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Abstract. In [15], Keliher et al. present a new method for upper bound-
ing the maximum average linear hull probability (MALHP) for SPNs, a
value which is required to make claims about provable security against
linear cryptanalysis. Application of this method to Rijndael (AES) yields
an upper bound of UB = 2−75 when 7 or more rounds are approximated,
corresponding to a lower bound on the data complexity of 32

UB = 280 (for
a 96.7% success rate). In the current paper, we improve this upper bound
for Rijndael by taking into consideration the distribution of linear proba-
bility values for the (unique) Rijndael 8×8 s-box. Our new upper bound
on the MALHP when 9 rounds are approximated is 2−92, corresponding
to a lower bound on the data complexity of 297 (again for a 96.7% suc-
cess rate). [This is after completing 43% of the computation; however,
we believe that values have stabilized—see Section 7.]

Keywords: linear cryptanalysis, maximum average linear hull proba-
bility, provable security, Rijndael, AES

1 Introduction

The substitution-permutation network (SPN) [9,1,12] is a fundamental block ci-
pher architecture based on Shannon’s principles of confusion and diffusion [22].
These principles are implemented through substitution and linear transforma-
tion (LT), respectively. Recently, SPNs have been the focus of increased atten-
tion. This is due in part to the selection of the SPN Rijndael [6] as the U.S.
Government Advanced Encryption Standard (AES).

Linear cryptanalysis (LC) [18] and differential cryptanalysis (DC) [4] are
generally considered to be the two most powerful cryptanalytic attacks on block
ciphers. In this paper we focus on the linear cryptanalysis of SPNs. As a first
attempt to quantify the resistance of a block cipher to LC, the expected linear
characteristic probability (ELCP) of the best linear characteristic often is eval-
uated. However, Nyberg [21] showed that the use of linear characteristics can
underestimate the success of LC. To guarantee provable security, a block cipher
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designer needs to consider linear hulls instead of linear characteristics, and the
maximum average linear hull probability (MALHP) instead of the ELCP of the
best linear characteristic.

Since the MALHP is difficult, if not infeasible, to compute exactly, researchers
have adopted the approach of upper bounding it [2,13,15]. In [15], Keliher et al.
present a new general method for upper bounding the MALHP for SPNs. They
apply their method to Rijndael, obtaining an upper bound on the MALHP
of UB = 2−75 when 7 or more rounds are approximated, corresponding to a
lower bound on the data complexity of 32

UB = 280 (for a 96.7% success rate—see
Table 1).1

The current paper is based on the following observation: the general method
of Keliher et al. in [15] can potentially be improved by incorporating specific
information about the distribution of linear probability (LP) values for the SPN
s-boxes. Due to the fact that Rijndael has only one (repeated) s-box, and because
of the structure of this s-box, this observation applies readily to Rijndael, and
allows us to improve the upper bound on the MALHP to UB = 2−92 when
9 rounds are approximated, for a lower bound on the data complexity of 297

(again for a 96.7% success rate). (This value is based on completion of 43%
of the computation, although we believe that the values have stabilized—see
Section 7.

Conventions
The Hamming weight of a binary vector x is written wt(x). If Z is a random
variable, E [Z] denotes the expected value of Z. And we use #A to indicate the
number of elements in the set A.

2 Substitution-Permutation Networks

A block cipher is a bijective mapping from N bits to N bits (N is the block size)
parameterized by a bitstring called a key, denoted k. Common block sizes are
64 and 128 bits (we consider Rijndael with a block size of 128 bits). The input
to a block cipher is called a plaintext, and the output is called a ciphertext.

An SPN encrypts a plaintext through a series of R simpler encryption steps
called rounds. (Rijndael with a key size of 128 bits consists of 10 rounds.) The
input to round r (1 ≤ r ≤ R) is first bitwise XOR’d with an N -bit subkey, de-
noted kr, which is typically derived from the key, k, via a separate key-scheduling
algorithm. The substitution stage then partitions the resulting vector intoM sub-
blocks of size n (N = Mn), which become the inputs to a row of bijective n× n
substitution boxes (s-boxes)—bijective mappings from {0, 1}n to {0, 1}n. Finally,
the permutation stage applies an invertible linear transformation (LT) to the
output of the s-boxes (classically, a bitwise permutation). Often the permuta-
tion stage is omitted from the last round. A final subkey, kR+1, is XOR’d with

1 In [15], the value 280 was incorrectly given as 278 due to an error in the table
corresponding to Table 1. See Remark 2 for clarification.
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the output of round R to form the ciphertext. Figure 1 depicts an example SPN
with N = 16, M = n = 4, and R = 3.

We assume the most general situation for the key, namely, that k is an
independent key [3], a concatenation of (R + 1) subkeys chosen independently
from the uniform distribution on {0, 1}N—symbolically, k =

〈
k1,k2, . . . ,kR+1

〉
.

We use K to denote the set of all independent keys.

Invertible Linear Transformation

Invertible Linear Transformation

round 3

round 2

round 1

s-boxes

k1

k2

k4

k3

Fig. 1. SPN with N = 16, M = n = 4, R = 3

3 Linear Probability

In this section, and in Section 4, we make use of some of the treatment and
notation from Vaudenay [23].

Definition 1. Suppose B : {0, 1}d → {0, 1}d is a bijective mapping. Let a,b ∈
{0, 1}d be fixed, and let X ∈ {0, 1}d be a uniformly distributed random variable.
The linear probability LP(a,b) is defined as

LP(a,b) def= (2 · ProbX {a •X = b •B(X)} − 1)2 . (1)

If B is parameterized by a key, k, we write LP(a,b;k), and the expected LP
(ELP) is defined as

ELP(a,b) def= E [LP(a,b;K)] ,

where K is a random variable uniformly distributed over the space of keys.

Note that LP values lie in the interval [0, 1]. A nonzero LP value indicates
a correlation between the input and output of B, with a higher value indicat-
ing a stronger correlation (in fact, LP(a,b) is the square of entry [a,b] in the
correlation matrix for B [5]).
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The values a/b in Definition 1 are referred to as input/output masks. For our
purposes, the bijective mapping B may be an s-box, a single encryption round,
or a sequence of consecutive encryption rounds.

The following lemma derives immediately from Parseval’s Theorem [20].

Lemma 1. Let B : {0, 1}d → {0, 1}d be a bijective mapping parameterized by a
key, k, and let a,b ∈ {0, 1}d. Then∑

x∈{0,1}d
LP(a,x;k) =

∑
x∈{0,1}d

LP(x,b;k) = 1

∑
x∈{0,1}d

ELP(a,x) =
∑

x∈{0,1}d
ELP(x,b) = 1.

3.1 LP Values for the Rijndael S-box

Consider the (unique) Rijndael 8×8 s-box (see the Rijndael reference code [7]) as
the bijective mapping B in Definition 1. A short computation yields the following
interesting fact.

Lemma 2. Let the bijective mapping under consideration be the 8× 8 Rijndael
s-box. If a ∈ {0, 1}8 \ 0 is fixed, and b varies over {0, 1}8, then the distribution
of values LP(a,b) is constant, and is given in the following table (ρi is the
LP value, and φi is the number of times it occurs, for 1 ≤ i ≤ 9). The same
distribution is obtained if b ∈ {0, 1}8 \ 0 is fixed, and a varies over {0, 1}8.

i 1 2 3 4 5 6 7 8 9

ρi
( 8
64

)2 ( 7
64

)2 ( 6
64

)2 ( 5
64

)2 ( 4
64

)2 ( 3
64

)2 ( 2
64

)2 ( 1
64

)2 0

φi 5 16 36 24 34 40 36 48 17

4 Linear Cryptanalysis of Markov Ciphers

It will be useful to consider linear cryptanalysis (LC) in the general context of
Markov ciphers [17].

4.1 Markov Ciphers

Let E : {0, 1}N → {0, 1}N be an R-round cipher, for which round r is given by
the function y = εr(x;kr) (x ∈ {0, 1}N is the round input, and kr ∈ {0, 1}N is
the round-r subkey). Then E is a Markov cipher with respect to the XOR group
operation (⊕) on {0, 1}N if, for 1 ≤ r ≤ R, and any x, ∆x, ∆y ∈ {0, 1}N ,

ProbK {εr(x;K)⊕ εr(x⊕∆x;K) = ∆y} =
ProbK,X {εr(X;K)⊕ εr(X⊕∆x;K) = ∆y} (2)
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(where X and K are uniformly distributed and independent). That is, the proba-
bility over the key that a fixed input difference produces a fixed output difference
is independent of the round input.

It is easy to show that the SPN model we are using is a Markov cipher, as
are certain Feistel ciphers [10], such as DES [8].

Remark 1. The material in the remainder of Section 4 applies to any Markov
cipher. Although we are dealing with LC, which ostensibly does not involve
the ⊕ operation, the relevance of the Markov property given in (2) is via an
interesting connection between linear probability and differential probability (see,
for example, equations (3) and (4) in [23]).

4.2 Linear Cryptanalysis

Linear cryptanalysis (LC) is a known-plaintext attack (ciphertext-only in some
cases) introduced by Matsui [18]. The more powerful version is known as Al-
gorithm 2 (Algorithm 1 extracts only a single subkey bit). Algorithm 2 can be
used to extract (pieces of) the round-1 subkey, k1. Once k1 is known, round 1
can be stripped off, and LC can be reapplied to obtain k2, and so on.

We do not give the details of LC here, as it is treated in many papers [18,3,14,15].
It suffices to say that the attacker wants to find input/output masks a,b ∈
{0, 1}N for the bijective mapping consisting of rounds 2 . . . R, for which LP(a,b;k)
is maximal. Based on this value, the attacker can determine the number of known
〈plaintext, ciphertext〉 pairs, NL (called the data complexity), required for a suc-
cessful attack. Given an assumption about the behavior of round-1 output [18],
Matsui shows that if

NL =
c

LP(a,b;k)
,

then Algorithm 2 has the success rates in Table 1, for various values of the
constant, c. Note that this is the same as Table 3 in [18], except that the constant
values differ by a factor of 4, since Matsui uses bias values, not LP values.

Remark 2. The table in [15] corresponding to Table 1 has an error, in that the
constants have not been multiplied by 4 to reflect the use of LP values.

Notational Issues. Above, we have discussed input and output masks and
the associated LP values for rounds 2 . . . R of an R-round cipher. It is useful to
consider these and other related concepts as applying to any T ≥ 2 consecutive

Table 1. Success rates for LC Algorithm 2

c 8 16 32 64

Success rate 48.6% 78.5% 96.7% 99.9%
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“core” rounds (we say that these are the rounds being approximated). For Algo-
rithm 2 as outlined above, T = R − 1, and the “first round,” or “round 1,” is
actually round 2 of the cipher.

We use superscripts for individual rounds, so LP t(a,b;kt) and ELP t(a,b)
are LP and ELP values, respectively, for round t. On the other hand, we use t
as a subscript to refer to values which apply to the first t rounds as a unit, so,
for example, ELP t(a,b) is an ELP value over rounds 1 . . . t.

4.3 Linear Characteristics

For fixed a,b ∈ {0, 1}N , direct computation of LPT (a,b;k) for T core rounds
is generally infeasible, first since it requires encrypting all N -bit vectors through
rounds 1 . . . T , and second because of the dependence on an unknown key. The
latter difficulty is usually handled by working instead with the expected value
ELPT (a,b). The data complexity of Algorithm 2 for masks a and b is now taken
to be

NL =
c

ELPT (a,b)
. (3)

The implicit assumption is that LPT (a,b;k) is approximately equal to ELPT (a,b)
for almost all values of k (this derives from the Hypothesis of Stochastic Equiv-
alence in [17]).

The problem of computational complexity is usually treated by approximat-
ing ELPT (a,b) through the use of linear characteristics (or simply character-
istics). A T -round characteristic is a (T + 1)-tuple Ω =

〈
a1,a2, . . . ,aT ,aT+1

〉
.

We view at and at+1 as input and output masks, respectively, for round t.

Definition 2. Let Ω =
〈
a1,a2, . . . ,aT ,aT+1

〉
be a T -round characteristic. The

linear characteristic probability (LCP) and expected LCP (ELCP) of Ω are
defined as

LCP(Ω;k) =
T∏
t=1

LP t(at,at+1;kt)

ELCP(Ω) =
T∏
t=1

ELP t(at,at+1).

4.4 Choosing the Best Characteristic

In carrying out LC, the attacker typically runs an algorithm to find the T -round
characteristic, Ω, for which ELCP(Ω) is maximal; such a characteristic (not nec-
essarily unique) is called the best characteristic [19]. If Ω =

〈
a1,a2, . . . ,aT ,aT+1

〉
,

and if the input and output masks used in Algorithm 2 are taken to be a = a1

and b = aT+1, respectively, then ELPT (a,b) (used to determine NL in (3)) is
approximated by

ELPT (a,b) ≈ ELCP(Ω) . (4)
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The approximation in (4) has been widely used to evaluate the security of block
ciphers against LC [12,14]. Knudsen calls a block cipher practically secure if
the data complexity determined by this method is prohibitive [16]. However, by
introducing the concept of linear hulls, Nyberg demonstrated that the above
approach can underestimate the success of LC [21].

4.5 Linear Hulls

Definition 3 (Nyberg). Given N -bit masks a,b, the corresponding linear hull,
denoted ALH(a,b),2 is the set of all T -round characteristics (for the T rounds
under consideration) having a as the input mask for round 1 and b as the output
mask for round T , i.e., all characteristics of the form

Ω =
〈
a,a2,a3, . . . ,aT ,b

〉
.

Theorem 1 (Nyberg). Let a,b ∈ {0, 1}N . Then

ELPT (a,b) =
∑

Ω∈ALH(a,b)

ELCP(Ω) .

It follows immediately from Theorem 1 that (4) does not hold in general, since
ELPT (a,b) is seen to be equal to a sum of terms ELCP(Ω) over a (large) set of
characteristics, and therefore, in general, the ELCP of any characteristic will be
strictly less than the corresponding ELP value. This is referred to as the linear
hull effect. An important consequence is that an attacker may overestimate the
number of 〈plaintext, ciphertext〉 pairs required for a given success rate.

Remark 3. It can be shown that the linear hull effect is significant for Rijndael,
since, for example, the ELCP of any characteristic over T = 8 rounds is upper
bounded by 2−300 [6],3 but the largest ELP value has 2−128 as a trivial lower
bound.4

The next lemma follows easily from Theorem 1 and Definition 2 (recall the
conventions for superscripts and subscripts).

Lemma 3. Let T ≥ 2, and let a,b ∈ {0, 1}N . Then

ELPT (a,b) =
∑

x∈{0,1}N
ELPT−1(a,x) · ELPT (x,b) .

2 Nyberg [21] originally used the term approximate linear hull, hence the abbreviation
ALH, which we retain for consistency with [15].

3 Any 8-round characteristic, Ω, has a minimum of 50 active s-boxes, and the maxi-
mum LP value for the Rijndael s-box is 2−6, so ELCP(Ω) ≤ (

2−6)50 = 2−300.
4 This follows by observing that Lemma 1 is contradicted if the maximum ELP value
is less than 2−d.
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4.6 Maximum Average Linear Hull Probability

An SPN is considered to be provably secure against LC if the maximum ELP,

max
a,b∈{0,1}N\0

ELPT (a,b), (5)

is sufficiently small that the resulting data complexity is prohibitive for any
conceivable attacker.5 The value in (5) is also called the maximum average linear
hull probability (MALHP). We retain this terminology for consistency with [15].

Since evaluation of the MALHP appears to be infeasible in general, re-
searchers have adopted the approach of upper bounding this value [2,13,15].
If such an upper bound is sufficiently small, provable security can be claimed.

5 SPN-Specific Considerations

In the current section, we adapt certain results from Section 4 to the SPN model.
Note that where matrix multiplication is involved, we view all vectors as column
vectors. Also, if M is a matrix, M′ denotes the transpose of M.

Lemma 4. Consider T core SPN rounds. Let 1 ≤ t ≤ T , and a,b,kt ∈ {0, 1}N .
Then LP t(a,b;kt) is independent of kt, and therefore

LP t(a,b;kt) = ELP t(a,b).

Proof. Follows by observing the interchangeable roles of the round input, x, and
kt, and from a simple change of variables x̂ = x⊕ kt when evaluating (1).

Corollary 1. Let Ω be a T -round characteristic for an SPN. Then LCP(Ω) =
ELCP(Ω).

Definition 4. Let L denote the N -bit LT of the SPN represented as a binary
N ×N matrix, i.e., if x,y ∈ {0, 1}N are the input and output, respectively, for
the LT, then y = Lx.

Lemma 5 ([5]). If b ∈ {0, 1}N and a = L′b, then a • x = b • y for all N -bit
inputs to the LT, x, and corresponding outputs, y (i.e., if b is an output mask
for the LT, then a = L′b is the (unique) corresponding input mask).

It follows from Lemma 5 that if at and at+1 are input and output masks
for round t, respectively, then the resulting input and output masks for the
substitution stage of round t are at and bt = L′at+1. Further, at and bt determine
input and output masks for each s-box in round t. Let the masks for Sti be

5 For Algorithm 2 as described above, this must hold for T = R− 1. Since variations
of LC can be used to attack the first and last SPN rounds simultaneously, it may
also be important that the data complexity remain prohibitive for T = R− 2.
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denoted ati and bti, for 1 ≤ i ≤M (we number s-boxes from left to right). Then
from Matsui’s Piling-up Lemma [18] and Lemma 4,

ELP t(at,at+1) =
M∏
i=1

LPS
t
i (ati,b

t
i). (6)

From the above, any characteristic Ω ∈ ALH(a,b) determines an input and an
output mask for each s-box in rounds 1 . . . T . If this yields at least one s-box for
which the input mask is zero and the output mask is nonzero, or vice versa, the
linear probability associated with that s-box will trivially be 0, and therefore
ELCP(Ω) = 0 by (6) and Definition 2. We exclude such characteristics from
consideration via the following definition.

Definition 5. For a,b ∈ {0, 1}N , let ALH(a,b)∗ consist of the elements Ω ∈
ALH(a,b) such that for each s-box in rounds 1 . . . T , the input and output masks
determined by Ω for that s-box are either both zero or both nonzero.

Remark 4. In [23], the characteristics in ALH(a,b)∗ are called consistent.

Definition 6 ([3]). Any T -round characteristic, Ω, determines an input and
an output mask for each s-box in rounds 1 . . . T . Those s-boxes having nonzero
input and output masks are called active.

Definition 7. Let v be an input or an output mask for the substitution stage of
round t. Then the active s-boxes in round t can be determined from v (without
knowing the corresponding output/input mask). We define γv to be the M -bit
vector which encodes the pattern of active s-boxes: γv = γ1γ2 . . . γM , where γi = 1
if the ith s-box is active, and γi = 0 otherwise, for 1 ≤ i ≤M .

Definition 8 ([15]). Let γ, γ̂ ∈ {0, 1}M . Then

W [γ, γ̂] def= #
{
y ∈ {0, 1}N : γx = γ, γy = γ̂, where x = L′y

}
.

Remark 5. Informally, the value W [γ, γ̂] represents the number of ways the LT
can “connect” a pattern of active s-boxes in one round (γ) to a pattern of active
s-boxes in the next round (γ̂).

We now proceed to our improved method for upper bounding the MALHP for
Rijndael.

6 Improved Upper Bound on MALHP for Rijndael

6.1 Technical Lemmas

Lemma 6 ([15]). Let m ≥ 2, and suppose {ci}mi=1, {di}mi=1 are sequences of

nonnegative values. Let {ċi}mi=1,
{
ḋi

}m
i=1

be the sequences obtained by sorting

{ci} and {di}, respectively, in nonincreasing order. Then
∑m
i=1 cidi ≤

∑m
i=1 ċiḋi.
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Lemma 7 ([15]). Suppose {ċi}mi=1, {c̈i}mi=1, and
{
ḋi

}m
i=1

are sequences of non-

negative values, with
{
ḋi

}
sorted in nonincreasing order. Suppose there exists

m̃, 1 ≤ m̃ ≤ m, such that
(a) c̈i ≥ ċi, for 1 ≤ i ≤ m̃
(b) c̈i ≤ ċi, for (m̃+ 1) ≤ i ≤ m
(c)

∑m
i=1 ċi ≤

∑m
i=1 c̈i

Then
∑m
i=1 ċiḋi ≤

∑m
i=1 c̈iḋi.

6.2 Distribution of LP Values for Multiple Active S-boxes

Definition 9. Let a ∈ {0, 1}128 \ 0 be a fixed input mask for the substitution
stage of Rijndael, and let b be an output mask which varies over {0, 1}128, with
the restriction that γa = γb. If A is the number of s-boxes made active (A =
wt(γa)), define DA to be the set of distinct LP values produced as b varies, and
let DA = #DA. Define

〈
ρA1 , ρ

A
2 , . . . , ρ

A
DA

〉
to be the sequence obtained by sorting

DA in decreasing order, and let φAj be the number of occurrences of the value
ρAj , for 1 ≤ j ≤ DA.

Note that if A = 1, then DA = 9, and ρ1j and φ1j are as given in Lemma 2.

Lemma 8. For A ≥ 2,

DA =
{
ρ1s · ρA−1

t : 1 ≤ s ≤ D1, 1 ≤ t ≤ DA−1
}
,

and for each j, 1 ≤ j ≤ DA = #DA,

φAj =
∑{

φ1s · φA−1
t : ρ1s · ρA−1

t = ρAj , 1 ≤ s ≤ D1, 1 ≤ t ≤ DA−1
}
.

Proof. Follows easily from Lemma 4 and (6).

Definition 10. For A ≥ 1 and 1 ≤ J ≤ DA, we define the partial sums

ΦAJ =
J∑
j=1

φAj

ΛAJ =
J∑
j=1

ρAj · φAj .

Also, we define SA to be the sequence

ρA1 , . . . , ρ
A
1︸ ︷︷ ︸

φA1 terms

, ρA2 , . . . , ρ
A
2︸ ︷︷ ︸

φA2 terms

, . . . , ρADA , . . . , ρ
A
DA︸ ︷︷ ︸

φADA
terms

.

Remark 6. For 1 ≤ A ≤M , ΛADA = 1 by Lemma 1.
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6.3 Derivation of Improved Upper Bound

Convention: In this subsection, whenever we deal with values of the form
ELP t(a,b) or ELP t(a,b) (1 ≤ t ≤ T ), we omit the LT from round t. This
is simply a technical matter that simplifies the proofs which follow.

Let T ≥ 2. As in [15], our approach is to compute an upper bound for each
nonzero pattern of active s-boxes in round 1 and round T—that is, we compute
UBT [γ, γ̂], for γ, γ̂ ∈ {0, 1}M \ 0, such that the following holds:

UB Property for T. For all a,b ∈ {0, 1}N \ 0, ELPT (a,b) ≤ UBT [γa, γb].

If the UB Property for T holds, then the MALHP is upper bounded by

max
γ,γ̂∈{0,1}M\0

UBT [γ, γ̂].

The case T = 2 is handled in Theorem 2, and the case T ≥ 3 in Theorem 3.

Theorem 2. Let the values UB2[γ, γ̂] be computed using the algorithm in Fig-
ure 2. Then the UB Property for 2 holds.

Proof. In this proof, “Line X” refers to the Xth line in Figure 2. Let γ, γ̂ ∈
{0, 1}M \ 0 be fixed, and let a,b ∈ {0, 1}N \ 0 such that γa = γ and γb =
γ̂. We want to show that ELP2(a,b) ≤ UB2[γ, γ̂]. There are W = W [γ, γ̂]
ways that the LT can “connect” the f active s-boxes in round 1 to the " active
s-boxes in round 2. Let x1,x2, · · · ,xW be the corresponding output masks for
the substitution stage of round 1 (and therefore the input masks for the round-1
LT), and let y1,y2, · · · ,yW be the respective output masks for the round-1 LT
(and therefore the input masks for the substitution stage of round 2). So γxi = γ
and γyi = γ̂, for 1 ≤ i ≤ W . Let ci = ELP1(a,xi) and di = ELP2(yi,b), for
1 ≤ i ≤W . It follows from Lemma 3 that ELP2(a,b) =

∑W
i=1 cidi.

Without loss of generality, f ≤ ", so Amin = f and Amax = ". Let {ċi} ({ḋi})
be the sequence obtained by sorting {ci} ({di}) in nonincreasing order. Then∑W
i=1 cidi ≤

∑W
i=1 ċiḋi by Lemma 6. Let {c̈i} ({d̈i}) consist of the first W terms

of Sf (S�). Since the terms ċi (ḋi) are elements of Sf (S�), it follows that ċi ≤ c̈i
(ḋi ≤ d̈i), for 1 ≤ i ≤W , so

ELP2(a,b) =
W∑
i=1

cidi ≤
W∑
i=1

ċiḋi ≤
W∑
i=1

c̈id̈i .

It is not hard to see that the value UB2[γ, γ̂] computed in Figure 2 is exactly∑W
i=1 c̈id̈i. For computational efficiency, we do not sum “element-by-element”

(i.e., for each i), but instead take advantage of the fact that {c̈i} has the form

ρf1 , . . . , ρ
f
1︸ ︷︷ ︸

φf1 terms

, ρf2 , . . . , ρ
f
2︸ ︷︷ ︸

φf2 terms

, ρf3 , . . . , ρ
f
3︸ ︷︷ ︸

φf3 terms

, . . . ,
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14.

15.

18.

17.

16.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

13.

11.

12.

∆λ←
(
ΛAmax
J − λ

)
−

[(
ΦAmax
J − Z

)
∗ ρAmax

J

]J ← min
{
j : 1 ≤ j ≤ DAmax , ΦAmax

j ≥ Z
}Function NextTerm2 (Z)

λ← λ+∆λ

return
(
ρ
Amin
h ∗∆λ

)

For each γ ∈ {0, 1}M \ 0

For each γ̂ ∈ {0, 1}M \ 0

W ←W [γ, γ̂]

Amin ← min{f, �}, Amax ← max{f, �}
f ← wt(γ), �← wt(γ̂)

λ← 0, Sum← 0

h← 1

While (h ≤ DAmin ) and (ΦAmin
h ≤W )

Sum← Sum + NextTerm2 (ΦAmin
h )

h← h+ 1

UB2[γ, γ̂]← Sum

Sum← Sum + NextTerm2 (W )

If (h ≤ DAmin ) and (ΦAmin
h > W )

Fig. 2. Algorithm to compute UB2[ ]

and similarly for {d̈i} (replace f with "). Viewing these sequences as “groups”
of consecutive identical elements, the algorithm in Figure 2 proceeds “group-by-
group.” The variable h is the index of the current group in {c̈i}. The function
NextTerm2() identifies the corresponding elements in {d̈i}, and computes the
equivalent of the element-by-element product, which is added to the growing
sum in Line 9. The situation in which {c̈i}Wi=1 is a truncated version of Sf is
handled by the conditional statement in Lines 11–12.

Theorem 3. Let T ≥ 3. Assume that the values UBT−1[γ, γ̂] have been com-
puted for all γ, γ̂ ∈ {0, 1}M \ 0 such that the UB Property for (T − 1) holds. Let
the values UBT [γ, γ̂] be computed using the algorithm in Figure 3. Then the UB
Property for T holds.

Proof. Throughout this proof, “Line X” refers to the Xth line in Figure 3. Let
a,b ∈ {0, 1}N \ 0. It suffices to show that if γ = γa in Line 1 and γ̂ = γb in
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1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

24.

23.

22.

21.

20.

For each γ ∈ {0, 1}M \ 0

For each γ̂ ∈ {0, 1}M \ 0

�← wt(γ̂)

Γ ← {
ξ ∈ {0, 1}M \ 0 : W [ξ, γ̂] 
= 0

}

Order the H = #Γ elements of Γ as γ1, γ2, . . . , γH such that

UBT−1[γ, γ1] ≥ UBT−1[γ, γ2] ≥ · · · ≥ UBT−1[γ, γH ]

Uh ← UBT−1[γ, γh], for 1 ≤ h ≤ H
Wh ←W [γh, γ̂], for 1 ≤ h ≤ H
Ψ ← 0, λ← 0, Wtotal ← 0, Sum← 0

h← 1

Wtotal ←Wtotal +Wh

Sum← Sum + NextTermT (Wtotal)

While (h ≤ H) and (Uh > 0) and (Ψ + (Uh ∗Wh) ≤ 1) and (λ < 1)

h← h+ 1

If (h ≤ H) and (Uh > 0) and (Ψ + (Uh ∗Wh) > 1) and (λ < 1)

Wtotal ←Wtotal + (1− Ψ)/Uh
Sum← Sum + NextTermT (Wtotal)

UBT [γ, γ̂]← Sum

Function NextTermT (Z)

return
(
ρ
Amin
h ∗∆λ

)λ← λ+∆λ

Ψ ← Ψ + (Uh ∗Wh)

∆λ← (
Λ	J − λ

)− [(
Φ	J − Z

) ∗ ρ	J
]

J ← min
{
j : 1 ≤ j ≤ D	, Φ	j ≥ Z

}

Fig. 3. Algorithm to compute UBT [ ] for T ≥ 3

Line 2, then the value UBT [γ, γ̂] computed in Figure 3 satisfies ELPT (a,b) ≤
UBT [γ, γ̂]. Enumerate the elements of {0, 1}N \0 as y1,y2, . . . ,y2N−1. We view
these as input masks for round T , and hence as output masks for the LT of
round (T −1). For each yi, let xi be the corresponding input mask for the LT. It
follows from Lemma 3 that ELPT (a,b) =

∑2N−1
i=1 ELPT−1(a,xi) ·ELPT (yi,b).

If γyi �= γb (= γ̂), then ELPT (yi,b) = 0 (this follows from (6)), so we remove
these yi from consideration, leaving ȳ1, ȳ2, . . . , ȳL (for some L), and correspond-
ing input masks, x̄1, x̄2, . . . , x̄L, respectively.

Let ci = ELPT−1 (a, x̄i) and di = ELPT (ȳi,b), for 1 ≤ i ≤ L. Then
ELPT (a,b) =

∑L
i=1 cidi. Note that

∑
ci ≤ 1,

∑
di ≤ 1 by Lemma 1. Let
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{ċi} ({ḋi}) be the sequence obtained by sorting {ci} ({di}) in nonincreasing
order. Then

∑L
i=1 cidi ≤

∑L
i=1 ċiḋi by Lemma 6. If {d̈i} consists of the first L

terms of S� (" = wt(γ̂) as in Line 3), then ḋi ≤ d̈i, for 1 ≤ i ≤ L (since the ḋi
are elements of S�), so

∑L
i=1 ċiḋi ≤

∑L
i=1 ċid̈i.

Let ui = UBT−1[a, x̄i], for 1 ≤ i ≤ L, and let {u̇i} be obtained by sorting
{ui} in nonincreasing order. Clearly ċi ≤ u̇i, for 1 ≤ i ≤ L. Using notation from
Lines 4–8, {u̇i} has the form

U1, . . . , U1︸ ︷︷ ︸
W1 terms

, U2, . . . , U2︸ ︷︷ ︸
W2 terms

, U3, . . . , U3︸ ︷︷ ︸
W3 terms

, . . . . (7)

If
∑L
i=1 u̇i ≤ 1, let {c̈i} be identical to the sequence {u̇i}. If

∑L
i=1 u̇i > 1, let Lu

(1 ≤ Lu ≤ L) be minimum such that
∑Lu
i=1 u̇i > 1, and let {c̈i} consist of the

first L terms of

u̇1, u̇2, . . . , u̇Lu−1,

(
1−

Lu−1∑
i=1

u̇i

)
, 0, 0, 0, . . . . (8)

It follows that
∑L
i=1 ċid̈i ≤

∑L
i=1 c̈id̈i by Lemma 7 (with {d̈i} playing the role

of {ḋi} in the statement of the lemma). Combining inequalities gives

ELPT (a,b) ≤
L∑
i=1

c̈id̈i . (9)

The value
∑L
i=1 c̈id̈i in (9) is exactly the upper bound computed in Figure 3. We

argue similarly to the T = 2 case. Since {c̈i} and {d̈i} are derived from sequences
which consist of groups of consecutive identical elements (the sequence in (7)
and S�, respectively), the algorithm operates group-by-group, not element-by-
element. Beginning at Line 10, the variable h is the index of the current group
in {c̈i} (having element value Uh and size Wh). Function NextTermT() identifies
the corresponding elements in {d̈i}, and computes the equivalent of the element-
by-element product.

If the terms in {c̈i} (resp. {d̈i}) shrink to 0 because the corresponding terms in
(7) (resp. S�) become 0, the check (Uh > 0) (resp. (λ < 1)) in Line 11 or Line 15
will fail, and the algorithm will exit. The check (Ψ + (Uh ∗Wh) > 1) in Line 15
detects the case that in the derivation of {c̈i} from {u̇i} above,

∑L
i=1 u̇i > 1,

and therefore {c̈i} is based on the truncated sequence in (8).

7 Computational Results

We estimate that running the above algorithm to completion will take up to
200,000 hours on a single Sun Ultra 5. We are currently running on about 50
CPUs, and have completed 43% of the computation for 2 ≤ T ≤ 10.
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It is worth noting that in progressing from 11% to 43% of the computation,
there was no change in the upper bound for 2 ≤ T ≤ 10. Combined with our
experience in running the algorithm of [15], for which the numbers also stabilized
quickly, we expect that the final results will be the same as those presented below.

In Figure 4, we plot our improved upper bound against that of [15] for 2 ≤
T ≤ 10. Note that the new bound is noticeably superior to that of [15] for
T ≥ 4. When T = 9 rounds are being approximated, the upper bound value is
UB = 2−92. For a success rate of 96.7%, this corresponds to a data complexity
of 32

UB = 297 (Table 1). The corresponding upper bound value from [15] is 2−75,
for a data complexity of 280. This represents a significant improvement in the
calculation of the provable security of Rijndael against linear cryptanalysis.

We also plot very preliminary results for 11 ≤ T ≤ 15, in order to gain a sense
of the behavior of the upper bound (for these values of T , we have completed only
1.5% of the necessary computation, hence the label “Extrapolation”). Unlike the
upper bound in [15], the new upper bound does not appear to flatten out, but
continues a downward progression as T increases.

-100

-80

-60

-40

-20

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of rounds being approximated (T )

log2
scale

Improved bound
Bound from [15]

Extrapolation

Fig. 4. Improved upper bound on MALHP for Rijndael

7.1 Presentation of Final Results

Upon completion of computation, we will post our final results in the IACR
Cryptology ePrint Archive (eprint.iacr.org) under the title Completion of
Computation of Improved Upper Bound on the Maximum Average Linear Hull
Probability for Rijndael.
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8 Conclusion

We have presented an improved version of the algorithm given in [15] (which com-
putes an upper bound on the maximum average linear hull probability (MALHP)
for SPNs) in the case of Rijndael. The improvement is achieved by taking into
account the distribution of linear probability values for the (unique) Rijndael
s-box. When 9 rounds of Rijndael are approximated, the new upper bound is
2−92, which corresponds to a lower bound on the data complexity of 297, for a
96.7% success rate. (This is based on completion of 43% of the computation.
However, we expect that the values obtained so far for 2 ≤ T ≤ 10 core rounds
will remain unchanged—see Section 7.) This is a significant improvement over
the corresponding upper bound from [15], namely 2−75, for a data complexity
of 280 (also for a 96.7% success rate). The new result strengthens our confidence
in the provable security of Rijndael against linear cryptanalysis.
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