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Abstract. Applications built on networked collections of computers are increas-
ingly using distributed object platforms such as CORBA, Java RMI, and DCOM
to standardize object interactions. With this increased use comes the increased
need for enhanced Quality of Service (QoS) attributes related to fault tolerance,
security, and timeliness. This paper describes an architecture called CQoS (Con-
figurable QoS) for implementing such enhancements in a transparent, highly cus-
tomizable, and portable manner. CQoS consists of two parts: application- and
platform-dependent interceptors and generic QoS components. The generic QoS
components are implemented using Cactus, a system for building highly config-
urable protocols and services in distributed systems. The CQoS architecture and
the interfaces between the different components are described, together with im-
plementations of QoS attributes using Cactus and interceptors for CORBA and
Java RMI. Experimental results are given for a test application executing on a
Linux cluster using Cactus/J, the Java implementation of Cactus. Compared with
other approaches, CQoS emphasizes portability across different distributed object
platforms, while the use of Cactus allows custom combinations of fault-tolerance,
security and timeliness attributes to be realized on a per-object basis in a straight-
forward way.

1 Introduction

Middleware platforms such as CORBA [23], Java RMI [29], and DCOM [2] provide
high-level programming abstractions that facilitate distributed object computing, but
lack a unified framework for supporting Quality of Service (QoS) guarantees related
to fault tolerance, security, and timeliness. The lack of uniformity is apparent in two
separate ways, both equally important. First, most existing standardization and research
efforts in this area focus on providing a single QoS attribute such as fault tolerance (e.g.,
[44611512224])) or security (e.g., [l1]) rather than combinations of attributes. While useful,
applications in areas such as financial services and multimedia often need multiple types
of guarantees, as well as the ability to control performance and functionality tradeoffs
between the different attributes. Second, most efforts provide point solutions for only a
single middleware platform rather than a framework that can be used uniformly across
different platforms. While sufficient in some cases, it limits applicability and requires
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unnecessary reimplementation of essentially similar techniques. Indeed, many of the
basic techniques for implementing various QoS attributes can be used with minor changes
on any platform supporting a request/reply interaction paradigm.

To address these issues, we have developed CQoS, a platform-independent QoS
architecture for distributed object computing. CQoS consists of CQoS interceptors and
configurable CQoS service components. The service components can be customized to
provide the desired combinations of attributes, while the interceptors are used to insert
CQoS transparently between the application and middleware platform on both the client
and server hosts. The service component is implemented using Java version of Cactus, a
system that supports construction of highly-configurable network protocols and services
[TOJ12]. CQoS is designed to be easily portable, and in particular, to allow QoS attributes
to be implemented in a way that can be used across different middleware platforms. To
do this, the interceptor is used to abstract away middleware and application-specific
details, providing a standard interface for implementing enhanced functionality.

The primary goal of this paper is to present CQoS as a single unified framework
for providing multiple types of QoS attributes across multiple middleware platforms.
We do this by first describing the software architecture and then giving examples of
how customized fault-tolerance, timeliness, and security attributes can be realized in
a platform-independent manner. The mapping of the architecture to CORBA and Java
RMI is then presented, along with experimental results using Visibroker 4.1 and JDK
1.3 on Linux. Finally, we evaluate our approach in the context of related work. While
issues related to providing enhanced QoS in middleware have been explored elsewhere
(e.g., [19433]), no other approach offers the same combination of support for multiple
QoS attributes, platform independence, and the ability to make fine-grain object-specific
customizations as does the architecture described here.

2 Software Architecture

2.1 Overview

The CQoS architecture allows the QoS attributes of a distributed object system to be
customized transparently to client and server applications. Figure [1] provides a high-
level overview of the architecture. In our prototype implementation, the middleware
platform can be CORBA or Java RMI, but as noted above, the same approach can be used
for any platform that supports a request-reply interaction paradigm, including standard
remote procedure call (RPC) systems. For example, it would be feasible to intercept
HTTP requests and replies, in which case the TCP socket layer would be viewed as
the middleware layer. CQoS can be configured separately for each distributed object
application in the system, allowing application-specific customization.

QoS customization can be done on different system levels, including below the mid-
dleware, as a modification to the middleware, or as a service built on top of the middle-
ware. Each alternative has its relative tradeoffs, including factors such as transparency,
effectiveness of the approach, performance overhead, and the ease of implementing and
customizing such service enhancements. In the case of CQoS, implementing on top of the
middleware layer has a number of advantages, including the ability to use the higher-
level primitives provided by the middleware for locating objects and for performing
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Fig. 1. High-level view of CQoS architecture.

inter-object communication. It also means that CQoS can be inserted transparently to
both application objects and middleware, requiring no changes in either. We discuss the
relative merits of the different approaches further in section

The key observation enabling this design is that the fundamental techniques for
implementing QoS properties such as fault tolerance, security, or timeliness are similar
regardless of the specific middleware platform. For example, fault tolerance can be
increased by replicating the server and multicasting each method call, independent of
whether the middleware is CORBA or Java RMI. The architecture eliminates the need for
reimplementing similar techniques for different platforms by allowing QoS properties
to be realized in a platform-independent manner.

To achieve portability, CQoS is structured as two components: a middleware- and
application-specific CQoS interceptor and a generic CQoS service component that imple-
ments the QoS enhancements. The interceptor provides the service component with the
necessary interfaces for manipulating requests and replies to implement the properties.
Note that CQoS is needed only to enhance the QoS attributes provided to the applica-
tion, not to replace or reimplement guarantees that are already provided. For example,
if the underlying CORBA ORB provides security services, CQoS can be configured to
enhance properties other than security.

The CQoS interceptors for the client and server sides, called the CQoS stub and CQoS
skeleton, respectively, are automatically generated from the server IDL description (e.g.,
CORBA IDL) using our Cactus IDL compiler. The generic CQoS service components on
each side are implemented as Cactus components that are referred to as the Cactus client
and Cactus server, respectively. The rest of this section describes these components in
more detail.

2.2 CQoS Interceptors

Client-side interception is based on replacing the conventional stub used by middleware
platforms such as CORBA or Java RMI by the CQoS stub (figure [Z). When the client
invokes a method on this stub, it creates an abstract request object and notifies the
Cactus client. The stub then stores the pending request until the call has been completed.
Similarly, server-side interception is based on using the CQoS skeleton as a proxy server
for the actual server object. This skeleton overwrites the server object binding with
the underlying middleware layer. This causes the incoming requests to be forwarded
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Fig. 2. Structure of CQoS interceptors.

automatically to the CQoS skeleton, which also creates an abstract request object and
notifies the Cactus server.

To implement this functionality, CQoS stubs and skeletons provide multiple inter-
faces for interaction with the application, middleware, and QoS service component.
The application interface on the CQoS stub is identical to the original stub and pro-
vides operations for each of the server object methods. The middleware interface on the
CQoS skeleton provides operations that allow the middleware to pass the request to the
CQoS skeleton. The details of CORBA and Java RMI implementations of this interface
are discussed in section 4l Finally, the interface for the QoS service component, called
the Cactus QoS interface, provides methods for the Cactus client and Cactus server to
manipulate the requests and connections to servers.

To support request manipulation, the Cactus QoS interface provides an abstract
representation of the client request together with appropriate operations. Specifically,
the request is represented as a Java class, where the request parameters are represented
as a vector of Java objects (java.lang.0bjects). This interface provides a set of
accessor methods to get and set parameters and return values. The implementation of
the interface, which is platform specific, takes care of converting the abstract request into
a form required by the specific platform. For example, a CORBA implementation that
uses DII/DSI converts the abstract request structure into a CORBA request (org. omg. -
CORBA.Request). The request object also provides a field for piggybacking additional
parameters onto the request. For example, the Cactus client may include a priority
parameter that is used by the Cactus server to determine the order in which requests are
to be processed.

The Cactus QoS interface also provides abstract representation of the server objects.
Since the implementation of certain attributes such as fault tolerance requires communi-
cation with multiple servers, the interface provides operations for creating connections
with specific servers (bind()), testing the status of a server (server_status()), and send-
ing requests to specific servers (invoke_server()). The bind() operation can also be used
to rebind to a failed server after it has recovered. Details related to server names and
addressing are hidden by the interface so that the CQoS service component can be inde-
pendent of the application as well as the middleware platform. In particular, the interface
allows the server replicas to be referred to by numbers (1..N) rather than by application
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or middleware-specific identifiers. Currently, the server_status() operation only indicates
if the server is running or failed, but it could be extended to provide information such
as the load conditions on the server for load balancing purposes. On the server side, the
interface provides operation invoke_servant() that the Cactus server can use to actually
invoke the method in the server object and the invoke_server() operation that the Cactus
server can use to communicate with Cactus servers on other replicas. The latter opera-
tion is used, for example, to send ordering messages between replicas to implement a
consistent total ordering of client invocations.

2.3 CQoS Service Component

QoS attributes are implemented by the Cactus client and Cactus server components.
These components are composite protocols that are implemented using Cactus, a design
and implementation framework for constructing configurable protocols and services
[LO]. In the following, we briefly introduce Cactus, describe the Cactus client and server
components, and outline how these components can be configured to provide custom
QoS properties.

Cactus overview. A service or protocol in Cactus is implemented as a composite proto-
col, with each service property or other functional component implemented as a software
module called a micro-protocol. A micro-protocol is structured as a collection of event
handlers, which are procedure-like segments of code that are executed when a specified
event occurs. A customized version of a protocol or service is constructed by selecting
the micro-protocols that implement the desired features. The service can also be changed
during execution by dynamically altering the configuration of micro-protocols within
the composite protocol.

Cactus provides a variety of operations for managing events and event handlers.
For example, an operation is provided for binding a handler to an event, with optional
static arguments that are passed to the handler on every activation. Events are raised
either implicitly by the runtime system or explicitly by a micro-protocol executing an
appropriate operation. When an event is raised, all handlers bound to that event are
executed. The raise operation also supports a delay parameter, which can be used to
implement time-driven execution, and dynamic arguments that are passed to the handlers
upon invocation. An event raise may be blocking (synchronous), where the caller is
blocked until all the handlers have been executed, or non-blocking (asynchronous),
where the caller continues execution concurrently with the handler execution. Other
operations are available for unbinding handlers, creating and deleting events, halting
event execution, and canceling a delayed event. Cactus also supports data structures
shared by micro-protocols in a composite protocol and a message abstraction designed
to facilitate development of configurable services.

A number of prototype implementations of Cactus have been completed. These
include Cactus/C, a C version that runs on Mach MK 7.3 and Linux; Cactus/C++, a C++
version that runs on Linux and Solaris; and Cactus/J, a Java version that runs on most
platforms. The prototypes described here use Cactus/J on Linux.
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Fig. 3. Cactus events used in CQoS.

Cactus client and server. The Cactus client and server provide a very simple interface
for CQoS interceptors. In particular, the client provides a cactus_request(requestID) op-
eration that the stub can use to notify it of request arrival, and the server provides an anal-
ogous operation cactus_invoke(requestID) for the skeleton. Both operations block until
the request has been completed. For example, when cactus_request() returns, the stub
can return the return value from the request structure to the client. The implementations
of these operations simply raise the appropriate events newRequest and newServerRe-
quest, respectively, with the actual processing done by various micro-protocols. The
above design assumes all client invocations are synchronous, but the implementation
could easily be extended to support asynchronous invocations.

Figure[lillustrates the events used in the Cactus client and server. The arrows between
events indicate causal relations between events, that is, an arrow from ev1 to ev2 indicates
that some micro-protocol that processes ev1 (i.e., has a handler bound to ev1) raises
ev2. Event readyToSend indicates that a request is ready to be sent to the server(s),
and invokeSuccess and invokeFailure indicate that an invocation completed successfully
or failed. Event readyTolnvoke indicates that an invocation is ready to be passed to
the server object, invokeReturn that the invocation has returned from the object, and
requestReturned that the reply to the request has been sent back to the client side.

Customization. Since CQoS decouples the application from the specification and im-
plementation of the QoS attributes, QoS customization can be done in a variety of ways
by end users, system administrators, or application designers. While customization must
currently be done using a programming interface, a graphical tool similar to the Cactus-
Builder [I8] could be developed to facilitate the process. Here, we focus on the underlying
mechanisms designed to support this customization.

Cactus supports customization both statically at configuration time and dynamically
at execution time. With static customization, the desired set of micro-protocols is speci-
fied either by modifying the constructor of the composite protocol to start the appropriate
micro-protocols or by using a configuration file that is read by the constructor of the
composite protocol. With dynamic customization, the set of micro-protocols is deter-
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mined after the Cactus protocols start execution and the micro-protocols are loaded using
Java’s dynamic code loading features.

Dynamic customization uses two generic micro-protocols developed for Cactus/J:
RBooT and RCONTROL. RBOOT provides the minimal functionality required to load
RCONTROL. In particular, it connects to the object from which the code is to be loaded
and accepts a message that contains RCONTROL as a Java archive. RCONTROL loads the
actual micro-protocols required in the configuration. It remains active for the duration
of the composite protocol, and thus, allows new micro-protocols to be loaded during
execution. Using this technique, the object constructor in the composite protocol needs
only to start the generic RBOOT micro-protocol to support full dynamic customization.
The current versions of RBooT and RCONTROL use a separate TCP connection to load the
code, but other alternatives are being explored such as using the underlying middleware
platform or Jini technology.

While static customization is conceptually simple and easy to use, dynamic cus-
tomization offers more flexibility. For example, the configurations in statically cus-
tomized client and server protocols must match for the system to operate correctly,
while dynamic customization allows a matching configuration to be loaded at execu-
tion time. This ability can be utilized in a number of ways. For example, the client can
download the necessary micro-protocols from the server, the server can download micro-
protocols from the client, or both the server and client can download micro-protocols
from some external configuration service. Each of these options has useful application
areas. For example, a client can download a multicast or load balancing micro-protocol
that is used by a specific collection of replicated servers, while a server can download
the secure communication micro-protocol required by a given client. An external con-
figuration service allows the properties—and thus the configurations—to be defined for
all [user,service] pairs without requiring direct manual configuration of protocols. All
of these alternatives make it easier to deploy new or updated micro-protocols since the
updates only need to be made at the clients or the servers, or the configuration service.

The ability to alter configurations dynamically introduces the need to coordinate these
changes on different hosts to maintain consistency. For example, if a micro-protocol im-
plementing consistent total ordering of client invocations is changed at runtime, all the
server replicas must perform the change at the same time with respect to the flow of
invocations. In our current prototype, dynamic customization is limited to the client
side and only at the time when the client binds to a server. Since we do not consider
configuration changes at the servers or more general runtime changes, the only coordi-
nation required is to ensure that the Cactus client loads the necessary micro-protocols
before it passes requests to the Cactus server. We have explored coordination issues in
the context of group communication services [3] and intend to apply these techniques
in future versions of CQoS.

3 Micro-protocols for QoS Enhancement

Cactus micro-protocols can be used to implement any service property or function, but
this paper focuses on QoS attributes related to fault tolerance, security, and timeliness.
Other properties and functions such as caching, prefetching, and load balancing could



358 J. He et al.

be implemented in similar ways. Note that none of the specific techniques used here are
novel; indeed, all have been used in other CORBA and Java RMI systems, and prior
to that, in RPC systems and other systems that use the request/reply paradigm. The
novelty of our approach is the way in which they can be configured to realize different
combinations of attributes.

3.1 Base Micro-protocols

A Cactus composite protocol typically includes micro-protocols that provide basic ser-
vice functionality. In CQoS, these micro-protocols are CLIENTBASE at the client and
SERVERBASE at the server. CLIENTBASE consists of three handlers:

— assigner. Bound to event newRequest, it assigns a server to the request and raises
readyToSend.

— synclnvoker. Bound to readyToSend, it uses the server determined by assigner to
issue the request. It checks the server status (server_status()), connects to the server
if necessary (bind()), calls the server (invoke_server()), and raises invokeSuccess or
invokeFailure depending on the result of the call.

— resultReturner. Bound to both invokeSuccess and invokeFailure, it provides the de-
fault processing of these events by releasing the waiting client thread when an
invocation is completed.

SERVERBASE consists of two handlers:

— getParameters. Bound to newServerRequest, it extracts Cactus parameters from the
request structure and raises readyTolnvoke.

— invokeServant. Bound to readyTolnvoke, it invokes the server object by calling the
invoke _servant() method of the CQoS skeleton and raises invokeReturn.

Note that the basic behavior is broken into multiple handlers with events used to pass
control from one handler to another. This allows the actual QoS micro-protocols to insert
their processing at the appropriate points of the control flow. All the handlers in the base
micro-protocols have been ordered to be the last ones executed when its respective event
is raised. This makes it possible for other micro-protocols to do additional processing
before these handlers are executed or to override them by stopping the event execution
before their execution.

3.2 Fault Tolerance

Many fault-tolerance techniques are relatively easy to implement transparently. For ex-
ample, method calls can be sent to replicated servers to tolerate host failures, and mes-
sages can be retransmitted to tolerate transient network failures. To hide the impact of
such replication, the mechanisms used also need to eliminate duplicate messages and
combine multiple replies. It may also be necessary to ensure that all server replicas
receive method calls in the same order and have a consistent view of the server group
membership. The current prototype does not support state transfer for either recovering
or newly joining replicas. Such a facility could easily be added using standard techniques,
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although it would lessen transparency since but it would require that server objects pro-
vide operations for getting and setting their state. Also, the current implementation only
considers host crash failures, although a similar customizable approach could be used for
less benign failures [[9]. Currently, we assume the underlying platform handles network
failures, but it would be easy to add retransmission micro-protocols if necessary.

Our current prototype has two replication micro-protocols: ACTIVEREP and PaAs-
SIVEREP. ACTIVEREP implements active replication where the request is sent to all
server replicas and all non-crashed replicas reply. ACTIVEREP consists of one handler
actAssigner that is similar to the base assigner except that it raises readyToSend asyn-
chronously. The constructor of ACTIVEREP binds actAssigner to the event newRequest
multiple times, once for each server. When the event is raised, an instance of actAssigner
is executed for each replica. From this point, execution proceeds as outlined above—each
instance of actAssigner raises readyToSend, which starts a separate instance of syncln-
voker. The fact that readyToSend is raised asynchronously means that each instance of
synclnvoker is executed concurrently by a separate thread and thus, the blocking server
invocations (invoke_server()) are executed in parallel. The actAssigner handlers override
the base assigner by executing before it and halting further execution associated with
the event.

PASSIVEREP supports passive replication, where a designated primary server replies
after forwarding the request to other replicas to keep them consistent. The client side
consists of two handlers:

— pasAssigner. This handler overrides base assigner, and assigns the first non-failed
server to serve the request.

— primarySelector. This handler overrides base resultReturner for event invokeFailure,
marks the current primary as failed, and raises newRequest to re-execute the request.

The netresult is that the client thread is not released until a proper result has been received
or all replicas have failed. The primary server uses techniques similar to those used in
AcCTIVEREP to forward the request concurrently to the backup replicas. It also keeps
track of requests already received, so that receiving a request again does not corrupt the
server state.

The current prototype supports three different acceptance semantics, which deter-
mine when a request is considered completed and a reply can be returned to the client.
CLIENTBASE by default implements a policy useful for the non-replicated case where the
first reply (success or failure) to arrive is returned to the client. A second micro-protocol
returns the result from the first successful execution and a third returns the majority value
from non-failed replicas. Both of these micro-protocols consist of one handler that is
executed before the base resultReturner.

The ToTALORDER micro-protocol ensures that all replicas receive requests from
multiple clients in a consistent total order. Our prototype uses a sequencer-based total
ordering algorithm, where a coordinator determines the ordering for each request, and
multicasts it to the other replicas. Although failure of the coordinator is not currently
tolerated, it would be simple to add this using standard techniques. TOTALORDER consists
of three handlers in the Cactus server:
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— assignOrder. Bound to readyTolnvoke at the coordinator, it determines an ordering
for each new request and sends it to other replicas in parallel using technique similar
to ACTIVEREP.

— checkOrder. Bound to the same event on all replicas, it processes both requests and
ordering information and releases any request that becomes eligible for execution.

— checkNext. Bound to invokeReturn, it determines if a waiting request can be exe-
cuted.

3.3 Security

Many security features such as secure communication, authentication, and access con-
trol can be implemented transparently. Our current prototype includes provisions for
message confidentiality, message integrity, and access control. As an example, DESPRI-
VACY encrypts and decrypts the request parameters and reply using DES. The client side
uses a handler bound to readyToSend to encrypt the request parameters and a handler
bound to invokeSuccess to decrypt the reply value. Both handlers are executed as the
first handler for these events. The server-side decryption of request parameters is im-
plemented by a handler that overrides the base getParameters handler. The server-side
encryption of the reply value is implemented by a handler bound to invokeReturn. Note
that since the micro-protocol encrypts only the request parameters and replies, the se-
curity level provided is slightly less than CORBA Security Level 1, which encrypts the
entire request message. Integrity is provided by a signature-based scheme implemented
by micro-protocols at the client and server, while access control is implemented by a
micro-protocol at the server.

3.4 Timeliness

Providing rigorous timeliness guarantees is difficult and requires control of client ad-
mission and request scheduling. However, service differentiation properties that provide
more timely service to high priority requests can be implemented as relatively simple
micro-protocols. Our current prototype includes three such micro-protocols. The first,
PRIORITYSCHED, manipulates thread priorities. It consists of one handler setPriority
bound to readyTolnvoke that sets the priority of the current thread based on the request
priority. It is set to execute as the first handler for this event so that it can change the
priority as early as possible. The second, QUEUEDSCHED, schedules request execution
by queuing low priority requests if high priority requests are executing. This behavior is
implemented by three handlers:

— checkPriority. Bound to readyTolnvoke, it allows a request to either continue or
queues it.

— notifyWaiting. Bound last to invokeReturn, it raises event requestReturned asyn-
chronously with a low thread priority if no high priority requests are being executed.

— wakeupNext. Bound to requestReturned, it releases waiting low priority requests.

Note that the second handler uses a modified raise operation that allows the thread
priority to be specified. This ensures that execution of wakeupNext does not interfere
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with the thread that is returning the high priority request. Finally, the third micro-protocol,
TIMEDSCHED, uses a similar strategy, except that it keeps track of how many high priority
requests have arrived in a time period and only releases low priority requests one at a
time when the number of high priority requests in the previous period is smaller than a
threshold. Currently, the request priority is simply determined based on client identity,
but other techniques could easily be added.

Note that both TOoTALORDER and the last two service differentiation micro-protocols
order request execution, making it possible for the orders to conflict. That is, it is possible
for the next request according to TOTALORDER to be a low priority request that is queued
and thus blocked by the service differentiation micro-protocols. This problem can be
solved by including the service differentiation micro-protocols only at the coordinator
of the total ordering algorithm. This ensures that the total order assignment respects
request priorities.

Two changes were made in the Cactus runtime system to allow these micro-protocols
to manipulate thread priorities. The first is the variant of the raise operation mentioned
above that specifies the priority of the thread used to execute the handlers. The second
preserves thread priorities in event operations. In particular, the handlers associated with
a given event are guaranteed to be executed by a thread with the same priority as the
thread that raised the event, unless specified otherwise.

3.5 Combining QoS Properties

The Cactus framework allows micro-protocols to be designed so that the composite
protocol can be customized to provide different combinations of QoS micro-protocols. In
our case, the fault-tolerance, security, and timeliness micro-protocols have been designed
to work together in any combination. The fault-tolerance micro-protocols can be used
in five different combinations: passive replication (1) or active replication with any
combinations of total order and acceptance (4). Overall, a service can be configured with
no fault tolerance or any of these five fault-tolerance combinations with any combination
of the three security micro-protocols and any of the three timeliness micro-protocols. As
a result, even this small set of micro-protocols can be configured in over 100 different
ways.

While using Cactus does not automatically guarantee that micro-protocols are com-
posable, it provides flexible mechanisms that allow the micro-protocol designer to max-
imize composability. One example is the event mechanism that allows handler execution
to be ordered as desired, including provisions for overriding existing handlers. These
facilities are used, for instance, to ensure that the decryption handler is executed trans-
parently prior to all other handlers. Note, however, that the composability is the result
of careful design of the event set and ordering of handler execution.

The current set of micro-protocols could be easily extended with different security,
timeliness, and fault-tolerance techniques, and to handle more complicated invocation
scenarios, such as an invocation from one replicated server to another. Additional secu-
rity micro-protocols could also be added using the approach presented in [11[], which
includes numerous micro-protocols for confidentiality, as well as for other security at-
tributes such as authenticity, non-repudiation, key distribution, and auditing. Each secu-
rity attribute can also be enforced using combinations of two or more micro-protocols
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if desired. Additional timeliness micro-protocols could include admission control and
traffic enforcement, while additional fault-tolerance micro-protocols could include re-
quest logging, server recovery, and more rigorous failure detection and membership
management.

4 Implementing CQoS on CORBA and Java RMI

The CQoS stub and skeleton form the middleware and application-dependent compo-
nents of this framework, providing a mechanism to abstract system specific details and
implement a standard interface by which Cactus protocols can access data in an imple-
mentation neutral manner. This section describes highlights of how these interceptors
have been mapped to CORBA and Java RMI in the prototype implementation. We em-
phasize again that the actual implementation of the QoS attributes in the Cactus client
and server is independent of the specific platform used.

41 CORBA

CORBA is a vendor-independent software architecture designed to facilitate object-
based distributed computing. The architecture consists of three major components: an
interface definition language (IDL), a communication infrastructure (ORB) supporting
remote method invocation, and a variety of supporting services. Examples of services
include a naming service, a security service, and an event notification service. The IDL
definition is used to generate stubs and skeletons. Stubs marshal the invocation into a
request and pass it to the ORB, which is responsible for transmitting the request from the
client to the server host. Skeletons unmarshall the request and perform the invocation
on the corresponding servant for the object. The result of the invocation is returned in
an analogous manner.

Our approach to adding customizable QoS is to insert CQoS stubs and skeletons
between the client and ORB and the ORB and the servant. These replace the conventional
stubs and skeletons and are responsible for intercepting method invocation on both the
client and server sides. The interception is completely transparent and no modifications
are required to the client code, to the server code, or to the IDL description of the server
interface. Among other things, this allows enhanced QoS to be added to legacy CORBA
applications.

Figured illustrates the different system components and their interactions. Client
and Servant are the user-provided CORBA client and servant, where the servant is a
Java object that implements the request processing for one or more CORBA objects.
stub, helper, and skeleton are standard components generated by the IDL compiler.
The standard stub and skeleton are replaced in our approach by the CQoS stub and
skeleton and the helper is modified slightly to enable interception. startup on the
server side is a standard object-specific initialization file modified slightly to enable
interception. Dotted lines represent interactions at servant initialization and client bind
time, while solid lines represent interactions at invocation time.

A careful naming convention for the POAs (Portable Object Adaptors) and the CQoS
skeletons is used to enable the client side to locate the potentially replicated objects.
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RN Va ; E
Cactus =— CQoS CQoS ~— Cactus
client —=| stub skeleton | server
e
CORBA ORB CORBA ORB

Fig. 4. System components and interactions in the CORBA implementation.

Generally, a CORBA object is represented by an IOR (Interoperable Object Reference)
that is created by a POA when the servant that implements the object registers with the
POA using the appropriate object identifier. We used a set of POAs in our system, one
for each object replica, to create the IORs. The POA for the it" instance of object with
identifier “OID” is named “OID_agent_poa_i”. Given that the POAs have different names,
we can use the same object identifier “OID_CQoS_Skeleton” for the CQoS skeletons on
all replicas. Using this convention, the CQoS stub can get the IORs of the object replicas
by binding with the correct POA and using the object identifier “OID_CQoS_Skeleton”.

Client- and server-side interception is implemented by modifying the helper and
startup files, respectively. On the server side, the startup file is modified to start and
register the CQoS skeleton rather than the application servant. Specifically, startup
uses the above naming convention to create a POA for the object and register the CQoS
skeleton with the POA. A pointer to the original servant is passed as an argument to the
CQoS skeleton. This pointer is used within the skeleton to implement the invoke_servant()
operation by making a native Java call to the servant object.

On the client side, a line in the standard helper file is modified to specify the CQoS
stub as the stub to be used by this client. As described above, this stub has a method
corresponding to each server object method, which converts the method call into an
abstract request structure that is passed to the Cactus client using cactus_request(). The
CQoS stub also intercepts a client’s bind() operations. In our current implementation,
the bind() operation simply creates a CQoS stub and returns it to the client, with the
actual binding done at the time the client issues its first request. The CQoS stub may
create multiple bindings (e.g., for replication), and the Cactus client can access the
status of bindings and request rebinding through the Cactus QoS interface described
above in section[Z2] Note that the CQoS skeleton uses identical techniques to establish
connections between server object replicas when necessary.

Finally, the implementation of the invoke_server() operation provides communication
between the CQoS stub and skeleton, and between CQoS skeletons, using CORBA
facilities. We have completed two implementations based on two alternative CORBA
interfaces defined for the IDL to Java mapping [25]. The first uses the Dynamic Invocation
Interface (DII) at the client and the Dynamic Skeleton Interface (DSI) at the server,
while the second uses CORBA streaming APIs. In the DII/DSI approach, the CQoS stub
constructs a CORBA DII request object using a delegate for the CQoS skeleton and
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sends the request using the invoke() operation provided by the request object. The CQoS
skeleton provides an analogous invoke() operation that is called by the POA when the
request object arrives. This operation uses DSI facilities to extract the method name and
parameters, including any extra Cactus parameters added to the request.

In the streaming approach, the CQoS stub uses the streaming APIs to construct
a CORBA portable output stream, write the request parameters to the output stream,
invoke the server delegate with the output stream as a parameter, and read the result
from the resulting input stream. The CQoS skeleton provides an invoke() operation in a
manner similar to the DII/DSI approach, but in this case it uses stream API operations
to extract the method name and parameters from the input stream. Regardless of the
method used to extract the parameters, the CQoS skeleton creates an abstract request
object that is passed to the Cactus server by calling cactus_invoke(). The experimental
results in section[3] demonstrate the performance benefits of this approach relative to the
use of DII/DSI.

4.2 Java RMI

Java Remote Method Invocation (RMI) is a communication architecture aimed at inte-
grating the distributed object model into the Java programming language while main-
taining its original semantics [29]. Overall, the RMI architecture is relatively similar
in structure to the CORBA architecture in figure [4 with automatically generated stubs
hiding the lower-level communication details from the applications. However, the RMI
architecture since JDK 1.2 does not use server-side skeletons and does not require a
separate helper file. The RMI specification supports multiple underlying protocols—the
default JRMP (Java Remote Method Protocol) and CORBA IIOP—and custom stubs
may be generated for each of these using the rmic stub compiler. The architecture
also provides the RMI registry, which is a naming service used to bind remote objects
with generic names. Clients use the registry to locate remote objects through methods
provided in the java.rmi.Naming class.

Server-side interception for RMI is modeled on our approach on CORBA. How-
ever, RMI is simpler than CORBA and does not have concepts such as POA and DSI,
which affects implementation details. Since Java no longer supports server side skele-
tons, we introduce the CQoS skeleton as a proxy object that is modeled on a typical
RMI (JDK 1.1) skeleton. We use a naming convention for the skeletons at the object
replicas. Specifically, the skeleton for the i*” replica of object with identifier “OID”
registers with the Java naming service using name “OID_CQoS _Skeleton_i”. The client
side CQoS stubs then bind to these skeletons, rather than the original objects, and thus,
all client requests are automatically delivered to the skeletons. A mechanism similar to
DSI is simulated in RMI by having the skeleton export only a generic invoke() method
(java.lang.Object invoke(java.lang.0bject[])). The Java request structure
containing the actual method to be called is passed as a parameter to this method. The
actual invocation of the server method is done through a native Java call similar to the
CORBA implementation.

Client-side interception is based on simply replacing the standard stub with a CQoS
stub with the same name. The stub provides one method for each of the server methods
and when a method is called, the stub creates the abstract request structure and notifies
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the Cactus client. When the Cactus client wants the request to be sent to the server, it
calls the invoke_server() method of the stub with the request as a parameter. Similar
to the CORBA implementation, the stub binds to the server when the client issues its
first request. We are working on extending the Cactus IDL compiler to automatically
generate the CQoS stubs and skeletons for Java RMI.

Note that while Java RMI currently supports both JRMP and IIOP, the default is
currently in the process of being changed to IIOP, which allows RMI objects to access
CORBA objects if they conform to a small set of restrictions. These RMI-IIOP systems
can be customized using the CQoS on CORBA interception mechanisms described
above. To achieve this, RMI-IIOP stubs are simply replaced with customized CQoS stubs
for CORBA. This interception approach can be extended to any RPC-like client/server
communication model.

5 Experimental Results

The performance of the approach was tested using a simple BankAccount object that
provides operations for setting and retrieving the balance of a bank account. Tests were
conducted on a cluster of 600 MHz Pentium III PCs running Linux 2.2.14 connected
by a 1 Gbit Ethernet. The CORBA tests were conducted using Visibroker 4.1, while the
Java RMI tests use Java 2 SDK version 1.3 for Linux.

The first set of experiments focused on measuring the overhead imposed by our
approach. We first measured the response time using the standard middleware plat-
form (CORBA or Java RMI) and then ran the same experiments for different combina-
tions of CQoS components. Each test run measured the time to execute 10000 pairs of
set_balance() and get_balance() operations, and was run multiple times. The client and
server objects were on different machines. The results are given in table [T} where each
line adds one more CQoS component into the configuration. Note that in the CORBA
case, adding the CQoS stub and CQoS skeleton does not simply add them to the baseline
test, but replaces the original stub and skeleton generated by the standard IDL compiler.
The CORBA tests in the table were performed using the stream API implementation.
The Cactus client and server were configured with only the base micro-protocols. The
column labeled “ohead” indicates the overhead of the added component compared to
the previous configuration, while the subsequent column gives the cumulative overhead
compared to the baseline.

Overall Java RMI performance, both the baseline and the CQoS enhanced, appears
to be better than CORBA. We speculate that this is because Java RMI is a lighter weight
middleware without the need, for example, to support multiple programming languages.
The larger CQoS overhead with CORBA is due partially to the fact that the stub must
first convert a request into the abstract form and then transmit it on the output stream one
parameter at a time, whereas the Java RMI version simply transmits the abstract request
object. A number of optimizations have been used in both implementations to improve
performance, such as reuse of the request data structures to avoid object creation. The
cost of the Cactus client and server have also been reduced by optimizing the Cactus
runtime system. For example, use of a thread pool for event handling reduced overhead
considerably.
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Table 1. Average response times (in ms)

[Configuration |set + get|one call|ohead|cum ohead
Original CORBA 2.74 1.37 0 0

+ CQoS stub 3.01 1.51 |0.14 0.14

+ CQoS skeleton 3.06 1.53 | 0.02 0.16

+ Cactus client and server| 3.44 1.72 | 0.19 0.35
’Conﬁguration \set + get\one call\ohead\cum ohead‘
Original Java RMI 2.19 1.10 0 0

+ CQoS stub 2.21 1.11 | 0.01 0.01

+ CQosS skeleton 2.27 1.14 | 0.03 0.04

+ Cactus client and server| 2.61 1.31 | 0.17 0.21

We also tested the DII/DSI-based implementation and performed other tests to iden-
tify the impact of Java garbage collection and compiler optimization on the CORBA
implementation. In the first case, we determined that the DII/DSI numbers were consis-
tently larger. For example, the time for one call with just the CQoS stub was 1.64 ms,
while the time for one call with all components was 2.16 ms. Thus, the overhead was
approximately 10%-20% despite our attempts to optimize performance such as reuse of
the name-value list objects required by DII/DSI. Java garbage collection also impacted
performance results, especially the variance between runs. To measure this impact, we
increased the heap size and set JVM parameters so that garbage collection was unlikely
during a test run. This resulted in considerable performance improvement in all cases
and a reduction in the variance. For example, the average time for one standard CORBA
call was reduced to 1.29 ms, while the time for one call including all CQoS components
was reduced to 1.48 ms. Finally, the impact of the optimizations performed by Sun’s
standard “HotSpot” compiler was determined to be significant. For example, the aver-
age response time for one call with all components was 3.04 ms when optimization was
disabled.

The second set of experiments (table[2)) illustrates the response times for different
QoS configurations. Each micro-protocol increases the response time by using more CPU
time (e.g., encryption), sending more messages (e.g., replication and total ordering), or
both. In tests with multiple object replicas, the client and each replica are all on separate
machines. The CORBA numbers are again based on the stream API implementation.
As expected, the numbers indicate that adding functionality that introduces additional
messages or that is CPU-intensive is relatively expensive, but simple functionality costs
relatively little. Note that the increase in response time when the DESPRIVACY micro-
protocol is used is greater for CORBA than for Java RMI. We attribute this to the fact
that the entire request object is encrypted and transmitted as a single CORBA parameter
of type Any, whereas the arguments of calls in configurations without encryption can be
transmitted as simple data types. In contrast, the request object is transmitted as a single
entity in every case with the Jave RMI implementation, so that the only change is the
actual CPU overhead associated with execution of the cryptographic algorithms.
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Table 2. Response times for different configurations (in ms)

CORBA Java RMI
Configuration num servers|set + get\one callfset + get\one call
DEsPrIvacy 1 4592 | 2296 | 8.57 4.29
PASSIVEREP 6.51 3.26 5.56 2.78
ACTIVEREP 6.50 3.25 4.40 2.20

7.98 3.99 4.77 2.39
11.23 | 5.62 8.14 | 4.07
850 | 4.25 7.40 3.70
76.70 | 38.25 | 13.63 | 6.84

+ MAJORITY VOTE

+ TOTALORDER
ACTIVEREP+TOTALORDER
+ DESPRIVACY

W W W W W W

The last set of experiments in table [] illustrates the behavior of the TIMEDSCHED
service differentiation micro-protocol alone, and when combined with other micro-proto-
cols. For these tests, we statically designated some clients as high priority and others
as low priority. In these particular tests, we used one high priority client and varying
numbers of low priority client. The results indicate that the TIMEDSCHED micro-protocol
provides relatively good service differentiation and protects a high priority client well
from the impact of low priority clients.

6 Related Work

As already noted, the specific fault-tolerance, security, and timeliness techniques used
in CQoS are standard approaches that have been used in many other systems. Therefore,
we focus here more directly on research related to adding QoS guarantees to CORBA,
Java RMI, and other distributed object platforms. We will also shortly discuss how the
Jini technology relates to our approach.

The QoS work in distributed object systems can generally be classified into one of
several approaches depending on how the QoS functionality is added to the system.
These include the service approach, the integrated approach, the interception approach,
and the gateway based approach.

The service approach implements QoS enhancements as separate services transpar-
ently to the middleware platform, while the integration approach directly modifies the
platform to provide the enhancements. Both approaches can be made transparent to the
application. The integration approach typically provides better performance since low
level optimizations are possible, but interoperability becomes an issue. While the service
approach is better for portability and interoperability, it is difficult to make any guaran-
tees for communication between the client and service, which makes it impossible to
guarantee end-to-end timeliness or security. A good discussion of the tradeoffs between
this approach and the previous one is presented in [7]]. The service approach has been
used for fault tolerance [6,22], and standard CORBA services such as the security service
can be viewed as examples of this approach. The integration approach has been used to
enhance fault tolerance [[15]/17] and timeliness properties [28], and could naturally be
used to enhance any other QoS attribute.
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Table 3. Average response times (in ms)

Configuration num | num low CORBA Java RMI
servers|pri. clients|high pri.|low pri. high pri|low pri
TIMEDSCHED 1 1 1.74 3.61 1.36 | 3.31
1 2 1.85 4.45 1.39 | 3.53
1 3 1.92 5.19 1.43 | 3.60
1 4 1.97 5.33 148 | 4.27
+ ACTIVEREP 3 1 3.45 697 | 233 | 483
3 2 3.45 8.39 | 233 | 5.30
3 3 346 | 1022 | 2.34 | 6.20
3 4 347 | 12,10 | 2.36 | 7.27
+ MAJORITY VOTE 3 1 4.20 8.62 2.51 | 5.28
3 2 4.22 998 | 2.62 | 7.30
3 3 423 | 12.05 | 2.71 | 8.23
3 4 424 | 1395 | 2.77 | 9.37
+ TOTALORDER 3 1 5.65 | 11.18 | 4.10 | 8.49
3 2 5.60 | 1341 | 4.14 |10.09
3 3 5.55 | 15.14 | 4.17 |12.00
3 4 5.56 | 18.18 | 4.17 | 14.17
AcCTIVEREP+TOTALORDER| 3 1 4.39 8.70 | 3.68 | 7.38
3 2 438 | 10.01 | 3.86 | 8.35
3 3 435 | 12.18 | 3.85 | 9.64
3 4 439 | 13.60 | 3.87 | 11.56

The interception approach, as the name suggests, works by intercepting middleware
messages or requests. These systems are classified based on whether the interception
takes place above or below the middleware. With CORBA, approaches that operate above
the ORB have used mechanisms such as smart stubs and interceptors [31], delegates
[16], and reflection [13]. The CORBA 2.2 standard also provides a limited interception
mechanism, but it has a number of limitations [26.32]. Approaches that operate below the
ORB intercept the IIOP messages sent by the ORB before they are passed to the operating
system [18119121]]. Similar approaches have also been used with Java RMI [20] and other
distributed object-based systems [5I14,26]. The interception approach has been used for
fault tolerance (e.g., [SY19I21]]), security (e.g., [5121J31]), and timeliness (e.g., [14/16]
8121]).

Interception approaches that operate above the middleware provide a higher level of
abstraction for implementing the QoS enhancements. For example, existing middleware
services can be used to locate, communicate with, and detect the failure of servers. Other
services such as CORBA security services can also be used if desired, while approaches
that do not build on top of the platform must use lower-level facilities to accomplish these
tasks. However, interception below the middleware can provide very good performance
since it can utilize efficient custom transport protocols. Our approach can be classified
as interception above the middleware.



Providing QoS Customization in Distributed Object Systems 369

In the gateway approach, a gateway component inserted at the transport layer be-
tween the clients and servers is responsible for implementing the QoS enhancements.
The gateway may be a single component [1]] or may have separate client and server sides
that interact [27]. The gateway must be able to intercept IIOP messages. This is done in
[1]] by using a firewall to forward all IIOP messages to the gateway. The QuO distributed
gateway [27] uses a client-side proxy to direct requests to the client-side gateway, which
can then interact with the server-side gateway using any mechanism, e.g., a group com-
munication service. This approach does not require any modifications to the ORB and
could be used to implement any type of enhancement. However, since the gateway may
reside on a different host than the client and server, it may not be possible to provide
strict end-to-end QoS guarantees. Moreover, the extra communication steps introduce a
performance penalty.

The main features that separate CQoS from other work in this area are its design
for portability across different distributed object platforms and its support for fine-grain
application-specific customization. The novel architecture in CQoS with two compo-
nents, one middleware specific and the other generic, provides a beneficial separation of
concerns. With this architecture, researchers can focus on developing generic improved
algorithms for QoS enhancements, while the work on developing better interception
mechanisms proceeds independently. A similar goal of middleware neutrality is pre-
sented in [26], but no implementation on CORBA or Java RMI is described, nor any
performance results.

The fine-grain configurability supported by Cactus provides the flexibility needed
to customize guarantees independently for each application across a broad spectrum of
QoS attributes. Although previous work on CORBA often encompasses different QoS
attributes (e.g., [I8]12T1277J31]), to our knowledge, no other approach provides a compara-
ble ability to implement custom combinations of different QoS attributes. Customization
of multiple QoS attributes has been addressed in other types of object-based systems,
however. The metaobject-based FRIENDS [3] architecture is the closest analogue to
CQoS. Metaobjects are roughly equivalent to Cactus micro-protocols as used here, and
both approaches emphasize a clear separation of concerns between mechanisms and the
application of QoS enhancements. A major concern for any reflection-based approach,
however, is the need for a language that supports reflection, the level of reflection sup-
ported, and performance overhead. In contrast, CQoS depends on middleware-based
interface definitions to introduce QoS enhancements using interceptors working in con-
junction with generic QoS components. Another related approach presents an architec-
ture in which multiple interceptors can be stacked to provide combinations of attributes
[26]. However, as noted above, the architecture has apparently not yet been implemented.

Finally, Sun’s Jini technology [30] is largely complementary to CQoS. Jini is a
set of specifications that enables services to discover one another and cooperate in a
distributed system. One of its novel features is that a client does not need to know a
priori where the services are located or how to access them. Rather, a client uses the Jini
lookup service to locate services and then dynamically loads a proxy object (i.e., a stub)
that implements communication with the service. It would be possible to use these Jini
facilities to locate and load micro-protocols for CQoS services. On the other hand, the
fine-grain customization and ability to change behavior at runtime provided by CQoS
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could be applied to construct configurable and adaptive Jini proxies. CQoS could also
be used to enhance transparently the QoS properties of existing Jini services.

7 Conclusions

This paper has presented the CQoS architecture as a single unified framework for pro-
viding customizable combinations of multiple QoS attributes across multiple middle-
ware platforms. This novel architecture provides separation of concerns between the
algorithms that implement QoS attributes and the details of the underlying middleware
platform. This is accomplished by dividing CQoS into two components, each of which
addresses one of these concerns and provides the appropriate interfaces for interaction
between the components. We presented the architecture and interfaces, described the
implementation of this architecture on both the CORBA and Java RMI platforms, and
showed preliminary performance results.

Future work will concentrate in several areas. In the near term, these include adding to
the collection of available micro-protocols, investigating further performance optimiza-
tions, and experimenting with more realistic applications. In the longer term, our goal
is to incorporate results from other Cactus-related research involving adaptive behavior
and mobile systems to provide similar support for distributed object applications.

Acknowledgments. G. Townsend implemented the Cactus/J system used as the basis
for this work. Also, R. Gruber and A. Puder provided helpful comments and suggestions.
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