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Abstract. We propose a method for increasing the speed of scalar mul-
tiplication on binary anomalous (Koblitz) elliptic curves. By introducing
a generator which produces random pairs (k, [k]P ) of special shape, we
exhibit a specific setting where the number of elliptic curve operations is
reduced by 25% to 50% compared with the general case when k is chosen
uniformly. This generator can be used when an ephemeral pair (k, [k]P )
is needed by a cryptographic algorithm, and especially for Elliptic Curve
Diffie-Hellman key exchange, ECDSA signature and El-Gamal encryp-
tion. The presented algorithm combines normal and polynomial basis
operations to achieve optimal performance. We prove that a probabilis-
tic signature scheme using our generator remains secure against chosen
message attacks.

Key words: Elliptic curve, binary anomalous curve, scalar multiplica-
tion, accelerated signature schemes, pseudo-random generators.

1 Introduction

The use of the elliptic curves (EC) in cryptography was first proposed by Miller
[8] and Koblitz [4] in 1985. Elliptic curves provide a group structure, which can be
used to translate existing discrete logarithm-based cryptosystems. The discrete
logarithm problem in a cyclic group G of order n with generator g refers to the
problem of finding x given some element y = gx of G. The discrete logarithm
problem over an EC seems to be much harder than in other groups such as
the multiplicative group of a finite field, and no subexponential-time algorithm
is known for the discrete logarithm problem in the class of non-supersingular
EC which trace is different from zero and one. Consequently, keys can be much
smaller in the EC context, typically about 160 bits.

Koblitz described in [5] a family of elliptic curves featuring several attractive
implementation properties. In particular, these curves allow very fast scalar mul-
tiplication, i.e. fast computation of [k]P from any point P belonging to the curve.
The original algorithm proposed by Koblitz introduced an expansion method
based on the Frobenius map to multiply points on elliptic curves defined over
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F2, F4, F8 and F16. An improvement due to Meier and Staffelbach was proposed
in [6] and later on, Solinas introduced in [19] an even faster algorithm.

Many EC cryptographic protocols such as the Elliptic Curve Diffie-Hellman
for key exchange [13], and the ECDSA for signature [13] require the production
of fresh pairs (k, [k]P ) consisting of a random integer k and the point [k]P . A
straightforward way of producing such pairs is to first generate k at random and
then compute [k]P using an efficient scalar multiplication algorithm. Another
possiblity, introduced and analysed in [16,18,17,14,15], consists in randomly gen-
erating k and [k]P at the same time, so that fewer elliptic curve operations are
performed.

In this paper we focus on Koblitz (or anomalous) elliptic curves in F2n . By
introducing a generator producing random pairs (k, [k]P ), we are able to exhibit
a specific setting where the number of elliptic curve additions is significantly
reduced compared to the general case when k is chosen uniformly. The new
algorithm combines normal and polynomial basis operations to achieve optimal
performance. We provide a security proof for probabilistic signature schemes
based on this generator.

The paper is organized as follows: in section 2 we briefly recall the basic
definitions of elliptic curves and operations over a finite field of characteristic
two. In section 3 we recall the definition of binary anomalous (Koblitz) curves
for which faster scalar multiplication algorithms are available. We also recall
the specific exponentiation techniques used on this type of curves. In section 4
we introduce the new generator of pairs (k, [k]P ). Section 6 provides a security
proof for (k, [k]P )-based probabilistic signature schemes, through a fine-grained
analysis of the distribution of probability of the generator (theorem 2), and
using a new result on the security of probabilistic signature schemes (theorem 1).
Finally, we propose in section 7 a choice of parameters resulting in a significant
increase of speed compared to existing algorithms, with a proven security level.

2 Elliptic Curves on F2n

2.1 Definition of an Elliptic Curve

An elliptic curve is the set of points (x, y) which are solutions of a bivariate cubic
equation over a field K [7]. An equation of the form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 , (1)

where ai ∈ K, defines an elliptic curve over K.
In the field F2n of characteristic 2, equation (1) can be reduced to the form:

y2 + xy = x3 + ax2 + b with a, b ∈ F2n .

The set of points on an elliptic curve, together with a special point O called
the point at infinity, has an abelian group structure and therefore an addition
operation. The formula for this addition is provided in [13].
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2.2 Computing a Multiple of a Point

The operation of adding a point P to itself d times is called scalar multiplication
by d and denoted [d]P . Scalar multiplication is the basic operation for EC proto-
cols. Scalar multiplication in the group of points of an elliptic curve is analog to
the exponentiation in the multiplicative group of integers modulo a fixed integer
p.

Computing [d]P is usually done with the addition-subtraction method based
on the nonadjacent form (NAF) of the integer d, which is a signed binary ex-
pansion without two consecutive nonzero coefficients:

d =
�−1∑
i=0

ci2i ,

with ci ∈ {−1, 0, 1} and ci · ci+1 = 0 for all i ≥ 0. The NAF is said to be optimal
because each positive integer has a unique NAF, and the NAF of d has the fewest
nonzero coefficients of any signed binary expansion of d [2]. An algorithm for
generating the NAF of any integer in described in [9].

3 Anomalous Binary Curves

3.1 Definition and Frobenius Map

The anomalous binary curves or Koblitz curves [5] are two curves E0 and E1
defined over F2 by

Ea : y2 + xy = x3 + ax2 + 1 with a ∈ {0, 1} . (2)

We define Ea(F2n) as the set of points (x, y) which are solutions of (2) over F2n .
Since the anomalous curves are defined over F2, if P = (x, y) is in Ea(F2n),

then the point (x2, y2) is also in Ea(F2n). In addition, it can be checked that:

(x4, y4) + 2(x, y) = (−1)1−a(x2, y2) , (3)

where + holds for the addition of points in the curve. Let τ be the Frobenius
map over F2n × F2n

τ(x, y) = (x2, y2) .

Equation (3) can be rewritten for all P ∈ Ea(F2n) as

τ2P + [2]P = (−1)1−aτP .

This shows that the squaring map is equivalent to a multiplication by the com-
plex number τ satisfying

τ2 + 2 = (−1)1−aτ ,

and we say that Ea has a complex multiplication by τ [5]. Consequently, a point
on Ea can be multiplied by any element of the ring Z[τ ] = {x+ y · τ |x, y ∈ Z}.
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3.2 Faster Scalar Multiplication

The advantage of using the multiplication by τ is that squaring is very fast
in F2n . Consequently, it is advantageous to rewrite the exponent d as a signed
τ -adic NAF

d =
n+1∑
i=0

eiτ
i mod (τn − 1) ,

with ei ∈ {−1, 0, 1} and ei · ei+1 = 0. This representation is based on the fact
that Z[τ ] is an euclidian ring. An algorithm for computing the τ -adic NAF is
given in [19]. This encoding yields the following scalar multiplication algorithm:

Algorithm 1 : Addition-substraction method with τ-adic NAF

Input:P
Output:Q
Q← [en+1]P
for i← n to 0 do

Q← τQ
if ei = 1 then Q← Q+ P
if ei = −1 then Q← Q− P

return Q

The algorithm requires approximately n/3 point additions instead of n dou-
bles and n/3 additions for the general case [19]. If we neglect the cost of squarings,
this is four times faster.

As in the general case, it is possible to reduce the number of point additions
by precomputing and storing some “small” τ -adic multiples of P . [19] describes
an algorithm which requires the storage of

C(ω) =
2ω − (−1)ω

3
points ,

where ω is a trade-off parameter. Precomputation requires C(ω) − 1 elliptic
additions, and the scalar multiplication itself requires approximately

n

ω + 1
elliptic additions ,

which gives a total workload of

� 2ω

3
+

n

ω + 1
elliptic additions .

For example, for the 163-bit curve E1(F2163) and ω = 4, a scalar multiplication
can be performed in approximately 35 additions, instead of 52 without precom-
putation.

When P is known in advance, as is the case for protocols such as Elliptic
Curve Diffie-Hellman or ECDSA, it is possible to precompute and store the
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“small” τ -adic multiples of P once for all. The real time computation that re-
mains is the scalar multiplication itself, which requires around n/(ω+1) opera-
tions when C(w) points are stored. For example, for the 163-bit curve E1(F2163),
a scalar multiplication can be performed with ω = 7 in about 19 additions if 43
points are stored.

In the next section we describe an algorithm for producing random pairs
(k, [k]P ) which requires even fewer additions for approximately the same num-
ber of points stored in memory. This algorithm appears to be well-suited for
constrained environments such as smart-cards.

4 Fast Generation of (k, [k]P )

4.1 A Simple Generator

Many EC cryptographic protocols such as Elliptic Curve Diffie-Hellman for key
exchange [13] and ECDSA for signature [13] require to produce pairs (k, [k]P )
consisting of a random integer k in the interval [0, q − 1] and the point [k]P ,
where q is a large prime divisor of the order of the curve, and P is a fixed point
of order q.

For ECDSA this is the initial step of signature generation. The x coordinate
of [k]P is then converted into an integer c modulo q and the signature of m is
(c, s) where s = (H(m) + d · c)/k mod q and d is the private key associated to
the public key Q = d.P .

[1] describes a simple method for generating random pairs of the form (x, gx).
This method can be easily adapted to the elliptic curve setting for computing
pairs (k, [k]P ), where P is a point of order q.

Preprocessing:
Generate t integers k1, . . . , kt ∈ Zq.
Compute Pj = kj .P for each j and store the kj ’s and the Pj ’s in a table.

Pair generation:
Randomly generate S ⊂ [1, t] such that |S| = κ.
Let k =

∑
i∈S kj mod q.

Let Q =
∑
i∈S Pj and return (k,Q).

The algorithm requires κ−1 elliptic curve additions. Of course, the generated
k is not uniformly distributed and the parameters have to be chosen with great
care so that the distribution of the generated k is close to the uniform random
distribution.

4.2 The New Generator

We consider the generator of figure 1 which produces random pairs of the form
(k, [k]P ) on a Koblitz curve defined over F2n .
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Preprocessing:
Generate t integers k1, . . . , kt ∈ Zq.
Compute Pj = kj .P for each j
Store the kj ’s and the Pj ’s in a table.

Pair generation:
Generate κ random values si = ±1
Generate κ random integers ei ∈ [0, n− 1].
Generate κ random indices ri ∈ [1, t].

Let k =
κ∑
i=1

si · τei · kri mod q.

Let Q =
κ∑
i=1

si · τei · Pri .
Return (k,Q).

Fig. 1. Generation of (k, [k]P ) pairs on Koblitz curves

The difference with the previous generator is the use of the Frobenius map
τ , which increases the entropy of the generated k. The new generator requires
κ− 1 elliptic curve additions and t points stored in memory. In the next section
we describe an efficient implementation of the new generator.

4.3 Implementing the Generator

The new generator uses the Frobenius map τ extensively, as on average κ · n/2
applications of τ are performed for each generated pair, which represents κ · n
squarings.

Squaring comes essentially for free when F2n is represented in terms of a
normal basis: a basis over F2n of the form

{θ, θ2, θ22
, . . . , θ2

n−1} .

Namely, in this representation, squaring a field element is accomplished by a
one-bit cyclic rotation of the bitstring representing the element.

Elliptic curve additions will be performed using a polynomial basis represen-
tation of the elements, for which efficient algorithms for field multiplication and
inversion are available. A polynomial basis is a basis over F2n of the form

{1, x, x2, . . . , xn−1} .

The points Pj are stored using a normal basis representation. When a new pair
is generated, the point τei · Pri is computed by successive rotations of the coor-
dinates of Pri . Then τei ·Pri is converted into a polynomial basis representation
and it is added to the accumulator Q. To convert from normal to polynomial
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Preprocessing:
Generate t random integers k1, . . . , kt ∈ Zq.
Compute Pj = kj .P for each j
Store the kj ’s and the Pj ’s in normal basis.

Pair generation:
Generate κ random integers ei ∈ [0, n− 1]
Sort the ei: e1 ≥ e2 ≥ . . . ≥ eκ
Set eκ+1 ← 0
Set Q← O and k ← 0.
For i← 1 to κ do:

Generate a random integer r ∈ [1, t]
Generate a random s← ±1
Compute R← s · τei · Pr in normal basis.
Convert R into polynomial basis.
Compute Q← Q+R
Compute k ← τei−ei+1 · (s · kj + k) in Z[τ ].

Convert k into an integer.
Return (k,Q).

Fig. 2. Algorithm for implementing the generator of (k, [k]P ) pairs for Koblitz curves

basis, we simply store the change-of-base matrix. The conversion’s time is then
approximately equivalent to one field multiplication, and this method requires
to store O(n2) bits.

Before a new pair (k, [k]P ) is computed, the integers ei’s are sorted: e1 ≥
e2 ≥ . . . ≥ eκ, so that k can be rewritten as

k = τeκ
(
sκ · krκ + τeκ−1−eκ (sκ−1 · krκ−1 + . . .

))
.

The integer k is computed in the ring Z[τ ] as k = k′+k′′ ·τ where k′, k′′ ∈ Z.
The element k ∈ Z[τ ] is finally converted into an integer by replacing τ by an
integer T in Zq solution of the equation

T 2 + 2 = (−1)1−aT mod q ,

so that for any point Q, we have τ(Q) = [T ]Q.
The implementation of the generator is summarized in figure 2.

5 Lattice Reduction Attacks and Hidden Subsets

When the generator is used in ECDSA, each signature (c, s) of a message m
yields a linear equation

k · s = H(m) + d · c mod q ,
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where d is the unknown secret key and k is a sum of the hidden terms ±τ i · ki.
The generator of [1] described in section 4.1 for which k is a sum of the

hidden terms ki has been attacked by Nguyen and Stern [11]. However, the attack
requires the number of hidden ki to be small (around 45 for a 160-bit integer k).
The security of the generator relies on the difficulty of the hidden-subset sum
problem studied in [11]: given a positive integer M and b1, . . . , bm ∈ ZM , find
α1, . . . , αn ∈ ZM such that each bi is some subset sum of α1, . . . , αn modulo M .

For the new generator, if one simply considers all τ i · ki to be hidden, this
yields a large number of hidden terms (n · t, where n is the field size and t the
number of stored points) which can not be handled by [11]. We did not find any
way of adapting [11] to our new generator.

6 Security Proof for Signature Schemes
Using the New Generator

Since the generated integers k are not to be uniformly distributed, the security
might be considerably weakened when the generator is used in conjunction with
a signature scheme, a key-exchange scheme or an encryption scheme. In this
section, we provide a security proof in the case of probabilistic signature schemes.

In the following, we relate the security of a signature scheme using a truly
random generator with the security of the same signature scheme using our
generator. Resistance against adaptive chosen message attacks is considered.
This question has initially been raised by [12], and we improve the result of [12,
p. 9].

Let S be a probabilistic signature scheme. Denote by R the set of ran-
dom elements used to generate the signature. In our case of interest, R will
be {0, . . . , q− 1}. Let G be a random variable on R. Define SG as the signature
scheme identical to S, except that its generation algorithm uses G as random
source instead of a truly random number generator.

The following theorem shows that if a signature scheme using a truly random
number generator is secure, the corresponding signature scheme using G will be
secure if the distribution of G is sufficiently close to the uniform distribution.
The proof is given in appendix.

If X is a random variable on a set Ω, we denote by δ2(X) the statistical

distance defined by δ2(X) :=
(∑

ω∈Ω
∣∣∣Pr(X = ω)− 1

|Ω|
∣∣∣2)1/2

. In the same way,

we define δ1(X) :=
∑
ω∈Ω

∣∣∣Pr(X = ω)− 1
|Ω|
∣∣∣.

Theorem 1. Let AG be an adaptive chosen message attack against the signature
scheme SG, during which at most m signature queries are performed. Let A be the
corresponding attack on the signature scheme S. The probabilities of existential
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forgery satisfy

|Pr (A succeeds)− Pr (AG succeeds) | ≤

(1 + |R|δ2(G)2)m/2 − 1
(1 + |R|δ2(G)2)1/2 − 1

√
|R|Pr (A succeeds)δ2(G) .

Note that asymptotically for |R|δ2(G)2 � 1, the bound of theorem 1 yields
the inequality

|Pr (A succeeds)− Pr (AG succeeds) | ≤ m
√
|R|Pr (A succeeds)δ2(G) , (4)

which has to be compared to the inequality of [12],

|Pr (A succeeds)− Pr (AG succeeds) | ≤ mδ1(G) .

In the following, we consider our generator of pairs (k, [k]P ) of section 4,
which we denote by k, and compute its statistical distance δ2(k) to the uniform
distribution. Using the previous theorem with G = k and R = {0, . . . , q − 1},
this will provide a security proof for a signature scheme using our generator.

The following theorem is a direct application of a result exposed in [12]. It
gives a bound on the expectation of δ2(k)2, this expectation being considered on
a uniform choice of k1, . . . , kt.

Theorem 2. If the ki are independent random variables uniformly distributed
in {0, . . . , q−1}, then the average of δ2(k)2 over the choice of k1, . . . , kt satisfies

E[δ2(k)2] ≤ 1
(2n)κ

(
t
κ

) .

In order to use this inequality, we have to link δ2(k) to E[δ2(k)2]; a simple
application of Markov’s inequality yields:

Theorem 3. Let ε > 0. With probability at least 1 − ε (this probability being
related to a uniform choice of k1, . . . , kt), we have

δ2(k) ≤
√
E[δ2(k)2]

ε
.

Theorem 1 shows that the parameter which measures the security of the
signature scheme using our generator is

√|R|δ2(G) =
√
q · δ2(k). In table 1 we

summarize several values of the bound on
√
q · E[δ2(k)2] of theorem 2, which

using theorem 3 provides an upper bound for
√
q · δ2(k). We stress that the

number κ of points to be stored has to be corrected by the amount of data that
are required to convert from normal to polynomial basis. Roughly, one must add
to κ the equivalent amount of n/2 points of the curve, to obtain the total amount
of storage needed.

For example, consider the ECDSA signature scheme using our generator with
a field size n = 163, κ−1 = 15 point additions and t = 100 precomputed points.
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Table 1. log2

√
q · E[δ2(k)2] for various values of κ and t for n = 163

κ/t 25 50 100 150 200

10 31 26 21 18 16
14 15 7 0 -4 -6
16 6 -2 -10 -15 -18
18 -1 -10 -19 -25 -28
20 -9 -19 -29 -35 -39
25 -27 -40 -53 -60 -65

Assume that up to m = 216 messages can be signed by the signer. Using table 1,
we have

√
q · E[δ2(k)2] ≈ 2−10. Using the inequality of theorem 3, we know that,

except with probability 2−10, we have
√
qδ2(k) ≤ 2−10/2−5 = 2−5. Assume that

for a given time bound, the probability of any attack A breaking the ECDSA
signature scheme with a truly random generator after m = 213 signature queries,
is smaller than 2−60 for n = 163. Then the probability of breaking the ECDSA
signature scheme with our generator in the same time bound is smaller than

Pr (AG succeeds) ≤ 213 ·
√
2−60 · 2−5 = 2−19 .

This shows that the ECDSA signature scheme remains secure against chosen
message attacks when using our generator for this set of parameters.

7 Parameters and Performances

We propose two sets of parameters for the field size n = 163. The first one is
κ = 16 and t = 100 (which corresponds to 15 additions of points), the second
is κ = 11 and t = 50 (which corresponds to 10 additions). The first set of
parameters provides a provable security level according to the previous section,
whereas the second set of parameters lies in a grey area where the existing attacks
by lattice reduction do not apply, but security is not proven.

Recall that the scalar multiplication algorithm described in section 3.2 re-
quires 19 elliptic curve additions with 43 points stored. Thus, the two proposed
parameter sets induce a 21% and a 47% speed-up factor, respectively1.

8 Conclusion

We have introduced a new generator of pairs (k, [k]P ) for anomalous binary
curves. This pairs generator can be used for key exchange (ECDH), signature
(ECDSA) and encryption (El-Gamal schemes). We have shown that for an appro-
priate choice of parameters, a probabilistic signature scheme using our generator
1 If we neglect the cost of squaring the Pj ’s, converting from normal to polynomial

basis and computing k.
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remains secure against chosen message attacks. This result can be extended to
key exchange schemes and encryption schemes.

We have provided a first set of parameters which provides a speed-up factor
of 21% over existing techniques, with a proven security level. The second set of
parameters provides a speed-up factor of 47%, but no security proof is available.
However, since security is proven for slightly larger parameters, this provides a
convincing argument to show that the generator has a sound design and should
be secure even for smaller parameters.
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A Proof of Theorem 1

Theorem 3. Let S be a probabilistic signature scheme. Let R be the set from
which the signature generation algorithm chooses a random element when gener-
ating a signature. Let G be a random variable in R, and SG the scheme derived
from S which uses G as random source instead of a random oracle for the sig-
nature generation. Let AG be an adaptative attack with m chosen messages on
SG. If A is the corresponding attack on S, then the probabilities of existential
forgery satisfy

|Pr (A succeeds)− Pr (AG succeeds) | ≤

(1 + |R|δ2(G)2)m/2 − 1
(1 + |R|δ2(G)2)1/2 − 1

√
|R|Pr (A succeeds)δ2(G) .

Proof. An adaptative attack with m chosen messages makes m queries to a
signature oracle. At each call, this oracle picks a random r in R, and uses this
r to produce a signature. If the signature scheme is S, r is chosen uniformly in
R, and is thus equal to the value of a random variable U uniformly distributed
in R. If the signature scheme is SG, r is the value of the random variable G.
Consequently, an attack with m chosen messages depends on a random variable
defined over the probability space Rm. This variable is either U = (U1, . . . , Um)
in the case of an attack against S, or G = (G1, . . . , Gm) in the case of an
attack against SG, where the Ui are pairwise independent and follow the same
distribution as U , and the Gi are pairwise independent and follow the same
distribution as G.
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The following proof is a refinement of the result that can be found in [12]
concerning accelerated signatures schemes. First note that as A and AG are
the same attacks (that is, are the same Turing machines making calls to the
same signature oracle except that they use different random sources), for all
r = (r1, . . . , rm) ∈ Rm,

Pr(A succeeds|U = r) = Pr(AG succeeds|G = r) .

Thus, using Bayes formula, we get

|Pr (A succeeds)− Pr (AG succeeds) | ≤
∑

r=(r1,...,rm)∈Rm
|Pr(G = r)− Pr(U = r)|Pr (A succeeds|U = r) .

(5)

Using the triangular inequality, the independence of the Ui and of the Gi, and
the equidistribution property, we get also that

|Pr(U = r)− Pr(G = r)| ≤

m∑
k=1


 ∏

1≤i<k
Pr(G = ri)


 |Pr(U = rk)− Pr(G = rk)|


 ∏
m≥i>k

Pr(U = ri)


 ,

(6)
with the convention that the product of zero terms is equal to 1.

Consequently, if we denote, for k = 1, . . . ,m, by ak(r) the quantity
 ∏

1≤i<k
Pr(G = ri)


 |Pr(U = rk)− Pr(G = rk)|


 ∏
m≥i>k

Pr(U = ri)


 ,

equation (5) can be rewritten as

|Pr (A succeeds)− Pr (AG succeeds) | ≤

m∑
k=1

∑
r∈Rm

ak(r) Pr(A succeeds|U = r) .

(7)

Using Cauchy’s inequality,∑
r∈Rm

ak(r) Pr(A succeeds|U = r) =

∑
r∈Rm

(
|R|m/2ak(r)

)(
|R|−m/2 Pr(A succeeds|U = r)

)
≤

( ∑
r∈Rm

|R|mak(r)2
)1/2( ∑

r∈Rm
|R|−mPr(A succeeds|U = r)2

)1/2

.

(8)
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And as Pr(A succeeds|U = r) ≤ 1,∑
r∈Rm

|R|−mPr(A succeeds|U = r)2 ≤

∑
r∈Rm

|R|−m Pr(A succeeds|U = r) = Pr (A succeeds) ,

(9)

because U is uniformly distributed over R. Returning to the definition of ak(r),
and using once again the uniformity of U , one sees that

|R|mak(r)2 ≤ |R|

 ∏

1≤i<k
|R|Pr(G = ri)2


 |Pr(U = rk)− Pr(G = rk)|2 .

(10)
Now, one needs to note that∑

ri∈R
|R|Pr(G = ri)2 =

∑
ri∈R

|R|
((

Pr(G = ri)− 1
|R|
)2

− 1/|R|2 + (2/|R|) Pr(G = ri)

)
=

|R|δ2(G)2 + 1 .

Thus, the inequality (10) becomes,∑
r∈Rm

|R|mak(r)2 ≤

|R| (1 + |R|δ2(G)2
)k−1 ∑

rk∈R
|Pr(U = rk)− Pr(G = rk)|2 =

|R| (1 + |R|δ2(G)2
)k−1

δ2(G)2 .

Returning to inequality (7), and using (8) and (9), we finally get:

|Pr (A succeeds)− Pr (AG succeeds) | ≤
m∑
k=1

(
|R| (1 + |R|δ2(G)2

)k−1
δ2(G)2

)1/2
(Pr (A succeeds))1/2 =

(|R|Pr (A succeeds))1/2
(1 + |R|δ2(G)2)m/2 − 1
(1 + |R|δ2(G)2)1/2 − 1

δ2(G) .

��
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