
A WAP-Based Session Layer Supporting
Distributed Applications in Nomadic

Environments

Timm Reinstorf1, Rainer Ruggaber1, Jochen Seitz2, and Martina Zitterbart1

1 Institute of Telematics,
University of Karlsruhe, Germany,

{reinstor, ruggaber, zit}@tm.uka.de
2 Institute of Communications Technology and Measurement,

TU Ilmenau, Germany,
jochen.seitz@tu-ilmenau.de

Abstract. Nomadic computing imposes a set of serious problems and
new requirements onto middleware platforms supporting distributed ap-
plications. Among these are the characteristics of wireless links like sud-
den and frequent disconnection, long roundtrip times, high bit error rates
and small bandwidth. But there are also new requirements like handover
support and the necessity to use different networks (bearers). All these
problems and requirements lead to the demand for an association be-
tween client and server that is independent of a transport connection. In
this paper, we present a session layer that provides such an association
for the middleware platform CORBA based on the Wireless Application
Protocol (WAP) that is especially designed for mobile and wireless de-
vices. It turns out that the session protocol in WAP called WSP is not
able to fulfill our requirements, thus, it was necessary to define our own
session layer. The session layer provides explicit and implicit mechanisms
to suspend and resume a session, a reconnection to the session after the
bearer was lost or changed and a solution to the lost reply problem.
Furthermore, it contains an interface to be used by session-aware appli-
cations to control the presented mechanisms themselves on a fine-grained
level. This paper presents a detailed description of the session layer, its
integration into CORBA, a mapping of GIOP messages onto WTP and
selected implementation details.

1 Introduction

Terminal mobility and wireless communications are two of the most important
factors to be considered in frameworks for distributed applications. The suc-
cess of wireless communications (e.g., GSM or UMTS) increased the interest
in distributed applications implementing the paradigm of nomadic computing.
However, due to the physical characteristics of the wireless communication link
special mechanisms are required to handle high error rates, packet loss or even
broken connections. These mechanisms are best implemented in a special layer

R. Guerraoui (Ed.): Middleware 2001, LNCS 2218, pp. 56–76, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



A WAP-Based Session Layer Supporting Distributed Applications 57

hiding the occurring problems transparently to the distributed applications. We,
therefore, propose a general purpose session layer whose services may be used
whenever appropriate (compared to the session layer defined in the ISO reference
model [10]).

The need for such a session layer was identified in many frameworks for dis-
tributed applications, most notably CORBA. Thus, we take this architecture
as an example to show how our session layer can be implemented in a given
framework. In Sect. 2.1 and 2.2, we introduce CORBA and its components that
are affected by the session layer. Ongoing work on wireless access and terminal
mobility inside the OMG is presented in Sec. 2.3. For the wireless link, special
communication protocols have evolved, as TCP is not well suited for this en-
vironment (see Sec. 2.4). A viable solution is the protocol family called WAP
(Wireless Application Protocol) which itself has realized the notion of sessions
and is described in Sec. 2.5.

Section 3 starts with the identification of the session layer requirments. We
found that the session idea defined in WAP is not very appropriate for distributed
applications as we show in Sec. 3.2. In the remainder of Sec. 3 we present our
design of the session layer.

This layer was implemented using the CORBA implementation ORBacus
and the Wireless Transaction Protocol WTP of the WAP suite. First results of
this implementation are presented in Sec. 4. Related work is given in Sec. 5. We
conclude this paper with a summary of the achieved goals in Sec. 6 and give an
outlook on work remaining to be done.

2 Basics

2.1 CORBA

CORBA (Common Object Request Broker Architecture) is a popular middle-
ware platform, facilitating the implementation of object-oriented location-inde-
pendent distributed client/server-applications [15]. CORBA supports the inter-
operability between clients and servers written in different programming lan-
guages, running on different operating systems and connected by different net-
work technologies, thus, making CORBA the ideal basis for developing applica-
tions in a heterogeneous environment.

The central component in CORBA is the ORB (Object Request Broker),
which is responsible for transparently forwarding requests and replies to the ap-
propriate entity, thus, allowing a client to invoke operations on a server without
knowing anything about the location of the server or its implementation.

2.2 GIOP

CORBA-ORBs use the General Inter-ORB Protocol (GIOP) to inter-operate.
GIOP can be mapped onto connection-oriented protocols that meet a set of
assumptions. GIOP defines the transport protocol independent properties, e.g.



58 T. Reinstorf et al.

message formats. ORB-Interoperability issues that are transport protocol depen-
dent are defined in the mapping of GIOP onto the specific transport protocol.

The GIOP specification consists of the Common Data Representation (CDR)
that maps IDL data types onto a low-level representation for transmission, the
GIOP message formats and a set of GIOP transport assumptions.

GIOP messages are exchanged between CORBA entities to invoke requests,
locate object implementations and to manage communication channels. GIOP
communication is not symmetric. Therefore, to describe GIOP messages it is
necessary to define client and server roles. In the GIOP context, a client is
an entity that opens a connection and may send Request, LocateRequest and
CancelRequest messages. The server accepts connections and may send Reply,
LocateReply and CloseConnection messages. Client and server are allowed to
send MessageError messages.

Every GIOP message contains the address of the server object (Interoperable
Object Reference, IOR). The address of a server object consists of a transport
dependent part that contains its network address and an opaque transport inde-
pendent part that identifies the object inside the server. If a server object can be
reached via different addresses, e.g. the server is connected to different networks
that use a different addressing scheme, multiple addresses can be added to the
IOR.

The assumptions the GIOP definition makes about the transport behavior
include that the transport protocol is connection-oriented because a connection
defines the scope for identifying requests. The connection has to be reliable,
which means that bytes are delivered in the same order they are sent, at most
once, and that a positive acknowledgment of delivery is available. The trans-
port provides notification of disorderly connection loss. A client may multiplex
connections to multiple target objects onto one transport connection.

Transport-dependent specifications like the addressing of the host and the
server-object are defined in the mapping.

The Internet Inter-ORB Protocol (IIOP) is a mapping from GIOP to TCP/IP
and must be supported by every ORB implementation. Mappings to other trans-
port protocols may be defined. Altogether GIOP defines a kind of lingua franca
for different middleware implementations.

2.3 Wireless Access and Terminal Mobility in CORBA

The Object Management Group identified the need for supporting wireless access
and terminal mobility in CORBA and issued a request for information (RFI) [14].
The most elaborated reply to this RFP is based on the experience gained in
the EC/ACTS project DOLMEN that implemented a prototype of CORBA
extensions to support terminal mobility.

The architectural framework described in this reply [6] identifies three differ-
ent domains: the home domain, which keeps track of the current location of the
mobile terminal, the visited domain to which the mobile terminal is connected
at a given moment using so-called access bridges, and the terminal domain that



A WAP-Based Session Layer Supporting Distributed Applications 59

is made up by the ORB on the mobile terminal and the terminal bridge that is
responsible for connecting to an access bridge.

For communication between terminal and access bridge, a special protocol,
the GIOP Tunneling Protocol GTP was defined. This protocol controls the tun-
neling of GIOP packets between the bridges and provides mechanisms for handoff
and connection recovery. Being an abstract protocol, GTP needs to be mapped
onto one or more concrete protocols.

The GTP-tunnel spans the unreliable communication link between the mobile
terminal and the access node. Therefore, this tunnel must be established before
the first method invocation, maintained and re-established to another access
node whenever the mobile terminal moves from one area to another. Hence,
GTP defines operations for tunnel establishment, tunnel handoff and tunnel
release. However, using a connectionless transport protocol like UDP or WDP
(as defined in the WAP protocol stack, see Sec. 2.5) makes it hard to determine
when a connection is lost or when a handoff should take place.

2.4 TCP-Drawbacks

It is a well-known fact since many years that TCP does not provide a good
performance in wireless environments [2,5]. The main reason is the error semantic
of TCP and the resulting behavior. If a packet is lost during transmission, TCP
assumes a congestion within the network and slows down transmission using
the slow start mechanism. While this behavior makes sense in fixed networks,
it is in most cases wrong in wireless and mobile networks. Wireless connections
typically have much higher error rates including disruptions compared to fixed
connections. Thus, packet loss is quite often due to these transmission errors
instead of congestion. Furthermore, handover procedures in mobile networks
can cause additional packet loss (packets in transit during the handover might
be lost). Slowing down the performance is not at all useful in these cases, as the
loss does not result from congestion. Several approaches have been proposed to
solve this problem, either by splitting up the connection into a wireless and a
wired part [1], by doing local retransmissions for lost packets [3], or by additional
mechanisms controlling TCP directly [4]. However, all these approaches represent
add-ons but not really integrated solutions. Furthermore, mobility increases the
complexity of such approaches [7].

Furthermore, TCP does not support mobility of endsystems very well. This
is due to the fact, that an IP address does not really identify an endsystem but
a point of network attachment. Sockets as the premiere API for using TCP are
based on IP addresses and, thus, suffer from the mentioned problems. Systems
like Mobile IP [17] support endsystem mobility by integrating additional com-
ponents and, thus, preserve the reachability of the mobile host with its original
address.



60 T. Reinstorf et al.

2.5 WAP – The Wireless Application Protocol Suite

A viable solution providing Internet services for mobile, wireless devices has
been worked out by the Wireless Application Protocol Forum (WAP Forum),
which was founded in June 1997 by Ericsson, Motorola, Nokia, and Unwired
Planet [23]. The basic objectives of the WAP Forum are to bring different In-
ternet content (e.g., Web pages, push services) and other data services (e.g.,
stock quotes) to digital cellular phones and other wireless, mobile terminals
(e.g., PDAs, laptops). Furthermore, a protocol suite should enable global wire-
less communication across different wireless network technologies, e.g., GSM,
CDPD, UMTS etc. Therefore, the Forum embraces and extends existing stan-
dards and technologies of the Internet wherever possible and creates a framework
for the description of content and development of applications that scale across
a wide range of wireless bearer networks and wireless device types. Hence, the
idea of using WAP for CORBA is evident (compare to Sec. 2.3).

Figure 1 gives an overview of the WAP architecture, its protocols and compo-
nents. The management entities handle protocol initialization, configuration and
error conditions (such as loss of connectivity due to the mobile station roaming
out of coverage) that are not handled by the protocol itself.

The basis for transmission of data are different bearer services. WAP does not
specify bearer services, but uses existing data services and will integrate further
services. Examples are message services, such as SMS (short message service),
circuit-switched data, such as HSCSD (high-speed circuit switched data), or
packet switched data, such as GPRS (general packet radio service) in GSM.
Many other bearer services are supported, such as CDPD, IS-136, PHS. No spe-
cial interface has been specified between the bearer service and the transport
layer with its wireless datagram protocol (WDP), because the adaptation of this
protocol is bearer-specific. The transport layer offers a bearer independent, con-
sistent datagram-oriented service to the higher layers of the WAP architecture.
Communication is done transparently over one of the available bearer services.
The transport layer service access point (T-SAP) is the common interface to
be used by higher layers independently of the underlying network. If a bearer
already offers IP service, then UDP is used as WDP and T-SAP is similar to the
socket interface.

The security layer with its wireless transport layer security protocol WTLS
is based on the transport layer security (TLS) and has been optimized for use in
wireless networks. WTLS can offer data integrity, privacy, authentication, and
denial-of-service protection.

The WAP transaction layer with its wireless transaction protocol (WTP)
offers a lightweight transaction service. WTP distinguishes between an acknowl-
edgment generated by the WTP entity of the responder and an user-generated
acknowledgement, that is explicitly invoked by the receiving application. The
service primitives of WTP are TR-Invoke to initiate a transaction, TR-Result
to send back the result of a transaction and TR-Abort to abort an existing trans-
action. The PDUs exchanged between two WTP entities are the invoke PDU,



A WAP-Based Session Layer Supporting Distributed Applications 61

Bearers (GSM, CDPD, ...)

Security Layer (WTLS)

Session Layer (WSP)

Application Layer (WAE)

Transport Layer (WDP)

Transaction Layer (WTP)

additional services
and applications

WCMP

A-SAP

S-SAP

TR-SAP

SEC-SAP

T-SAP

A-Management

S-Management

TR-Management

SEC-Management

T-Management

Bearer-Mgmt

Fig. 1. WAP architecture

ack PDU, and result PDU. The basis of WTP are the three classes of transaction
service:

Class 0 provides unreliable message transfer without a result message.
Class 1 provides reliable message transfer without a result message. For the

sender the transaction ends with the reception of the acknowledgement,
whereas the receiver keeps the transaction state for some time to be able
to retransmit the acknowledgement if it receives the same invoke PDU again
indicating a loss of the acknowledgement.

Class 2 provides reliable message transfer with exactly one reliable result mes-
sage. It provides the classical request/response transaction, that may be
directly used in client/server systems. In WTP class 2 transactions the re-
sult is acknowledged by the initiator of the transaction, resulting in at least
3 exchanged PDUs. An explicit acknowledgement of the invoke PDU puts
the initiator on ”hold on” to prevent a retransmission of the invoke PDU
because the initiator might assume a packet loss if no result is sent back
within a certain timeframe.

No WTP-class requires connection set-up or tear-down, which avoids un-
necessary overhead on the wireless link. WTP does not include any flow or
congestion control and thus avoids the main drawback of TCP in wireless envi-
ronments.

The session layer with the wireless session protocol (WSP) currently offers
a connection oriented and a connectionless service. It supports HTTP/1.1 func-
tionality, long-lived session state, session suspend and resume, session migration
and other features needed for wireless and mobile access to the web.



62 T. Reinstorf et al.

Finally, on top of it all, the application layer with the wireless application
environment (WAE) offers a framework for the integration of different WWW
and mobile telephony applications. The main issues here are scripting languages,
special markup languages, interfaces to telephony applications, and many con-
tent formats adapted to the special requirements of small, handheld, wireless
devices.

WAP does not force all applications to use the whole protocol architecture.
Applications may use only a part of the architecture.

3 Session Layer

This section will introduce our design of a session layer using protocols from the
WAP stack to support request/reply types of communication in general and as
a specific application the remote method invocations in CORBA. The session
layer is integrated into the mapping of GIOP onto WTP and is called Wireless
Transaction Inter-ORB Protocol (WTIOP). When introducing a new layer into
an already established framework like CORBA, there are two alternatives how
the new layer could interact with the existing infrastructure:

session-aware: The layer could provide new functionality to applications which
are aware of the characteristics of mobile communication. These are called
session-aware applications in the remainder of the paper.

transparent support: The layer could be transparently integrated into the
framework. This will support legacy applications which are not aware of the
new session layer.

Our session layer will support both types of applications. In the following we
will outline some requirements which have to be met by such a session layer.

3.1 Requirements

We identified the following requirements of the session layer in a wireless envi-
ronment:

• The session entity has to provide data transport services for applications
using a request/reply model for communication.

• The session entity has to be able to detect the loss of the transport connec-
tion.

• After a connection loss, the session entity needs to be able to transparently
reconnect to the server.

• The session entity should support the change of the bearer used by the
transport layer (vertical handover) and thus the change to another network
initiated by the client.

• The session entity must provide a solution to the lost-reply problem, emerg-
ing if an invocation request was successfully sent to the server before a dis-
connection occurs. The computed replies have to be stored in the server and
delivered to the client on its request [19].



A WAP-Based Session Layer Supporting Distributed Applications 63

• Session-aware applications should be able to explicitly suspend and resume
the session e.g. in case of low battery power.

• A mechanism is needed to inform session-aware applications of events chang-
ing the state of the session. These events include session suspend and resume.
Furthermore session-aware application should be able to influence e.g. the
time interval after which the session entity should try to reconnect in the
case of a connection loss.

• As a result of these requirements, the session entities have to provide an
association between client and server, which is independent of the underlying
transport connection.

Additionally, to support the use of the session layer for CORBA applications,
these additional features need to be provided:

• Support of legacy CORBA applications, which are not aware of the ses-
sion. In this case the session layer has to be inserted transparently into the
CORBA environment (ORB).

• Ensure the ”at-most-once” semantic of CORBA requests. A request, which
is received by the session layer and is handed to the CORBA server, must
be ignored if received a second time (e.g. over a different bearer after a
disconnection period).

3.2 Integration

In the following we discuss the capabilities of the WAP layers and their use in a
session layer fulfilling the requirements defined in the previous section:

WDP: On the transport layer, WAP defines the wireless datagram protocol that
offers a bearer independent, consistent datagram-oriented transport service.
When using IP based bearers WDP is realized by UDP. However, WDP
is a connectionless and unreliable protocol and does not comply with the
requirements of GIOP.

WTP: Therefore, there is the need for a service providing reliability to im-
prove WDP. WAP incorporates the wireless transaction protocol WTP for
reliable requests and asynchronous transactions. WTP is able to provide
the necessary guarantees required by GIOP. Based on the different transac-
tion classes, a fine grained selection of the required guarantees for a special
request is possible. Furthermore, WTP is transaction oriented and thus sim-
plifies the adaptation of CORBA requests to WTP invocations compared to
stream-oriented transport protocols like TCP.

WSP: WSP is not well suited for our purposes of a generic session layer as it
does not fulfill some of the basic requirements presented in Sec. 3.1. WAP is
defined to support web-browsing on mobile devices and provides optimiza-
tions for HTTP. The core of the WSP design is a binary form of HTTP. It
defines binary representations for information in the http header. As we do
not use HTTP for sending request and reply messages these optimizations
are useless for our purposes.



64 T. Reinstorf et al.

WSP provides session suspend and resume mechanisms, that provide dis-
connection transparency and enable the change of the bearer during session
suspend. However, WSP does not support a reply polling on all requests that
have been successfully sent to the server but the reply could not be returned
to the client due to network disconnection. In this case it is necessary to
resend the request, because replies are discarded after the disconnection is
detected in the server and all active WTP transactions belonging to this
session are aborted.

Hence, WDP and WTP of the WAP architecture provide a reliable transport
service substituting TCP in the wireless domain and will be used in our session
layer. WSP on the other hand provides special mechanisms supporting web-
browsing on mobile devices but does not provide a really added value for generic
distributed applications and will, therefore, not be used in our approach. Thus,
we have to define our own session layer that fulfills the requirements pointed
out in Sec. 3.1. Throughout this section we provide a detailed description of our
session layer.

3.3 Architecture

Using WAP in a session layer raises the question how clients taking advantage of
the session layer have to be integrated into an existing environment. Basically,
there are two ways how this can be realised:

with gateway: Using a gateway corresponds to the WAP programming model.
In this model, clients are not directly connected to a server but indirect via a
so-called WAP gateway which is located at the crossover between the wire-
less and wired network. For use in our session layer this gateway has to
fulfill some special functions. Apart from an implementation of the server
functionality of WAP it has to support the forwarding of CORBA requests
(Fig. 2). Thus, general WAP gateways can not be used in this context. A
generic proxy platform for CORBA like π2 [20] is able to fulfill these re-
quirements. π2 can be integrated into existing applications and provides a
platform for value added services. The gateway solution enables the access
of standard CORBA servers using IIOP, as the gateway is able to transform
object references in a suitable way. On the other hand, if the system consists
of more than one gateway it is necessary to provide a handover mechanism,
which further complicates the development and deployment of such an ar-
chitecture. Furthermore, gateway architectures add an additional point of
failure and may lead to performance loss.

without gateway: In this architecture the client sends its request directly to
the server without using a gateway. It is necessary that the server imple-
ments the WAP interfaces to accept requests sent via WTP. This end-to-end
solution of supporting applications in nomadic environments is much sim-
pler as no additional complexity (gateway) or handover mechanisms have
to be realized. Using WAP this way creates the problem that WAP does



A WAP-Based Session Layer Supporting Distributed Applications 65

GIOP

WTIOP

WTP

WDP

IP

GPRS

GIOP

WTIOP

WTP

WDP

IP

GPRS

IIOP

TCP

IP
host to net

GIOP

IIOP

TCP

IP
host to net

mobile client
gateway

server

Internet

GSM

Fig. 2. Using a gateway to connect to a CORBA server via IIOP

not support any flow- or congestion control mechanisms. But because in our
scenario mobile devices are connected via links with a small bandwidth, this
is not a serious problem for existing networks. Routers in the wired network
can handle much higher data rates and therefore can not become congested
by packets received from the wireless link.

The session layer that is presented in this paper can be integrated into an
architecture with or without a gateway. Using one or the other alternative is a
trade-of as none is superior in all characteristics.

3.4 Concept

The purpose of the session layer is to provide a client-server context in which
requests and corresponding replies can be transmitted. Multiple transactions
can be invoked simultaneously in a single session. The important fact regarding
the common problem of disconnections in wireless communication is the session
independence of the underlying transport connection. The session layer may be
suspended during periods of disconnection and resumed after regaining network
connectivity which may use a different bearer. Requests that are already accepted
by the session entity but have not been sent to the server and computed replies
on the server that have not been sent to the client will not be discarded while a
session is in a suspended state. In the following we will present how establishing,
suspending and resuming a session works.

A session is identified by a session id, that is assigned by the server in the
first acknowledge sent from the server to the client.

Session establishment. Depending whether the session layer is used as an
end-to-end connection or via a gateway, there will be one session on the client



66 T. Reinstorf et al.

WAIT
ESTABLISH

ESTABLISHED SUSPENDED

REQ(SID=0) /
RESP(SID=x)

TIMEOUT

ABORT /

CLOSE /
RESP ACK /

Provider SUSP /

CLOSE /

RESUME / RESUMEACK

SUSPEND /

REQ(SID=x) / RESP

RESUME / RESUMEACK

Fig. 3. Session state chart at server side

associated with every server the client uses or otherwise only one session be-
tween the client and the gateway. In the second case all GIOP connections from
the client are tunneled over the single session between client and gateway. The
session is always initiated by the client. To avoid the overhead of connection
establishment (like three-way-handshake in TCP) the session is established im-
plicitly during the first request from the client to a server. The server will create
a new session on receipt of such a request and set the state of this session to
WAIT ESTABLISH (see Fig. 3). Together with the reply the server transmits a
newly assigned session id back to the client, which has to be used in further
transactions to identify the session. The client will set the state of the newly
created session to ESTABLISHED after receiving the reply to the first request (in-
cluding the session id). If the WTP acknowledgement to this reply is lost, the
server will destroy the session, but the client will assume, that the session is still
open. The client will not find out that the session is invalid before it sends a new
request to the server which is answered with an WTP TR-Abort(User) by the
server.

The tuple (session id, server name) identifies the session on client side. At
the server the session id alone is unique. In the case of a transport disconnection
during the first WTP transaction, the session establishment fails and has to be
retried by the client (after regaining network connectivity).

Suspending a session. Figure 4 shows a state chart defining the session states
at client side. At the client there are two possible events which cause a ses-
sion to change into the SUSPENDED state. A session may be suspended either by
the application (explicit suspend) or by the underlying transport layer (implicit
suspend):

explicit suspend: A session-aware application may suspend a session explicitly
by calling the suspend operation of the session. The session entity will send a



A WAP-Based Session Layer Supporting Distributed Applications 67

ESTABLISHED

SUSPENDED RESUME_WAIT

RESP(SID=x) /
ACK

TIMEOUT /
CLOSE /

CLOSE /

RESUME ACK /

/ RESUME

/ SUSPEND

REQ / REPLY

ABORT /

Provider SUSPEND /
CLOSE /
TIMEOUT /

Fig. 4. Session state chart at client side

Suspend message to the server and change into SUSPENDED state. The session
entity will continue accepting incoming replies but instead of handing them
to the application (CORBA ORB), the reply will be stored internally. On
the other hand requests from the ORB will be rejected during SUSPENDED
mode. The session will remain suspended until explicitly resumed by the
application.

implicit suspend: A session may be implicitly suspended in the case of detec-
tion of longer network disconnections (possibilities to detect disconnections
are discussed further down). In this case the session entity will continue ac-
cepting requests from the ORB but store them internally instead of sending
them. All synchronous method invocations by the ORB will remain blocked.
Session-aware applications are notified by the session entity of the suspend
event. The session-aware application may as a response to such a notifica-
tion ask the session entity to stop accepting requests and, therefore, unblock
any synchronous calls (returning an error). The client will try to resume the
session by itself transparently to the application.

On the server side the session is suspended either by receiving a Suspend
message from the client or also by the detection of network disconnection of the
client. The server caches available but unsent or unacknowledged replies while
the session is in SUSPENDED state (see Fig. 5). Once the session is reestablished
by the client, the client can poll for missing replies. Thus, the retransmission of
already sent requests is not necessary. The server may close suspended sessions
after a specific amount of time to avoid keeping open ”zombie” sessions which
will not be resumed e.g. because the client has crashed. This timeout should be
rather long to allow the session to survive long disconnections of the client.

Detection of network disconnection. Generally speaking, a disconnection
is a state in which no WDP datagrams can be exchanged between the client and



68 T. Reinstorf et al.

PROCESSING

REPLY sent REPLY cached

REQ / call object

TIMEOUT /

CLOSE /

ABORT /

return / RESP ACK /

POLL / RESP

SUSPEND /

Fig. 5. Server side state chart of a request

server. We assume that these disconnections are caused by the loss of network
connectivity of the client (e.g., because of loss of radio coverage).

The session entity on the server side may detect the unreachability of the
client when trying to send results to the client via WTP transactions (class 1 or
2). The WTP entity will not get acknowledgements for these transactions and,
therefore, abort the transaction and signal the Abort to the session layer. The
session will change into SUSPENDED mode. If there are no outstanding results to
be sent by the server, the disconnection will not be detected. Because of the
passive role of the server this is not a problem. It is the responsibility of the
client to resume a session, and the server will simply assume that there was a
disconnection when it receives a Resume message.

On the client side the detection of network disconnection is critical. Un-
fortunately there are situations in which the session entity can not detect the
disconnection directly by events from the WTP layer. That is the case when
the WTP entity has sent a request (as an WTP invoke, see Sec. 3.5), received
a ”hold on” acknowledgement from the WTP server and then waits for the re-
sult. If during that period the network is disconnected, and no more requests
are sent by the session entity, the WTP entity will not abort the transaction,
because the disconnection is not detected. After a ”hold on” message the client
waits for an infinite time to receive a result. If on the other hand the network is
disconnected before the WTP entity receives the acknowledgement, it will (after
some retransmissions and timeouts, compare Fig. 6) abort the transaction. The
session will be suspended by this Abort.

There are two ways to solve these problems:

1. A component outside the session layer may signal the network disconnection
to the session entity. This component may be the operating system or a
management entity of the WAP protocol stack (see Sec. 2.5).

2. A ”hold on” message on the session layer may be introduced, which is sent
from the server to the client in periods where no other messages (results or



A WAP-Based Session Layer Supporting Distributed Applications 69

acknowledgements) are sent. The time interval after which such messages
are sent could be increased each time after sending a ”hold on” message to
reduce transmission costs in networks, where the amount of transferred data
is charged (like in GPRS networks in Germany). The client would expect
a message (result, acknowledgement, ”hold on”) after these time intervals.
The missing of a message would cause the client to presume a disconnection
and to suspend the session implicitly.

client (mobile host) server

Request 1
Invoke PDU

timeout

session WTP WTP session

TR-Invoke.req

Request 1TR-Invoke.ind

network disconnected

suspended Abort(Provider)

Reply 1

Result PDU

TR-Result.req

timeout

retransmissions
timeouts

retransmissions
timeouts

Abort(Provider) suspended
cache Reply 1

TR-Invoke.req
(resume)

Invoke PDU TR-Invoke.ind

resumedTR-Result.reqResult PDUTR-Result.ind
(resumeACK)resumed

(request 1)

TR-Invoke.req
(poll 1)

Invoke PDU

Result PDU

TR-Invoke.ind

TR-Result.reqTR-Result.indReply 1

ACK PDU

(cached reply 1)

clear Reply 1

(1)

(2)

(3)

(4)

Fig. 6. Session suspend and resume

Resuming a session. The client tries to resume the session by building a new
network connection and sending a Resume message to the server. Because the
session is independent of a specific transport connection, the session may be
resumed over a different bearer. The question which bearers are available and
which have network connectivity is outside the scope of the session layer. Again
the operating system or WAP management entities may provide such informa-
tion or an approach as presented in [8] may be used to guard the availability of
network devices as well as the network connectivity of these devices. The server



70 T. Reinstorf et al.

acknowledges the resuming of the session by returning a ResumeACK message
to the client. Once the session state on the client is changed to ESTABLISHED,
stored requests are sent and missing replies are polled from the server.

Figure 6 shows an example sequence of exchanged messages for suspending
and resuming a session. At the beginning the session is already established (by
request number 0, not shown in the diagram) and the next request shall be sent.
The request is transmitted in a WTP invoke PDU to the server and the session
layer hands the request to the CORBA ORB, which returns the reply (1). The
client was disconnected from the network right after sending the WTP invoke
PDU. The client tries to retransmit the WTP message, because it is not acknowl-
edged by either a ”hold on” acknowledgement or implicitly by a WTP result
PDU. After several retransmissions the WTP entity aborts the WTP transaction
by which the session at client side is implicitly suspended (2). The same occurs
on the server which tries to retransmit the WTP result PDU, because it is not
acknowledged by the client. The WTP entity also aborts the transaction, the
session at server side is implicitly suspended, too. The server caches the reply.
After regaining network connectivity, the client session entity sends a Resume
message to the server, which responds with a ResumeACK message and changes
back into the ESTABLISHED state (3). On receipt of the ResumeACK message,
the client starts to poll for every missing reply. In this case, Reply 1 is missing,
therefore, the client sends a PollReply message for Reply 1 to the server. The
server responds with a CachedReply message containing the requested Reply 1.
After the CachedReply message is acknowledged by the client, the server destroys
the cached reply (4).

3.5 Mapping onto WTP

As stated above, we use WTP as the reliable transport protocol which is used
by the session layer to send and receive requests and replies, respectively. WTP
directly supports the request/reply communication model and is, therefore, more
suited than byte-streaming protocols like TCP. The session layer maps the
GIOP 1.1 messages directly onto WTP transactions as shown in Table 1.

Table 1. Mapping of GIOP messages onto WTP

GIOP msg WTP primitive trans.class Initiator
Request TR-Invoke 2 client
Reply TR-Result 2 server
LocateRequest TR-Invoke 2 client
LocateReply TR-Result 2 server
CancelRequest TR-Invoke 1 client
MessageError TR-Invoke 1 client
MessageError TR-Result 2 server
CloseConnection TR-Invoke 1 server
Fragment TR-Invoke 1 client/server



A WAP-Based Session Layer Supporting Distributed Applications 71

Whether transaction class 1 or 2 of WTP is used to send a GIOP Request
(or LocateRequest) depends on the three different types of CORBA calls:

oneway: If the request is a oneway request (no response expected), always
transaction class 1 is used (transaction class 0 could be used as well, because
the CORBA standard does not demand the reliable transmission of oneway
requests).

synchronous: If a response is expected, transaction class 2 is used for syn-
chronous calls.

deferred: IIOP implementations usually use a synchronous invocation in the
ORB to transmit these calls and, thus, transaction class 2 is used for deferred
synchronous calls.

Besides the GIOP messages the session layer uses a few control messages to
suspend, resume and close a session.

Table 2. Mapping of session control messages onto WTP

session msg WTP primitive trans.class Initiator
Suspend TR-Invoke 0 client
Resume TR-Invoke 2 client
ResumeACK TR-Result 2 server
CloseSession TR-Invoke 1 client/server
PollReply TR-Invoke 2 client
CachedReply TR-Result 2 server

In the following we will discuss facts concerning the length in bytes of a
GIOP message sent over WTP. The WTP standard defines an optional feature
for segmentation and reassembly (SAR) of large messages (WTP invokes and
results) which exceeds the MTU (maximum transfer unit: the maximum number
of bytes, that can be sent in one packet) of the underlying bearer. The reason
is, that many of the bearers used by WTP (like IP or GSM SMS) have a ”lost
one lost all” approach concerning SAR [9]. If the WTP implementation supports
SAR, selective retransmission of lost segments is used to minimize the number of
resent bytes. Because WTP supports no more than 256 segments in one invoke
(or result) message, the size of an invoke sent by the session layer should not
exceed 256 × MTU . Either the session layer can ensure this by introducing
SAR at session layer or in our case with sending GIOP messages, the ORB can
be instructed to divide large requests into fragments and send them as GIOP
fragments.

4 Implementation Details

The implementation of the session layer is done in Java using ORBacus and Jan-
nel. Both implementations had to be modified to work together. Where ORBacus



72 T. Reinstorf et al.

has to be modified to support a transaction oriented protocol like WTP, there
was no publicly available Java implementation of the client side protocols of
WAP. Most of this functionality had to be implemented by ourselves.

4.1 CORBA-Details

We use ORBacus by OOC as a CORBA implementation [16]. It is available with
source code and is published under the ORBacus Royalty-Free Public License
free of charge for non-commercial use. It includes the Open Communication
Interface (OCI). This interface is below the GIOP layer where new mappings on
transport protocols can be plugged in the ORB.

The OCI is designed for the use of bytestream-oriented transport protocols.
As the session layer provides a message-oriented interface, we use a slightly
adapted version of the OCI. This new interface preserves the structure of data
sent and received by the ORB, which are GIOP messages. This is necessary to
map the GIOP messages onto WTP-transactions. The identification of GIOP
messages in form of request ids is also handed through this new interface to the
session. We adapted the ORB to transparently use the new OCI interface with
the session protocol and the old one with other protocols (like IIOP).

Fig. 7. IDL of WTIOP

In order to include a new PlugIn it is necessary to describe the address format
in IDL. If the server supports multiple bearers we use multiple TaggedProfiles
(one for each bearer) in a CORBA IOR (interoperable object reference). Right
now only bearers providing IP are supported which may be used on a local



A WAP-Based Session Layer Supporting Distributed Applications 73

wireless LAN or wireless WAN such as GSM or GPRS. Figure 7 shows the IDL
file describing the address format. To identify the WTIOP profile of an object
we defined a tag with a value of four because it is not used otherwise. For official
use it is necessary to get a tag assigned from the OMG. Every server needs a
globally unique hostname (which may be a DNS name). This is used together
with the session id to identify a session at client side. The port number refers to
the WDP port number the server uses, and the address field contains the address
in a bearer dependent encoding. This may be an IP address (or DNS name) for
bearers providing IP, but could also contain e.g. a telephone number for other
bearers. The bearerType field defines the bearer for which the address is valid.

The notification of session-aware applications is implemented by using the
callback mechanism of the so called Info objects defined in the OCI. With these
objects, applications can register callback methods which will be invoked when
the particular event occurs. The standard OCI already defines callbacks for con-
nection and disconnection events. These will be called by the session layer in
case of session establishment and closing a session, respectively. We extended
the Info objects with the possibility for applications to register additional call-
back methods which will be invoked in case of suspending and resuming the
session.

4.2 WAP-Details

For our implementation of WTIOP we needed an implementation of the WAP
protocols, specifically of the WDP and WTP protocol layers. Unfortunately we
could not find a complete free open source implementation of these protocols.
With Kannel ([11]) there is an open source project building an open source WAP
gateway. Because Kannel’s design is influenced by its use as a gateway, it is not
well suited to reengineer a wap-stack implementation from its source code. Jan-
nel is a Kannel port to Java by Empower Interactive, Inc. which better fulfilled
our needs. Also because we use the Java version of ORBacus and wanted to im-
plement the session layer in Java as well, the Java implementation was preferred.
But the Jannel implementation only contained the server side implementation of
the WAP protocols. Thus, we implemented the client part of WTP by ourselves
(mainly added the client state tables of WTP). Beside that, we had to make
some minor changes to the original Jannel implementation to enable the use of
WTP with our own session layer instead of WSP.

5 Related Work

There are several other approaches which deal with the mobility of clients and
their wireless attachment to existent networks e.g. by supporting continuous
communication during periods of mobility.

The end-to-end approach to host mobility presented in [21] allows to migrate
one end of an active TCP connection to a different IP address. This approach as
well as our design assumes that normally it is the client that changes its network



74 T. Reinstorf et al.

attachment point (the IP address) and, therefore, no update of the location of
the client has to be conducted, only existing connections must be migrated. If
a server changes its location, the paper proposes to use a dynamic DNS update
to reflect this change. However, there is no mechanism included to signal the
event of connection-migration to the application which uses the TCP-connection
and, furthermore, longer network disconnections cause an abort of the TCP-
connection as in the original TCP (as a result of a TCP timeout). Another paper
[22] by the same authors states that there is a need for notification of mobility-
related events to applications and to hide longer periods of disconnection by
introducing a session layer, but currently no implementation is available. Similar
end-to-end approaches are used for migrating Java-Sockets [13] and TCP [18].
Split-connection proxies are used in MSOCKS [12] and OMIT [7]. However, all of
them do not provide solutions to handle long disconnections or add a substantial
overhead.

[8] introduces a system of dynamic network reconfiguration which monitors
the availability of network interfaces and their status of physical connection.
This enables applications to choose or change the network to be used for their
communication based on availability, costs and provided services like throughput
or latency. A similar system is needed by our session layer to be able to choose
a bearer when resuming.

6 Conclusion and Future Work

This paper introduced a generic session layer based on WAP for distributed
applications in the nomadic environment. This session layer relieves distributed
application programmers from dealing with complex connection establishment
and recovery in the wireless and mobile environment. Although this session layer
is independent of any given architecture for distributed applications we showed
its functionality and usefulness within a CORBA environment.

The session layer we conceived and implemented fulfills the requirements
identified in Sec. 3.1. The implicit session establishment during the first request
avoids the overhead of explicit session setup messages. Network disconnections
are detected by the session layer even in cases in which the WTP protocol will
not detect them. Both session-aware and legacy CORBA applications are fully
supported. Session-aware applications may itself control the state of the session
and must therefore be notified whenever an external session state modification
has occurred. This is done via a special callback interface. But legacy applica-
tions will also benefit from the session layer, because network disconnections
and reconnections are transparently handled. Without the session layer an error
would occur in the case of a disconnection. Automatic reconnection and resum-
ing of the session in these cases is provided. The lost reply problem introduced
by disconnections or network handovers are solved transparently to the CORBA
application by polling missing replies from the server after resuming the session.

Nevertheless, there still is some work to be done. First of all, the session layer
shall also be evaluated through measurements on different systems. Furthermore,



A WAP-Based Session Layer Supporting Distributed Applications 75

session establishment and recovery should also consider different transport ser-
vice providers (in addition to bearers providing IP). Hence, dynamic network
reconfiguration should be possible.

Finally, the session layer will be an integral part of our π2 architecture [20],
a framework supporting nomadic computing.

References

[1] Ajay Bakre and B.R. Badrinah. I-TCP: Indirect TCP for Mobile Hosts. In Pro-
ceedings of the 15th International Conference on Distributed Computing Systems
ICDCS-15, May 1995.

[2] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz. Improving TCP/IP Per-
formance over Wireless Networks. In Proceedings of the 1st ACM International
Conference on Mobile Computing and Networking (MOBICOM’95), 1995.

[3] E. Brewer and R. Katz. A network architecture for heterogeneous mobile com-
puting. IEEE Personal Communications, 5(5):8–24, October 1998.

[4] K. Brown and S. Singh. M-TCP: TCP for mobile cellular networks. ACM Com-
puter Communications Review, 27(5):19–43, October 1997.

[5] R. Caceres and L. Iftode. Improving the Performance of Reliable Transport Pro-
tocols in Mobile Computing Environments. IEEE Journal on Selected Areas in
Communication, 13(5):850–857, June 1995.

[6] J. Currey, K. Jin, K. Raatikainen, S. Aslam-Mir, and J. Korhonen. Wireless
access and terminal mobility in corba. OMG Document telecom/2001-02-01,
Object Management Group OMG, February 2001. Revised Submission to RFP
telecom/99-05-05.

[7] Andreas Fieger and Martina Zitterbart. Migration support for indirect transport
protocols. In Proceedings of the International Conference on Universal Personal
Communications, San Diego, California, October 1997.

[8] Jon Inouye, Jim Binkley, and Jonathon Walpole. Dynamic network support for
mobile computers. In Proceedings of the Third ACM/IEEE International Confer-
ence on Mobile Computing and Networking (MobiCom ’97), Budapest, Hungary,
September 1997.

[9] Inprise Corporation and Highlander Engineering Inc. Wireless access and terminal
mobility. ftp://ftp.omg.org/pub/docs/telecom/2000-05-05.pdf, May 2000.

[10] Iso/iec is 7498: Information processing systems – open systems interconnection –
basic reference model. International Standard, 15. Oktober 1984.

[11] Kannel: Open source WAP and SMS gateway. http://www.kannel.org/, 2001.
[12] D. Maltz and P. Bhagwat. Msocks: An architecture for transport layer mobility,

1998.
[13] Tadashi Okoshi, Masahiro Mochizuki, Yoshito Tobe, and Hideyuki Tokuda. Mo-

bilesocket: Session layer continuous operation support for java applications. Tech-
nical report, Graduate School of Media and Governance, Keio University, October
1999.

[14] Object Management Group (OMG). Telecom Domain Task Force: Request for
Information (RFI) - Supporting Wireless Access and Mobility in CORBA.
ftp://ftp.omg.org/pub/docs/telecom/98-06-04.pdf, June 1998.

[15] Object Management Group (OMG). CORBA/IIOP Specification Version 2.3.1.
ftp://ftp.omg.org/pub/docs/formal/99-10-07.pdf, October 1999.

[16] Object Oriented Concepts (OOC). http://www.ooc.com, 2001.



76 T. Reinstorf et al.

[17] Charles Perkins. IP Mobility Support/IP Encapsulation within IP, October 1996.
RFC 2002+2003.

[18] Xun Qu, Jeffrey Xu Yu, and Richard P. Brent. A mobile TCP socket. Technical
Report TR-CS-97-08, Canberra 0200 ACT, Australia, 1997.

[19] Rainer Ruggaber and Jochen Seitz. A transparent network handover for nomadic
CORBA users. In Proceedings of the 21st International Conference on Distributed
Computing Systems ICDCS-21, Phoenix, Arizona, USA, April 2001.

[20] Rainer Ruggaber, Jochen Seitz, and Michael Knapp. Π2 - a Generic Proxy Plat-
form for Wireless Access and Mobility in CORBA. In Proceedings of the 19th
Annual ACM Symposium on Principles of Distributed Computing (PODC’2000),
pages 191–198, Portland, Oregon, USA, July 2000.

[21] Alex C. Snoeren and Hari Balakrishnan. An end-to-end approach to host mobil-
ity. In Proc. 6th International Conference on Mobile Computing and Networking
(MobiCom), August 2000.

[22] Alex C. Snoeren, Hari Balakrishnan, and M. Frans Kaashoek. Reconsidering
internet mobility. In Proc. 8th Workshop on Hot Topics in Operating Systems
(HotOS-VIII), 2001.

[23] Wireless Application Protocol Forum (WAP-Forum).
http://www.wapforum.org/, 2000.


	Introduction
	Basics
	CORBA
	GIOP
	Wireless Access and Terminal Mobility in CORBA
	TCP-Drawbacks
	WAP -- The Wireless Application Protocol Suite

	Session Layer
	Requirements
	Integration
	Architecture
	Concept
	Mapping onto WTP

	Implementation Details
	CORBA-Details
	WAP-Details

	Related Work
	Conclusion and Future Work

