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Abstract. Entity Beans provide both data persistence and the possibility of
caching objects and data in the middle-tier. The EJB 1.1 specification has three
commit options which determine how EJBs are cached across transactions:
Option C pools objects without identity; Option B caches objects with identity;
Option A caches objects and data. This paper explores the impact on
performance of these different commit options, pool and cache sizes on a
realistic application using the Borland Application Server.

1 Introduction

Entity Beans are part of the Enterprise Java Beans (EJB) 1.1. specification [1] and
provide a data persistence mechanism using a relational database. In conjunction with
Container Managed Persistence (CMP) the Entity bean lifecycle also allows for
caching in the EJB container. The provision for caching in the EJB model is
consistent with previous research which suggests that caching is a critical requirement
for the performance of object-oriented systems in general [2, 3], and the performance
and scalability of distributed object systems such as Corba [4, 5], and Java/EJB [6,
71.

Three commit options (A, B, C) determine what is cached across transactions:
objects without identity (C); objects with identity (B); objects with data (A).
However, the specification does not mandate support for all three options. Vendors
can choose to implement one or more commit options. Some vendors have chosen to
support all three options to distinguish their products from others (e.g. Borland
Application Server [8]), or only two options (WebSphere), while other vendors either
don’t support commit options explicitly (E.g. WebLogic) or only implement option C
(the simplest) on the basis that object creation is cheap relative to database access, and
object caching doesn’t result in any performance improvement (e.g. SilverStream [9],
iPlanet).

While conducting performance evaluations of a number of EJB products we
experimented with various deployment settings for Entity beans. We varied commit
options, and pool and cache sizes to determine their impact on performance, and to
find optimal settings. During the course of these experiments we discovered a

1 gjB Entity Beans can have one of three commit options: A, B and C.
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number of interesting features of the interaction between the products, application,
commit options, pool and cache sizes, and the way the tests were run. This paper
reports on results for Borland Application Server (BAS), version 4.5.0ﬂ

The following sections explain in more depth the Entity bean lifecycle, and how it
enables object pooling, and object and data caching. Stock-OnLine is the test
application used [10], and the overall requirements are described, along with the
Entity bean implementation and the test setup used. Finally, the four experiments
performed are described and the results presented and analysed.

2 Entity Bean Lifecycle and Caching

2.1 Lifecycle and Persistence

The main purpose of Container Managed Persistence (CMP) Entity beans is to
provide automatic persistence for their data state in a relational database. This
simplifies programming and CMP Entity beans are portable across all the databases
supported by EJB 1.1. compliant containers.

Entity beans can be in one of three states: Does not exist; Pooled; Ready (Figure
1).

Instances in the pool are not associated with any particular object - they don’t have
a primary key. Any pooled instance may be used to execute the entity bean’s finder
methods.

Pooled instances move to the Ready state when they are Created or Activated, but
only if another object with the same identity is not already in the ready state. Once in
the Ready state an instance has a particular object identity (it has a primary key), and
Load and Store (to synchronise the data state with the database) and Business
methods may be called on it.

A Ready instance can be moved back to the Pooled state by:

e Passivation: Disassociating the instance from the object identity (so it has no
primary key), possibly even during a transaction, or

e Removal: Removing the entity object including the object’s representation in the
underlying database.

In theory instances can be activated and passivated on demand, in which case the data
state is also refreshed (Load) or saved (Store). After the unsetEntityContext event
objects are in the “does not exist” state and may be garbage collected.

Note that even though we talk about pooled instances, the container is not required
to actually maintain a pool of instances - this is an implementation detail.

2 Ideally the experiments would be repeated on a number of different products. However, not
all products explicitly support all three commit options, and other significant differences such
as whether pool and cache sizes are per bean or per container make comparisons difficult.
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Fig. 1. Life Cycle of an Entity Bean instance (From Figure 23, Section 9.1.4. EJB 1.1. Specifi-
cation)

2.2 Lifecycle and Caching

Entity beans can therefore do more than just automatically persist data. Having the
Ready and Pooled states allows for caching of Entity beans (with and without
identity) and also caching of data in the middle-tier.

There are three “commit options” (what the container does at transaction commit-

time) known as A, B and C. These control object and data state across transaction
boundaries:

Object (Ready) state: Commit Options A and B maintain the object in the Ready
state (activated, with primary key) across transaction boundaries. Option C doesn’t,
but returns it to the Pooled state (Passivation).

Data (Instance) state: Options B and C do not maintain data state across
transactions, but assume that the database may have been changed by another
application (shared). They load the data state at the start of every transaction
(Obviously required for Option C as there is no object in the ready state to cache
the data state). Option A assumes the container has exclusive access to the
database, allowing it to cache a ready instance with data across transactions. That
is, while there is a Ready instance the database is not read again. This means that if
the database is changed the cached data state will be out of synchronisation.

Option A caches data and object state, Option B caches only object state, and Option
C does neither but must get/put instances from/to the Pool at the start/end of every
transaction. For all the commit options the data is always written back to the database
(Store) at the end of transactions (unless the container has options such as “read only”
fields, or checks to see if data has actually changed before writing).
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Products such as Borland Application Server that support all three commit options
allow the impact of object pooling and caching, and data state caching on the
performance of an experimental application to be explored. The Stock-OnLine
application and the CMP Entity bean implementation of it will now be described.

3 The Sample Application: Stock-OnLine

3.1 Requirements

Stock-OnLine [10] is a simulation of a simple on-line stockbroking system. It enables
subscribers to buy and sell stock, inquire about the up-to-date prices of particular
stocks, and get a holding statement detailing the stocks they currently own. From a
subscriber’s perspective, the following services are offered:

e Create Account: A person wishing to enrol with Stock-OnLine can create
themselves a subscriber account with the service provider.

e Update Account: A subscriber can modify their allocated credit limit.

e Query Stock Value: A subscriber can query the current price for a given stock. A
unique identifier code, or a mnemonic code can be used to identify the stock value
to be retrieved.

e Buy Stock: A subscriber can place an order to buy a given number of a specified
stock. If successful, a transaction record is created for later processing.

o Sell Stock: A subscriber can place a request to sell a specified number of any stock
item they have purchased through the Stock-OnLine. If successful, a transaction
record is created for later processing.

¢ Get Holding Statement: A subscriber can request a statement of all the stock they
have purchased through Stock-OnLine and still retain ownership of.

3.2 Database Design

In a real implementation of an on-line stockbroking system, the database would need
to store many details in order to track customers, their transactions, payments, and so
on. In the example used for performance measurements a simple database design has
been used that contains the minimum tables and fields to allow the system to operate
sensibly.

The SubAccount table holds basic information on a subscriber to the system, and
has 4 fields. The primary key for SubAccount is the subscriber’s account number,
sub_accno. When a new account is created, the system needs to allocate a new,
unique account number, which is done with Oracle Sequences.

Information about each stock that a subscriber can trade through Stock-Online is
held in the Stockltem table. The primary key is stock_id, and the other fields represent
the stock’s trading code, company name, and current value and recent high and low
values (a total of 6 fields).
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The StockHolding table contains information on the amount of a given stock that a
subscriber holds, and has 3 fields. The primary key is compound: sub_accno,
stock_id.

Finally, there is the StockTransaction table, which contains information on each
transaction that a subscriber performs. The primary key is trans_id, which is
generated in a similar manner to new accounts using Oracle sequences. The
trans_type is a code that represents a buy or a sell transaction. Other fields record the
subscriber who performed the transaction; the stock item sold or purchased, the
amount of stock involved, the price and the date of the transaction.

3.3 Transaction Business Logic

An overview of the business logic for each transaction is given below. The
descriptions focus on the database activity that each transaction performs, as these are
the most expensive operations. Essentially each action below represents an SQL
operation. Exception cases are not described, even though these are handled in the
application.

e Create Account
— Get a new account key
— Insert a new SubAccount record for the new subscriber
e Update Account
— Update the subscriber’s credit record in the SubAccount table
¢ QueryByld
— Use the supplied stock identifier to retrieve the current, high and low values
from the Stockltem table using the primary key
¢ QueryByCode
— Use the supplied stock code identifier to retrieve the current, high and low
values from the StocklItem table
e BuyStock
— Read the SubAccount table to retrieve the credit limit for the subscriber, and
ensure they have sufficient credit to make the purchase
— Read the Stockltem table to retrieve the current price of the stock the subscriber
wishes to purchase
— If the subscriber has not purchased this stock item before, insert a new record in
the StockHolding table to reflect the purchase. If they do hold this stock already,
update the record that already exists in the StockHolding table.
— Get a new transaction key
— Insert a new record in the StockTransaction table to create a permanent record
of the purchase
e SellStock
— Read the StockHolding table to ensure that the subscriber has sufficient holdings
of this stock to sell the specified amount
— Read the Stockltem table to retrieve the current price of the stock the subscriber
wishes to sell
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— Update the StockHolding table to reflect the sale of some of this stock item by
the subscriber

— Get a new transaction key

— Insert a new record in the StockTransaction table to create a permanent record
of the sale

¢ GetHolding Statement

— Read the StockHolding table and retrieve up to 20 StockHolding records for the

subscriber

The Buy and Sell transactions are more heavyweight in their demands for database
operations. CreateAccount and Update perform database modifications, but are
relatively lightweight. The remaining 3 transactions are all read-only, and should
therefore execute quickly.

3.4 Database Initial Population

Prior to each test run, the database is populated with initial test data. Table 1 shows
the database tables and their cardinality (rows).

Table 1. Initial database population

Table Initial Number of Records
SubAccount 3000
StockItem 3000
StockHolding 3000*10 = 30,000
StockTransaction 0

3.5 Client Test Behaviour

The driver for the test application is a multi-threaded Java program running on a
separate machine over RMI-IIOP. Each client thread/process performs a number of
iterations of a fixed transaction mix. The transaction mix represents the concept of
one complete business cycle at the client side. The number of transactions of each
type per iteration is shown in Table 2.

Table 2. Test transaction mix

Number Transaction
1 CreateAccount
3 Buy
3 Sell
1 Update
15 QueryByld
15 QueryByCode,
5 GetHoldingStatement
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This transaction mix comprises 43 individual transactions, and is a combination of
mainly read-only (81%) transactions and some update (19%) transactions. Each client
performs this transaction mix 10 times, with no wait times. The accounts and items
use in each transaction are chosen at random, so there is no locality of reference. The
only exception is the buy and sells, which are paired so that whatever is bought is sold
again in the same iteration.

3.6 Entity Bean Architecture

The Container Managed Persistence (CMP) Entity bean version of Stock-OnLine was
designed using the standard EJB design pattern of a Session bean front-end to the
Entity beans. This is to prevent the client code from interacting with the Entity beans
directly, only via the Session bean business methods. A single session bean
implements all seven transaction business methods. Four Entity beans, one each for
the database tables, manage the database access (see Figure 2). Transactions are
container managed, so when a Session bean business method is invoked a new
transaction is started, and all the Entity beans called participate in that transaction
context.

Container

Create

Buy

Client >
Database
Session Entity
Bean Beans

Fig. 2. Stock-OnLine Entity Bean Architecture

3.7 Entity Bean Details

Four entity beans are used to map to the four database tables. In order to understand
the potential impact of the different commit options, pool and cache sizes, the
dynamic behaviour of each of the four entity beans over the course of a single 100
concurrent client run is as follows (and summarized in Table 3):
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e Account (Maps onto the SubAccount table): Initially 3000 instances. Some fields
modified during tests. 1 instance created per iteration, 10 created per client. By the
end of a 100 client run the number has increased by 1000 to 4000 (33% increase).
8000 instances are used (7000 read and 1000 created) during a 100 client run.

e Item (Maps onto the StockItem table): Initially 3000 instances. No fields modified
during tests (but could be, as application allows for stock price changes). None
created during tests. 36,000 instances are used (read) during a 100 client run.

e Holding (Maps onto the StockHolding table): Initially 30,000 instances (10 per
Account). 3 instances are created per iteration, 30 created per client. Sells are
paired with Buys. That is, each Holding that is bought will also be sold in the same
iteration. The Holding’s amount is set to 0, but the Holding is not actually deleted.
The number of Holdings therefore increases constantly during test runs (at 3 times
the rate of Account instances). By end of a 100 client run the number has increased
by 3000 to 33,000 (10% increase). Holdings has a compound key which is sparse
(i.e. key is sub_accno and stock_id, which has 9M permutations, of which only
0.33% exist initially. By end of 100 client run still only 0.36% exist). 56,000
instances are used (53,000 read, 3000 created) during a 100 client run.

e Transaction (Maps onto the StockTransaction table): Initially there are O
instances, but the number of instances grows constantly. Not modified, or used
during tests. 6 instances are created per iteration, 60 created per client (6 for
buy/sell transactions). A 100 client run creates 6000 instances.

Table 3. Objects created and used in 100 client run

Initial New Total Number of
number of instances instances instances used in
instances after 100 after 100 100 client run
Entity Bean client run client run
Account 3000 1000 4000 8000
Item 3000 0 3000 36000
Holding 3000%10 = 3000 33,000 56000
30,000
Transaction 0 6000 6000 0

There is therefore one bean that grows rapidly and is heavily used during the tests
(Account), one bean that is heavily used but (currently) is never created or modified
(Item), one bean that has a sparse key, has 30k instances to start with and which
grows and is heavily used during the tests (Holding), and one bean that is created but
never used.
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It makes sense to fix Transaction to be option C for these tests (otherwise it would
need a large cache, but as it’s never used a cache is wasted on it) and determine the
impact of commit options, pool and cache sizes on the other beans.

3.8 Test Set-Up

The detailed experiments were carried out using Borland Application Server version
4.5 (BAS45), and Oracle 8.0.5, all running on NT 4.0. Three machines were used, 1
each for database, server, and client (Dual processor, S00MHz or faster, 1GB Ram;
Client on an Ultra 80), with 100Mbit LAN connecting them. CPU usage on the
middle-tier machine with BAS running on it was typically 90%, and CPU usage on
the database machine was typically 30% or less.

Performance is measured in terms of Transactions Per Second (TPS). This is
measured by dividing the total time taken by the client process (Wall-clock time) by
the total number of transactions processed. For some experiments we also report the
average client response times for each transaction type.

To ensure consistent and optimal results we limited the concurrency in the BAS
ORB to 10 threads maximum. In BAS this limits the number of concurrent
transactions, and the number of Session beans, to 10. Note that even though we
repeated experiments to check results for consistency, there is still a small amount of
experimental error in the TPS reported, up to about 5%.

4 Experiments

BAS calls the Pooled state pool the Pool, and the Ready state pool the Cache.
Objects that have been moved out of the Pool to the “does not exist” state are called
unreferenced, and when garbage collected they are finalized. We will follow this
terminology.

For BAS we initially assumed that commit option B would be faster than commit
option C, and used the default settings (1000 cache and 1000 pool sizes), producing
reasonable results. However, we also tried option C, and surprisingly got slightly
better results. We then tried to improve the performance of option B but initially
found it difficult to achieve performance comparable to or better than option C. A
more systematic testing approach was required.

In order to explore the impact of varying Pool and Cache sizes, we set them to
different sizes determined by the total number of objects existing at the end of a run
of 100 clients. A size big enough to accommodate all the starting objects and all the
newly created objects corresponds to a cache hit-rate of 100% (200% is twice this).
Table 4 enumerates the sizes for 10, 20, 50 and 100 percent hit-rates.

To make reporting and analysis easier we kept the cache/pool hit-rates the same for
all the Entity Beans (e.g all 10%, all 20%, etc).

In theory the optimal Entity bean pool size depends only on the number of
concurrent transactionsE] which is 10 due to limiting ORB threads. Therefore a
maximum of 10 Account objects, 10 Item objects, and 200 (10 * 20) Holding objects

3 In practice this is only the case for Commit Option C in BAS.
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in the Pools are required. However, for the sake of completeness (and to test the
theory) we varied the pool size across the same range as the cache.

Table 4. Example cache hit-rate sizes

Entity Bean | Total 10% cache | 20% cache | 50% cache | 100% cache
instances size size size size
after 100
client run
Account 4,000 400 800 2,000 4,000
Item 3,000 300 600 1,500 3,000
Holding 33,000 3,300 6,600 16,500 33,000
Transaction 7,000 N/A N/A N/A N/A

The number of objects pooled during a 100 client run is calculated from the
number of instances of each object type used and the cache hit-rate. No objects are
pooled with 100% cache hit-rate, and all objects are pooled with no cache (Figure 3).

Number of objects pooled

150000

100000

50000

0

20

40

60

% Cache

80

100

Fig. 3. Pooled objects: Expected total objects pooled during 100 client run

Assuming that object pooling has some cost associated with it we expect to see an

increase in performance with increasing cache size.

For each configuration (Commit option, pool and cache sizes) we carry out the
following routine:

objects)

Run 100 client test

e Record the TPS

Restart the container/server (this clears the pool and cache)
Load the jar file with the configuration to be tested
Initialise the database
Warmup the cache (using readonly operations on Account, Item, and Holding
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Four experiments with BAS will be described: Experiment 1: Option C and varying
Pool size (cache set to 0). Experiment 2: Option B and varying Pool size (cache set to
0). Experiment 3: Option B and varying Cache size (pool set to 20%). Experiment 4:
Option A and varying Cache size (pool set to 20%).

4.1 Experiment 1: Option C and Pool

We assume that: Option C doesn’t use the ready cache, so cache is set to O.
Optimal/maximum pool sizes for 10 threads are 10 Accounts, 10 Items, and 200
Holdings. We hypothesize that: 0 Pool size will be slowest. The differences in
performance will be small, probably less than 10% (i.e. vendors such as SilverStream
are largely correct in asserting that pooling makes no significant difference). TPS will
increase up to “optimal” pool size, and then show no further increase.

Figure 4 shows the throughput (in TPS) for the different pool sizes, and Figure 5
shows the average client response times.

350
300
250
2 200
~ 150
100
50
0
0 10 20 50 200
% Pool
Fig. 4. Option C, Increasing Pool
500
0 400 +—+— : : —e—create
E L ——T £ .
2 300 e > | —m— buy
-.: sell
g 200 update
% 100 —¥— queryD
- 0 : : : : —— queryCode
0 50 100 150 200 250 |—+— getHoldings
% Pool

Fig. 5. Option C Client response times
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Given that there is up to 5% experimental error these results do not show any
significant difference in TPS for varying pool size.

With Option C we observeﬂthat the total number of ready instances changes during
the run but at any one time never exceeds the theoretical maximum based on the
number of concurrent transactions (10) and objects used per transaction: i.e. 10
Account, 10 Item, and 200 Holdings.

The maximum number of pooled instances observed during the runs, for pool sizes
greater than 0, was as expected (10/10/200) and did not depend on the actual pool size
setting.

With 0 pool size the total number of unreferenced objects (in the “does not exist”
state) at the end of the run was 2200 (no ready, pooled or finalised objects).

Option C with pool greater than 0 produced no unreferenced or finalised objects.
That is, the objects are all being moved backwards and forwards to and from the
pooled and ready states with no objects being destroyed. This is the “steady” state for
the container and is an efficient use of resources: demand and supply of objects is the
same, and all the objects are recycled.

Borland confirm that the pool is only resized every 5 seconds [11]. After 5 seconds
any inactive beans will be discarded. In the steady state the same number of beans are
being used, and they are always active. For pool sizes greater than 0 there will
therefore be no (or very few) pooled objects, and less than the pool size, and therefore
none need to be discarded. However, for a pool size of 0 the few inactive objects that
are pooled will be be discarded, which is the observed behaviour.

The typical Option C performance is around 300TPS.

With 0 cache/pool settings, the server memory usage was only 56MB and constant.
This implies that EJB applications using option C can be run on servers with
relatively small amounts of memory.

Client side response times are consistent, and in order of slowest to fastest are:
getHoldings, buy, sell, create, queries/update.

4.1.1 Conclusions

For BAS, using option C, a pool size greater than 0 has no significant impact on the
throughput, and is probably not required. However, we observed that unreferenced
objects are created, and will eventually have to be garbage collected, incurring some
extra overhead. A small pool (the theoretical optimal/maximum size) is a sensible
choice.

Given that 0 pool size is no slower than larger pool sizes, object creation and
destruction must have minimal overhead compared to database access.

4.2 Experiment 2: Option B and Pool
This experiment is equivalent to Experiment 1, but using Option B instead. We

hypothesize that: As option B with O cache is equivalent to Option C the results
should be comparable; and different pool size will have minimal impact.

4 BAS has good facilities for monitoring the number of instances in each state.
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The results from this experiment (option B) compared with the previous
experiment (option C) are show in Figure 6.

350
300 ¥
250

200 —e— Option B

TPS

150 —m— Option C
100
50

0 50 100 150 200 250

% Pool

Fig. 6. Options B and C, 0 Cache, increasing Pool

0 pool size is slowest. The TPS increases by 40 from 0% to 20% pool size (16%
increase), and flattens out at around 286TPS.

The best option B performance is 287 TPS, which is only 7 TPS less than the best
Option C performance (304TPS). This is comparable, within experimental error.
However, given that all the points from 20% cache upwards are the same, and none of
them exceed the option C TPS, the indication is that the option B is really slower than
option C.

Best performance with 20% pool size and above is a surprise given the theoretical
expectation that the maximum pool sizes need to be only 10/10/200
(Account/Item/Holding), and the observation that only this many instances are in fact
pooled using option C. We set the pool sizes to these theoretical sizes, and confirmed
that this gave a slower result of 254 TPS (cf 287TPS for a larger pool).

With option C the number of ready objects never exceeded the maximum expected
(10/10/200), while with option B the peak number of ready objects exceeded the
maximum and fluctuated widely. This makes the “0” cache results difficult to
interpret, but does seem to have an impact on the number of unreferenced objects as
follows.

Even with 0 cache and 0 pool there are some ready and pooled objects at the end of
the run (Table 5). The total number of unreferenced and finalised objects is in fact
100k, the expected number of pooled objects for a run. This is a lot more than the
2,200 unreferenced/finalised objects observed for Option C (0 cache/Opool).

Table 5. Option B (0 cache, 0 pool) instances at end of run

Entity bean Ready Pooled Unreferenced Finalised
Account 81 1 7500 260
Item 250 1 30000 390
Holding 700 1000 70000 700
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However, with 0 cache and 20% pool the number of unreferenced/finalised objects
drops significantly to about 10,000 (all of them Items). When there is no pool,
discarding the objects used in a transaction incurs some overhead.

Borland indicate that locking is used to track the cache [11]. This is an overhead
even with a (useless) “0” cache size and could be expected to give worse performance
than for option C.

4.2.1 Conclusions

With a 0 cache size set, having at least a small pool has a bigger impact on option B
than option C.

Option B (with no cache) performance is slightly slower than Option C. However,
the difference is not large and we conclude they are comparable.

Even with “0” cache size set there are many ready objects during a run (more than
the expected theoretical maximum as seen with option Cf]. This results in many
unreferenced objects being produced if there is no pool. Increasing the pool size
reduces the number of unreferenced objects produced and correspondingly increases
the TPS. We conclude that the pool needs to be large enough to cope with the peak
demand for objects to and from the ready cache.

We will use a 20% pool size for the remaining experiments as a simplification to
reduce the number of variables to one only - the cache size. We assume that the result
for 0 cache also applies approximately to non-O cache, but without making any
explicit assumptions that this is optimal

4.3 Experiment 3: Option B, Cache and Pool

We hypothesize that: Increasing the cache will increase the TPS until a maximum of
100% hit-rate; Because there is no locality of reference, random beans are accessed.
Thus the working set of beans is just the number of rows in the database, and for
optimal performance the cache will need to be close to 100%; For some cache size we
will get better results than Option C (300TPS); The best TPS for Option B will be
between 10 and 30% higher than Option C.

For this test we set the pool size to 20%. See Figure 7 for the throughput results.

Figure 8 shows average client side response times for each transaction type (3
representative points only).

During the test runs we recorded the number of instances pooled. The behaviour
of the BAS container is suprising in this regard as it pools a larger number of objects
than expected from the option C tests, and creates more objects nearer the middle of
the % cache range (See Figure 9). The number of instances pooled is related to the
peak ready pool size during the test runs. In fact BAS allows the actual ready pool
size to overshoot the “maximum” setting for short periods of time, and the excess
objects are then pooled reducing the ready pool size back to the “maximum” again.

3 This is to be expected as option B pools objects with identity, so the maximum number of
ready objects is the number of instances of the object (or rows in the database).
¢ An experimental check confirmed no significant difference in TPS for varying pool sizes.
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With anything less than about 80% cache we get less than the best Option C
throughput of 300TPS.

0 and 10% cache sizes give 277TPS, but then the TPS drops with increasing cache
size up to 50%, rising to a peak of 360TPS at 100% cache size.

TPS drops again slightly to 200% (350TPS), but this is within experimental error
so is unlikely to be significant.

The client response times increase, and then decrease, with getHoldings speeding
up by 100% cache (to become faster than buy). Increasing the cache size has greater
impact on getHoldings than the other transactions.

Initially we wondered if the number of instances in the pools is related to the shape
of the TPS graph. It seemed suspicious that the peak Pool size and the minimum TPS
both happen at around 50% cache size. However, we conducted further experiments
with a 0 pool size which disproved this (no objects pooled during or at end of run, and
same shaped TPS graph).

4.3.1 Conclusions

Option B with greater than about 80% cache is faster than Option C. 100% cache
gives 360TPS which is 20% faster than option C. Option B with smaller cache (less
than 80%) is slower than option C. Option B with O cache is close to option C
performance.

The dip in TPS around 50% cache is initially suprising. However, we know that
there are two competing factors, a benefit and a cost, involved in caching objects with
identity:

e Benefit: More ready instances are available with increasing cache size.

e Cost: There are overheads with increasing cache siz (including garbage
collection, retrieval of objects from the cache, managing the cache size, and
pooling objects when the “maximum” size is exceeded).

It is possible to model the TPS graph by assigning suitable relative weights to these
two factors, and subtracting the cost from the benefit. If this model is correct then the
relative performance is just some function of the cache size benefit and cost.

Borland have given us extra insight into the impact of the cache locking overhead
[11]. The smaller the cache sizes, the more locking is done as the background cache
resizing thread needs to do more work to reduce the cache sizes. This provides the
final key to understanding the shape of the TPS graph. The cache cost isn’t linear, but
consists of a locking component which decreases with increasing cache size, and a
component which increases with increasing cache size (due to garbage collection,
etc).

Because the performance is only better than option C with a large (>80% cache),
for most real applications this will be difficult to achieve, particularly if there are a
large number of objects, or if the number of objects grows.

Given that a significant performance improvement is only observed with a large
cache, and that a large cache is practically impossible in most real applications, option
C is a better option for consistently good performance and low memory usage.

7 From the BAS ejb-cmp newsgroup.
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4.4 Experiment 4: Option A, Cache and Pool

We hypothesize that: Because Option A caches data as well as object state, we expect
the best Option A TPS to be substantially faster than Options B and C (In excess of
30% faster than option C); Even a small (Say 10%) cache size will give better than
option C performance.

Figure 10 shows Option A results with increasing Cache, and 20% pool.
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Fig. 10. Option A, Cache and Pool

We observe that: All Option A runs are faster than option C. This is because even
with O cache specified, the container actually creates some ready instances (and
therefore also caches some data). The TPS is fairly flat from O to 50% cache, and
drops to almost the option C value at around 30% cache. From 50% cache the TPS
increases, to almost the maximum at 100%.

A comparison of Options A, B, and C TPS is useful at this point to assist with
comparative observations (Figure 11):
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Fig. 11. Comparison of Options A, B and C
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Option A has a peak TPS of 482 at 200% cache, and 471TPS at 100%. Using the
100% figure, Option A is 30% faster than the peak Option B (360TPS), and almost
60% faster than the peak option C (300TPS).

Option A and B have similar shaped graphs, although the drop in TPS between 0%
and 50% isn’t as bad for Option A as Option B. This is probably due to the increased
efficiency of data caching almost compensating for the cost of caching in general.

In theory we would expect the Option A, B, and C 0% cache points to be the same,
and the slowest, but they aren’t. Previously we observed that for Option B 0% cache
the container is actually creating ready instances. The maximum number of ready
instances recorded for three runs with Options A, B and C (0 cache, 20% pool) are as
follows (Table 6).

Table 6. Peak ready instances

Option | % Cache Maximum Maximum Item | Maximum Holding
Account Ready Ready Instances Ready Instances
Instances
C 0 (N/A) 10 10 200
B 0 240 800 1,300
A 0 260 2,700 14,000

For Option B, the ready pool size jumps around from O to and from the peak, and
finally drops back to O at the end of the run. For Option A, the ready pool size
increases rapidly to the peak and stays there, dropping back to 0 only at the end of the
run. This proves that the cache size isn’t a fixed maximum size, and that the actual
number of ready instances depends on both the commit option and the cache size. If
the actual cache size really was the fixed upper limit for the duration of the runs then
the graph would look substantially different.

44.1 Conclusions

The benefits of the cache are more obvious for Option A than Option B. Until about
80% cache size Option B is still slower than Option C, and then only increases to a
maximum just over the worst option A result. However, Option A at 75% is on par
with the best Option B result, and improves even further.

5 Conclusions

The benefit of caching just object state and not data (option B) is minimal, with at
least 80% cache size required to exceed option C TPS, and 100% cache size required
for the maximum difference of 20% over option C. Achieving these hit-rates for
cache sizes in real applications is difficult if the number of objects is large or
increasing.

Option C gives consistently good results with no object or data caching. The
advantage of object pooling for option C is also unobservable, and a pool size of 0 is
probably adequate. Setting the pool to the maximum theoretical size (based on the
maximum concurrency and the number of instances used per transaction) will
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however prevent any overhead caused by unreferenced objects being garbage
collected. Using Option C with no pool or a minimal pool size has significant
implications for hardware resources, as a BAS45 server can be run in under 64MB
RAM using option C, compared to anything up to 512MB for options A and B.

Option A gives slightly better performance up to 50% cache, increasing above 50%
(for this application), with substantial benefits if everything can be cached. If the EJB
application is the only application accessing the database tables, then it may be worth
considering using option A. The throughput is almost doubled, and is roughly
equivalent to adding an extra clustered server, but without the benefits of further
scalability or failover.

Finally, we stress that these results, explanations and conclusions are product,
versionﬂ and application specific. This in itself is a major lesson. Optimising CMP
Entity bean code performance is a time consuming and complex task. Using the
vendor’s default settings, or even using the theoretically best settings, will be unlikely
to produce optimal performance for real applications. An understanding of which
commit options, cache and pool sizes are supported by the vendor and what they
actually do, how they relate to the EJB specification, controlled experimentation with
different deployment settings, and careful observation of what the container is
actually doing during the running of the application, are likely to lead to a
significantly better outcome.

If CMP Entity beans are an important part of your EJB architecture then careful
evaluation and choice of an EJB application server is required. One of the major areas
of differentiation between Application Servers is the level of support for Entity beans,
including the extent of implementation of the specification, CMP performance, tool
support for Entity bean application assembly and deployment, monitoring of deployed
beans, and extra features such as clustering of Entity beans. Not all EJB 1.1
compliant products are equal.
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