed a path since any two consecutive
processes are in the same domain (since messages are local to a domain). A direct
(resp. minimal) chain is a chain whose associated path is direct (resp. minimal).

Communication between processes in different domains is performed by
means of ”virtual messages”. A virtual message between process p in domain
d and process p′ in domain d′ is represented by a chain of (real) messages, with
source p and destination p′. We can then define ”virtual traces” in which all
messages are virtual. A virtual trace may be formally defined as follows. Let
T be a trace. We define T ′ as a virtual trace associated with T by defining a
set C = c1, ..., ck of minimal chains of T that do not ”crossover” : if mi and
mi+1 are two consecutive messages of a chain c ∈ C, then no message of another
chain c′ ∈ C can be sent by p = dst(mi) after mi is received and before mi+1
is sent (see Fig. 3). Then T ′ is the trace derived7 from T by considering each
chain (m1, ..., mk) ∈ C as a direct message from src(m1) to dst(mk). Several
virtual traces may be derived from a (real) trace, including the real trace itself
(by defining C = {(m1), ..., (mq)}. A correct virtual trace is one associated with
a correct real trace.

4.3 The Main Theorem

Our main result gives the condition under which a virtual trace respects causality
globally. It provides the base for an efficient, scalable causal message system
based on domain decomposition.

Theorem 1. The following two propositions are equivalent :

P1 Any virtual trace associated with a correct trace that respects causality in
each domain respects.

P2 The domain interconnection graph is acyclic.
7 This derivation is straightforward, but its formal description is cumbersome.
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Fig. 3. Virtual traces and real traces

The proof of the theorem uses the following lemmas (see Appendix B for
demonstrations).

Lemma 1 In a correct trace, for any chain (m1, ..., mk) whose source p and
destination q are different, there exists a direct chain (n1, ..., nL) with the same
source and destination, such that m1 ≤p n1 and nL ≤q mk.

Lemma 2 If a correct trace does not respect causality, then there are two pro-
cesses p and q, a message n from p to q, and a chain (m1, ..., mn) from p to q
such that n <p m1 and mn <q n.

The proof of the main theorem is in two parts: we first prove P1 ⇒ P2 (by
proving ¬P2 ⇒ ¬P1); then we prove P2 → P1.

Part 1 : ¬P2 ⇒ ¬P1. If there is a cycle in the domain graph, there exists a
correct virtual trace, associated with a correct real trace that respects causality
in each domain, which does not respect causality globally.

Fig. 4. Break of causality through a cycle of domains.

Since there is a cycle, there exists a direct path (p, ..., pi, ..., q) such that there
is a domain including p and q, and there is no domain including all processes



Preserving Causality in a Scalable Message-Oriented Middleware 319

of the path. Then consider the trace represented on Fig. 4 (a) (taking the real
trace itself as a virtual trace).

This trace respects causality in each domain, because (a) no single domain
includes all processes of the path; therefore, the restriction of the trace to any
domain does not include all messages of the global trace; and (b) a trace derived
from the original global trace by removing any single message respects causal-
ity. However, the trace does not respect global causality (consider the situation
between p and q). This completes Part 1 of the proof.

Part 2 : P2 ⇒ P1. Lemma 2 may be reformulated as follows : if in a correct
trace T there does not exist two processes p and q, a message n from p to q, and a
chain (m1, ..., mn) from p to q such that n <p m1 and mn <q n, then T respects
causality. Therefore, in order to prove P2 ⇒ P1, we shall prove P2 ⇒ P (x),
where P (x) is the following property : for any virtual trace associated with a
correct trace that respects causality in each domain, there does not exist two
processes p and q, a virtual message n from p to q represented by a minimal
chain of length x, and a chain (m1, ..., mn) of virtual messages from p to q such
that n <p m1 and mn <q n. The proof is by induction on x.
Proof of P (1) : By contradiction. Consider a correct virtual trace associ-

ated with a correct trace that respects causality in each domain. Assume there
exists, for such a trace, two processes p and q, a virtual message n′ from p to q
represented by a chain of length 1 (the real message n), and a chain (m′1, ..., m

′
n)

of virtual messages from p to q such that n′ ≤p m′1 and m′n ≤q n′ (this is the
situation represented on Fig. 4 (b)).

Let (m1, ..., mk) be the real chain representing the virtual chain (m′1, ..., m
′
n).

By Lemma 1, there is a direct chain (n1, ..., nh) such that m1 ≤p n1 and nh ≤q

mk. This chain cannot have length 1, otherwise causality would be violated in the
domain including p and q (such a domain exists since there is a real message from
p to q). Let then (p, r, ..., q) be the (direct) path associated with this chain. No
domain includes all processes of this path, because causality would be violated
in such a domain. But p and q are in the same domain, hence (p, r, ..., q) is a
cycle, which contradicts P2. Therefore P (1) is true.
Induction step : Assuming P (y) holds for any y < x, we shall prove P (x).

The proof is by contradiction. Consider a correct virtual trace associated with a
correct trace that respects causality in each domain. Assume there exists, for such
a trace, two processes p and q, a virtual message n′ from p to q associated with a
minimal chain (n1, ..., nx) of length x > 1, and a virtual chain (m′1, ..., m

′
n) from

p to q such that n′ < pm′1 and m′n <q n′ (this is similar to Fig. 4 (b), replacing
the message from p to q by a virtual message).

Let (p, a1, ..., ax−1, q) be the (minimal) path associated with chain (n1, .., nx).
Let (m1, ..., mu) be the real chain corresponding to the virtual message chain
(m′1, ..., m

′
n). By Lemma 1, there exists a direct chain (L1, ..., Lv) such that

m1 ≤p L1 and Lv ≤q mu. Let (p, b1, ..., bv−1, q) be the corresponding direct path
(note that v > 1, otherwise (n1, ..., nx) would not be minimal). Now consider
the path (ax−1, ..., a1, p, b1, ..., bv−1, q). There are two possible cases.
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Case 1 : all processes of path (ax−1, ..., a1, p, b1, ..., bv−1, q) are different.
In that case, there is a domain including ax−1 and q, and there is no domain
including p and q (because the minimal path (p, a1, ..., ax−1, q) has length > 2),
and hence no domain includes all processes of the path. Therefore the path is a
cycle, which contradicts P2.
Case 2 : not all processes of path (ax−1, ..., a1, p, b1, ..., bv−1, q) are different.

Since the ai are all different and distinct from p and q, and so are the bj , there
must be i and j such that ai = bj . By definition of a virtual trace, it is not possible
for message Lj+1 to be sent after ni is received and before ni+1 is sent. Therefore,
only the two cases represented on Fig. 5 may occur. In case (a), the virtual trace
associated with the (non crossing) minimal chains {(n1, ..., ni), (L1), ...} does not
satisfy P (i), with i < x. In case (b), the virtual trace associated with the (non
crossing) minimal chains {(ni+1, ..., nx), ...(Lv)} does not satisfy P (x − i), with
x − i < x. Therefore, in both cases (a) and (b), there is a virtual trace that does
not satisfy P (y), y < x, which contradicts the induction hypothesis.

Fig. 5. ”Cross over” of virtual traces.

In both cases 1 and 2, we find a contradiction. Therefore P (x) is true, and
so is P (n) for any n = 1. This completes part 2 of the proof, P2 ⇒ P1.

5 Implementation

Recall that the MOM is logically split in a set of interconnected domains; causal-
ity is enforced within each domain and there is no cycle in the domain inter-
connection graph. This transformation of the MOM must be transparent for
the clients; i.e. agent names must remain unchanged at the application level.
Two problems need to be solved: the management of multiple matrix clocks (in
the case of causal-router-servers, which belong to more than one domain), and
message routing.

Server Modification
To solve the first problem, we have created on each server a local bus of do-
main (structure called Message Consumer), one for each domain that includes
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Fig. 6. Two examples of the new agent server structure.

the server. To solve the problem of message routing we have followed the classi-
cal network protocol approach, using a routing table. These new structures are
represented in Fig. 6.

An agent server now has as many MessageConsumer as domain, which own
a message queue and the matrix clock associated to its domain. With this im-
plementation, a server can belong to an arbitrary number of domains, and any
server can be a causal-router-server. The routing table gives, for each destina-
tion server, the identifier of the server to which the message should be sent: the
destination server, within a domain, and a router server otherwise. The routing
table is built statically at boot time. During server initialization, the servers and
the routing tables are constructed, based on a shortest path algorithm.

The Channel ensures the transmission of messages and guarantees reliability
and causal ordering (see section 3). The Channel put messages into the proper
MessageConsumer using the routing table, then piggybacks messages with a
matrix timestamp corresponding to the domain to which the message is sent. At
reception, the recipient Channel checks the message timestamp and redirects the
message to either the local queue (QueueIN ) or the proper MessageConsumer
according to its destination domain (see Fig. 7).

6 Performance Evaluation

6.1 Protocol Description

The simplest performance indicator for the AAA MOM is the turn-around time
of a message between servers, which is the sum of two terms: the first one related
to transfer itself (serialization-deserialization, transfer time, agent saving), the
second one related to causal ordering (checking, updating and saving the matrix
clock). The first term is nearly constant under our experimental conditions.
Therefore the results are a good indicator of the efficiency of the causal ordering
algorithm.

For the experiments, we have created an agent on each agent server, which
sends back received messages (ping-pong). Messages are sent by a main agent on
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Sender Message Consumer Receiver Message Consumer

evt = Get Agent Sent Event()
// an agent send an event
domainDestServer= RoutingTable[evt.dest]
messCons = MessageConsumer(domainDestServer)
// get the message consumer of
// the destination domain server
stamp = messCons.matrixclock(domainDestServer)
// get the stamp of the message
// = the updated matrix of the domain
msg = evt + stamp
messCons.network.Send(msg) −→ −→ msg = messCons.Recv
// the message is saved into // receive a message from a MessageConsumer
// MessageQueueOut and sent // message is saved into LocalQueue
Recv(ACK)←− ←− Send(ACK)
Remove(evt) Check(messCons.matrixclock)
// from the MessageQueueOUT messCons.matrixclock.update(msg.stamp)

IF (evt.dest == this.server)
| Push(evt, QueueIN)
| // push event to message queue QueueIN
| // the Agent destination will react to it

ELSE
| systemDest= RoutingTable[evt.dest]
| messCons = MessageConsumer(systemDest)
| // get the message consumer of
| // the destination domain
| stamp = messCons.matrixclock(systemDest)
| // get the stamp of the message
| // = the updated matrix of the domain
| msg = evt + stamp
| messCons.network.Send(msg)
| // the message is transferred into
| // MessageQueueOut and sent to the
| // next router-server or server

FI

Fig. 7. Channel Modification

server 0, which computes the round-trip average time for 100 sends. We did three
series of tests: unicast on the local server, unicast on a remote server, broadcast
on all servers. We did a series of experiments on a single host, but the number
of servers was limited to 50 (because a single host cannot support more than
50 Java Virtual Machines). We then set up a network of ten hosts in order to
increase the number of servers. We used PC Bi-Pentium II 450MHz with 512
Mo and a 9 Go SCSI hard drive, connected by a 100Mbit/s Ethernet adapter,
running Linux kernel 2.0 or 2.2 (depending on machines). We only present the
main results (full results are in [23]).

6.2 Experiments and Results

The initial measurements (with no causality domains) clearly show the quadratic
increase of the message ordering cost with the number of servers, for both single
host and multiple hosts experiments. Fig. 8 and Fig. 9 show typical results.
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For the experiments with causality domains, we used a bus-like domain or-
ganization (Fig. 10). Other possible organizations are daisy and tree.

Fig. 10. A Bus, a Daisy and a Hierarchical division of domains.

With the bus-like organization, Fig. 11 shows a linear increase of the com-
munication time (up to 150 servers, the limit of our experiment). To explain the
linear dependency, consider a tree of domains of depth d, where each domain has
k sub-domains exactly and s servers (2 ≤ k ≤ s − 1), then the total number of
servers is n = 1 + (s − 1)(k(d + 1) − 1)/(k − 1) ≈ skd and the maximum cost of
sending a message is C ≈ (2d +1)s2 (the cost of sending a message in a domain
of s servers is supposed to be s2).

The linear cost results from our splitting in
√

n domains of
√

n servers with
a fixed depth d = 1 (bus) which causes a cost of C ≈ K × n. For a general
tree in which s and k are fixed (and d > 1), it would be possible to obtain
logarithmic cost, because C ≈ 2ds2 ≈ 2s2(ln(n)−ln(s))/ ln(k) ≤ 2s2 ln(n)/ ln(k),
so C ≈ K ′ × ln(n). However, K ′ > K (in particular if we take into account the
cost of message routing, proportional to d), therefore, a tree may be less efficient
than a bus in some cases.

Fig. 12 clearly shows the performance gain brought by the use of causality
domains.

All these results slightly depend on our peculiar test bed but nevertheless
we believe that they can be considered sufficiently general for MOMs using a
MatrixClock-based causal order with persistency.
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7 Conclusion and Future Work

We have presented a solution based on domains of causality to reduce the cost
of causal ordering in a scalable Message-Oriented Middleware based on matrix
clocks. A domain of causality is a group of servers in which causal message deliv-
ery is enforced. The domains are interconnected by specific servers called causal
router-servers which transmit messages between domains while guaranteeing the
respect of causality. We have proved that the causality is globally respected in
the entire network iff there is no cycle in the domains interconnection graph.
Our solution has been successfully implemented on the AAA MOM and gen-
erates linear increase of the causal ordering costs with the number of servers,
instead of quadratic increase with the classical causal ordering algorithm.

The modularity of this solution has many benefits. It is well adapted to
a mobile environment (a group of mobile phones is represented by a domain
and a station by a causal-router-server) and to LANs interconnection. However,
the division of the MOM in domains needs to be done carefully and the new
problem is to find an optimal splitting. Two directions may be followed: first,
the splitting can be made according to the network architecture, secondly it can
be made according to the application’s topology. This latter solution exploits
the description of applications (e.g. with an Architecture Description Language
[24]) to obtain the application graph connectivity and to determine an optimal
split of the communication architecture.

Our future work will further investigate the problem of optimal splitting of a
MOM into domains, taking into account application needs and communication
costs.

Acknowledgements. The authors gratefully acknowledge Luc Bellissard and
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Appendix

A The Updates Algorithm

State // an int value.
Mat[][] // an 2-dimension table representing the Matrix clock.
Mat[x, y].value // the value of the clock for [x,y], i.e. the real clock.
Mat[x, y].state // the last modified state of the (x,y) matrix clock value.
Mat[x, y].node // source node of last modification.
Node[x].state // value of the x channel state during the last sending.
Updates // timestamp sent; = a set of [line,column,value]

// (i.e. Mat[line, column].value).

Initially :
State = 0;
∀i, jMat[i, j].state = 0;
∀i, jNode[i, j].state = 0;

Sending from Si to Sj :
Node[j].state = State;
Mat[i, j].value+ = 1;
Mat[i, j].state = State;
Mat[i, j].node = j;
State+ = 1;

Updates =
{
(k, l, Mat[k, l].value)

∣∣∣∣Mat[k, l].state > Node[j].state
Mat[k, l].node �= j

}

Receiving on Si from Sj :

∀(k, l, v) ∈ Updates, Mat[k, l].value < v →
∣∣∣∣Mat[k, l].value = v
Mat[k, l].state = State
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B Proofs of Lemma 1 and Lemma 2

Lemma 1. In a correct trace, for any chain (m1, ..., mk) whose source p and
destination q are different, there exists a direct chain (n1, ..., nL) with the same
source and destination, such that m1 ≤p n1 and nL ≤q mk.

Proof : by induction on k. The property is trivially true for k = 1. Assume
it holds for chains of length k < K, and consider a chain (m1, ..., mK) of length
K. If this is a direct chain, the proof is done. If not, then by definition the path
(p1, ..., pK+1) is not direct, i.e. there exists i < j such that pi = pj . Consider the
chain (n1, ..., nL) defined as follows8 :

a) (mj , ..., mK) if i = 1 ∧ j < K + 1.
b) (m1, ..., mi−1) if i = 1 ∧ j = K + 1.
c) (m1, ..., mi−1, mj , ..., mK) if i > 1 ∧ j < K + 1.

This chain has the same source and destination as (m1, ..., mn), and has length
< K. By the induction hypothesis, there exists a direct chain (n′1, ..., n

′
h) with

the same source and destination, and such that n1 ≤p n′1 and n′h ≤q nL.
In addition, m1 ≤p n1 and nL ≤q mk. The first inequality trivially holds

for case b) and c). It also holds in case a), for mj <p m1 ⇒ mj−1 <p m1 ⇒
mj−1 ≺ m1 which is impossible because the trace is correct and we already have
m1 ≺ mj−1. Likewise, the second inequality also holds in the three cases. Hence,
m1 ≤p n′1 and n′h ≤q mk. The property therefore holds for chains of length K,
which concludes the induction step, and the proof.
Lemma 1’ (needed for the proof of Lemma 2). If n ≺ m, then either there

is a chain (n, ..., m), or there is a chain (l, ..., m), where l is a message sent after
n by the sender of n.

Proof : by recursive descent, using a case analysis at each step. If n ≺ m,
there are 3 possible cases :

– m and n are sent by the same process p, and m is sent after n. Then there
is a chain of the form (l, ..., m), where l is a message sent after n (take e.g.
the chain (m)).

– m is sent by a process that previously received n. Then there is a chain of
the form (n, ..., m) (take e.g. the chain (n, m)).

– There exists a message k such that n ≺ k ∧ k ≺ m. By recursion (using the
analysis of the 2 previous cases), one finds four possible cases, and in each
case there exists either a chain (n, ..., m) or a chain (l, ..., m), where l is a
message sent after n by the sender of n. The recursion terminates since all
chains are finite.

Lemma 2. If a correct trace does not respect causality, then there are two
processes p and q, a message n from p to q, and a chain (m1, ..., mn) from p to
q such that n <p m1 and mn <q n.

Proof : if a correct trace does not respect causality, then some process q
received message m before message n, and n ≺ m. By Lemma 1’, there exists
8 The case i = 1 ∧ j = K + 1 does not occur, because p �= q.
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either a chain (n, ..., m) or a chain (l, ..., m), where l is a message sent after n by
the sender of n.

In the first case, since dst(n) �= src(m), chain (n, ..., m) has the form
(n, l, ..., m). Then, by considering chain (l, ..., m), l ≺ m ∧ m ≺ l (since
m <q n and n <q l), which contradicts the assumption that the trace is correct
(Fig. 13 (a)).

Fig. 13. Break of correctness (a) or causality (b).

In the second case, there is a message n from p = src(n) to q, and a chain
(l, ..., m) from p to q such that n <p l and m <q n (Fig. 13 (b)). This concludes
the proof.
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