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Abstract. We present an RSA threshold signature scheme. The scheme
enjoys the following properties:

1. it is unforgeable and robust in the random oracle model, assuming
the RSA problem is hard;

2. signature share generation and verification is completely non-inter-
active;

3. the size of an individual signature share is bounded by a constant
times the size of the RSA modulus.

1 Introduction

A k out of l threshold signature scheme is a protocol that allows any subset of k
players out of l to generate a signature, but that disallows the creation of a valid
signature if fewer than k players participate in the protocol. This non-forgeability
property should hold even if some subset of less than k players are corrupted
and work together. For a threshold scheme to be useful when some players are
corrupted, it should should also be robust, meaning that corrupted players should
not be able to prevent uncorrupted players from generating signatures.

The notion of a threshold signature scheme has been extensively studied.
However, all previously proposed schemes suffer from at least one of the following
problems:

1. the scheme has no rigorous security proof, even in the random oracle model;
2. signature share generation and/or verification is interactive, moreover re-

quiring a synchronous communications network;
3. the size of an individual signature share blows up linearly in the number of

players.

To correct this situation, we present a new threshold RSA signature scheme
that enjoys the following properties:

1. it is unforgeable and robust in the random oracle model, assuming the RSA
problem is hard;

2. signature share generation and verification is completely non-interactive;
3. the size of an individual signature share is bounded by a small constant times

the size of the RSA modulus.
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We stress that the resulting signature is a completely standard “hash and
invert” RSA signature, in the sense that the format of the public key and verifi-
cation algorithm are the same as for ordinary RSA signatures. We do, however,
place some restrictions on the key; namely, the public exponent must be a prime
exceeding l, and the modulus must be the product of two “strong” primes.

Our scheme is exceedingly simple, and it is truly amazing that such a scheme
has apparently not been previously proposed and analyzed.

We also consider a more refined notion of a threshold signature scheme, where
there is one threshold t for the maximum number of corrupt players, and another
threshold k for the minimum quarum size. The fact that a particular message
has been signed means that at least k − t uncorrupted players have authorized
the signature.

Previous investigations into threshold signature schemes have always as-
sumed (explicitly or implicitly) that k = t + 1. We also investigate the more
general setting where k ≥ t +1. This generalization is useful in situations where
the uncorrupted parties do not necessarily agree on what they are signing, but
one wants to be able to prove that a large number of them have authorized
a particular signature. In particular, threshold signatures with k = l − t and
t < l/3 can be exploited to reduce the sizes of the messages sent in Byzantine
agreement protocols in an asynchronous network. This is explored in detail in
[CKS00].

The application to asynchronous Byzantine agreement was actually our orig-
inal motivation for studying this problem, and is the main reason for our require-
ment that the signing protocol is non-interactive. Almost all previous work on
threshold signatures assumes a model with a synchronous network, and where all
players somehow simultaneously agree to start the signing protocol on a given
message. Clearly, we can not work in such a model if we want to implement
asynchronous Byzantine agreement.

We stress that our notion of a “dual-parameter” threshold scheme provides
stronger security guarantees than single parameter threshold schemes, and such
schemes are in fact more challenging to construct and to analyze. Our notion of
a dual-parameter threshold scheme should not be confused with a weaker notion
that sometimes appears in the threshold cryptography literature (e.g., [MS95]).
For this weaker notion, there is a parameter k′ > t such that the reconstruction
algorithm requires k′ shares, but the security guarantee is lost if just a single
honest party reveals a share. In our notion, no security is lost unless k− t honest
parties reveal their shares.

We work with a “static corruption model”: the adversary must choose which
players to corrupt at the very beginning the attack. This is in line with previ-
ous investigations into threshold signatures, which also (explicitly or implicitly)
assume static corruptions.

Our basic scheme, Protocol 1, can be proven secure when k = t + 1 in the
random oracle model under the RSA assumption.
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We present another scheme, Protocol 2, for use in the more general setting
k ≥ t + 1. Protocol 2 can be be proven secure—again, in the random oracle
model—when k = t + 1 under the RSA assumption, and when k > t + 1 under
an additional assumption, namely, an appropriate variant of the Decision Diffie-
Hellman assumption.

As already mentioned, our proofs of security are valid in the so-called “ran-
dom oracle model,” where cryptographic hash functions are replaced by a ran-
dom oracle. This model was used informally by Fiat and Shamir [FS87], and
later was rigorously formalized and more fully exploited in Bellare and Rogaway
[BR93], and thereafter used in numerous papers.

For Protocol 1, we only need random oracles for robustness, if we assume that
ordinary RSA signatures are secure. In fact, Gennaro et al. [GJKR96a] present a
non-interactive share verification scheme that can be analyzed without resorting
to random oracles. One could use their verification scheme in place of the one
we suggest, thus avoiding random oracles in the analysis, but this would have
certain practical drawbacks, requiring a special relationship between the sender
and recipient of a share of a signature. Alternatively, one could use a simple
interactive share verification scheme. The resulting signature scheme would no
longer be truly non-interactive, but it would still not require any coordination
or synchronization among the players. We do not explore these alternatives in
any detail here, as they are quite straightforward.

The analysis of Protocol 2 makes use of the random oracle model in a more
fundamental way. Since this seemed inevitable, we took several liberties in the
design of Protocol 2, so that it is actually a bit simpler and more efficient than
Protocol 1. Thus, even if k = t + 1, Protocol 2 may be an attractive practical
alternative to Protocol 1.

We view a proof of security in the random oracle model as a heuristic argu-
ment that provides strong evidence that a system cannot be broken. All things
being equal, a proof of security in the random oracle model is not as good as
a proof of security in the “real world,” but is much better than no proof at
all. Anyway, it does not seem unreasonable to use the random oracle model,
since that is the only way we know of to justify the security of ordinary RSA
signatures.

Previous Work

Desmedt [Des87] introduces the more general notion of threshold signatures.
Desmedt and Frankel [DF89] present a non-robust threshold ElGamal scheme
[ElG85] based on “secret sharing,” [Sha79] i.e., polynomial interpolation over
a finite field. Their scheme has small share size, but requires synchronized in-
teraction. Harn [Har94] presents a robust threshold ElGamal scheme with small
share size, but again requires synchronized interaction. It seems that the security
of both of the above schemes can be rigorously analyzed in a satisfactory way,
although neither paper does this. Gennaro et al. [GJKR96b] present a robust
threshold DSS scheme with small share size that again requires synchronized
interaction; they also give a rigorous security analysis.
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All of the above-mentioned schemes are interactive. Indeed, any threshold
signature scheme based on discrete logarithms appears doomed to be interactive,
since all such signature schemes are randomized, and so the signers have to
generate random values jointly, which apparently requires interaction.

In [DF89], Desmedt and Frankel also briefly address the problem of designing
a threshold RSA [RSA78] signature scheme, noting that there are some technical
obstructions to doing this arising from the fact that polynomial interpolation
over the coefficient ring Zφ(n), where n is the RSA modulus and φ the Euler
totient function, is somewhat awkward. Later, Desmedt and Frankel [DF91] re-
turn again to the problem of threshold RSA, and present a non-robust threshold
RSA scheme that is non-interactive and with small share size, but with no se-
curity analysis. Frankel and Desmedt [FD92] present results extending those in
[DF91], giving a proof of security for a non-robust threshold RSA scheme with
small share size, but which requires synchronized interaction. Later, De Santis et
al. [DDFY94] present a variation (also non-robust) on the scheme in [FD92] that
trades interaction for large share size (growing linearly in the number of players).
Both [FD92] and [DDFY94] avoid the problems of polynomial interpolation over
Zφ(n) by working instead with over Zφ(n)[X]/(Φq(X)), where where Φq(X) is
the qth cyclotomic polynomial (taken mod φ(n)), and q is a prime greater than
l. This is convenient, as standard secret sharing techniques can then be directly
applied, but it leads to a much more complicated schemes that also require either
interaction or large share sizes.

Gennaro et al. [GJKR96a] give a few general techniques that allow one to
make RSA threshold systems robust.

Later, Frankel et al. [FGMY97b,FGMY97a] and Rabin [Rab98] propose and
rigorously analyze robust threshold RSA schemes that have small share size, but
require synchronized interaction. These papers take a different approach to the
“interpolation over Zφ(n) problem,” sidestepping it by introducing an extra layer
of “secret sharing” and much more interaction and complexity. These schemes
have other features as well, namely they provide a type of security known as
“pro-active security,” a topic we do not address here at all.

As we shall see, the “interpolation over Zφ(n) problem” is not really a problem
at all—it is entirely trivial to work around the minor technical difficulties to
obtain an extremely simple and provably secure threshold RSA scheme. We do
not even need a random oracle if we do not require robustness and we are willing
to assume that the RSA signature scheme is itself secure.

Organization

In §2 we describe our system model and security requirements for threshold
signatures. In §3 we describe Protocol 1. In §4 we analyze Protocol 1 in the case
k = t + 1. In §5 we present Protocol 2, and analyze it in the more general case
k ≥ t + 1.
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2 System Model and Security Requirements

The Participants. We have a set of l players, indexed 1, . . . , l, a trusted dealer,
and an adversary. There is also a signature verification algorithm, a share veri-
fication algorithm, and a share combining algorithm.

There are two parameters:

t—the number of corrupted players;
k—the number of signature shares needed to obtain a signature.

The only requirements are that k ≥ t + 1 and l − t ≥ k.

The Action. At the beginning of the game, the adversary selects a subset of t
players to corrupt.

In the dealing phase, the dealer generates a public key PK along with secret
key shares SK1, . . . , SKl, and verification keys VK, VK1, . . . , VKl. The adversary
obtains the secret key shares of the corrupted players, along with the public key
and verification keys.

After the dealing phase, the adversary submits signing requests to the uncor-
rupted players for messages of his choice. Upon such a request, a player outputs
a signature share for the given message.

Robustness and Combining Shares. The signature verification algorithm
takes a input a message and a signature, along with the public key, and deter-
mines if the signature is valid. The signature share verification algorithm takes as
input a message, a signature share on that message from a player i, along with
PK, VK, and VKi, and determines if the signature share is valid. The share
combining algorithm takes as input a message and k valid signature shares on
the message, along with the public key and (perhaps) the verification keys, and
outputs a valid signature on the message.

Non-forgeability. We say that the adversary forges a signature if at the end
of the game he outputs a valid signature on a message that was not submitted
as a signing request to at least k − t uncorrupted players. We say that the
threshold signature scheme is non-forgeable if it is computationally infeasible for
the adversary to forge a signature.

Discussion. Notice that our model explicitly requires that the generation and
verification of signature shares is completely non-interactive.

Also notice that we have two independent parameters t and k. As mentioned
in the introduction, previous investigations into threshold signatures have only
dealt with the case k = t + 1. In this case, the non-forgeability requirement
simply says that a signature is forged if no uncorrupted player was asked to sign
it. As we shall see, achieving non-forgeability when k > t + 1 is harder to do
than when k = t + 1. For simplicity, we shall start with the case k = t + 1.
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3 Protocol 1: A Very Simple RSA Threshold Scheme

We now describe Protocol 1, which will be analyzed in the next section when
k = t + 1.

The Dealer. The dealer chooses at random two large primes of equal length
(512 bit, say) p and q, where p = 2p′ + 1, q = 2q′ + 1, with p′, q′ themselves
prime. The RSA modulus is n = pq. Let m = p′q′. The dealer also chooses the
RSA public exponent e as a prime e > l.

The public key is PK = (n, e).
Next, the dealer computes d ∈ Z such that de ≡ 1 mod m. The dealer sets

a0 = d and chooses ai at random from {0, . . . , m − 1} for 1 ≤ i ≤ k − 1. The
numbers a0, . . . , ak−1 define the polynomial f(X) =

∑k−1
i=0 aiX

i ∈ Z[X].
For 1 ≤ i ≤ l, the dealer computes

si = f(i) mod m. (1)

This number si is the secret key share SKi of player i.
We denote by Qn the subgroup of squares in Z∗

n.
Next, the dealer chooses a random v ∈ Qn, and for 1 ≤ i ≤ l computes vi =

vsi ∈ Qn. These elements define the verification keys: VK = v, and VKi = vi.

Some Preliminary Observations. Note that Z∗
n ' Zm × Z2 × Z2. If we let

Jn denote the subgroup of elements x ∈ Z∗
n with Jacobi symbol (x|n) = 1, then

we have Qn ⊂ Jn ⊂ Z∗
n; moreover, Qn is cyclic of order m and Jn is cyclic of

order 2m. Also, −1 ∈ Jn\Qn.
Generally speaking, we shall ensure that all group computations are done

in Qn, and corresponding exponent arithmetic in Zm. This is convenient, since
m = p′q′ has no small prime factors.

Since the dealer chooses v ∈ Qn at random, we may assume that v generates
Qn, since this happens with all but negligible probability. Because of this, the
values vi completely determine the values si mod m.

For any subset of k points in {0, . . . , l}, the value of f(X) modulo m at these
points uniquely determines the coefficients of f(X) modulo m, and hence the
value of f(X) modulo m at any other point modulo in {0, . . . , l}. This follows
from the fact the corresponding Vandermonde matrix is invertible modulo m,
since its determinant is relatively prime to m.

From this, it follows that for any subset of k − 1 points in {1, . . . , l}, the
distributions of the value of f(X) modulo m at these points are uniform and
mutually independent.

Let ∆ = l!. For any subset S of k points in {0, . . . , l}, and for any i ∈
{0, . . . , l}\S, and j ∈ S, we can define

λS
i,j = ∆

∏
j′∈S\{j}(i − j′)∏
j′∈S\{j}(j − j′)

∈ Z. (2)

These values are derived from the standard Lagrange interpolation formula. They
are clearly integers, since the denominator divides j!(l−j)! which in turn divides
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l!. It is also clear that these values are easy to compute. From the Lagrange
interpolation formula, we have:

∆ · f(i) ≡
∑
j∈S

λS
i,jf(j) mod m. (3)

Valid Signatures. We next describe what a valid signature looks like. We need
a hash function H mapping messages to elements of Z∗

n. If x = H(M), then a
valid signature on M is y ∈ Z∗

n such that ye = x. This is just a classical RSA
signature.

Generating a Signature Share. We now describe how a signature share on a
message M is generated. Let x = H(M). The signature share of player i consists
of

xi = x2∆si ∈ Qn, (4)

along with a “proof of correctness.”
The proof of correctness is basically just a proof that the discrete logarithm

of x2
i to the base

x̃ = x4∆ (5)

is the same as the discrete logarithm of vi to the base v. For this, we can easily
adapt a well-known interactive protocol, due to Chaum and Pedersen [CP92].
We “collapse” the protocol, making it non-interactive, by using a hash function
to create the challenge—this is where the random oracle model will be needed.
We also have to deal with the fact that we are working in a group Qn whose order
is not known. But this is trivially dealt with by just working with sufficiently
large integers.

Now the details. Let L(n) be the bit-length of n. Let H ′ be a hash function,
whose output is an L1-bit integer, where L1 is a secondary security parameter
(L1 = 128, say). To construct the proof of correctness, player i chooses a random
number r ∈ {0, . . . , 2L(n)+2L1 − 1}, computes

v′ = vr , x′ = x̃r, c = H ′(v, x̃, vi, x
2
i , v

′, x′), z = sic + r.

The proof of correctness is (z, c).
To verify this proof of correctness, one checks that

c = H ′(v, x̃, vi, x
2
i , v

zv−c
i , x̃zx−2c

i ).

The reason for working with x2
i and not xi is that although xi is supposed to be

a square, this is not easily verified. This way, we are sure to be working in Qn,
where we need to be working to ensure soundness.

Combining Shares. We next describe how signature shares are combined. Sup-
pose we have valid shares from a set S of players, where S = {i1, . . . , ik} ⊂
{1, . . . , l}.



214 Victor Shoup

Let x = H(M) ∈ Z∗
n, and assume that x2

ij
= x4∆sij . Then to combine shares,

we compute

w = x
2λS

0,i1
i1

· · ·x2λS
0,ik

ik
,

where the λ’s are the integers defined in (2). From (3), we have we = xe′
, where

e′ = 4∆2. (6)

Since gcd(e′, e) = 1, it is easy to compute y such that ye = x, using a standard
algorithm: y = waxb where a and b are integers such that e′a + eb = 1, which
can be obtained from the extended Euclidean algorithm on e′ and e.

4 Security Analysis of Protocol 1

Theorem 1. For k = t + 1, in the random oracle model for H ′, Protocol 1 is
a secure threshold signature scheme (robust and non-forgeable) assuming the the
standard RSA signature scheme is secure.

We show how to simulate the adversary’s view, given access to an RSA signing
oracle which we use only when the adversary asks for a signature share from an
uncorrupted player.

Let i1, . . . , ik−1 be the set of corrupted players. Recall si ≡ f(i) mod m for
all 1 ≤ i ≤ l, and d ≡ f(0) mod m.

To simulate the adversary’s view, we simply choose the sij belonging to the
set of corrupted players at random from the set {0, . . . , bn/4c − 1}. We have
already argued that the the corrupted players’ secret key shares are random
numbers in the set {0, . . . , m− 1}. We have

n/4 − m = (p′ + q′)/2 + 1/4 = O(n1/2),

and from this a simple calculation shows that the statistical distance between
the uniform distribution on {0, . . . , bn/4c − 1} and the uniform distribution on
{0, . . . , m− 1} is O(n−1/2).

Once these sij values are chosen, the values si for the uncorrupted play-
ers are also completely determined modulo m, but cannot be easily computed.
However, given x, y ∈ Z∗

n with ye = x, we can easily compute xi = x2∆si for an
uncorrupted player i as

xi = y
2(λS

i,0+e(λS
i,i1

si1+···+λS
i,ik−1

sik−1))
,

where S = {0, i1, . . . , ik−1}. This follows from (3).
Using this technique, we can generate the values v, v1, . . . , vl, and also gen-

erate any share xi of a signature, given the standard RSA signature.
This argument shows why we defined the share xi to be x2∆si, instead of, say,

x2si. This same idea was used by Feldman [Fel87] in the context of the different
but related problem of verifiable secret sharing.
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With regard to the “proofs of correctness,” one can invoke the random oracle
model for the hash function H ′ to get soundness and statistical zero-knowledge.
This is quite straightforward, but we sketch the details.

First, consider soundness. We want to show that the adversary cannot con-
struct, except with negligible probability, a proof of correctness for an incorrect
share. Let x and xi be given, along with a valid proof of correctness (z, c). We
have c = H ′(v, x̃, vi, x

2
i , v

′, x′), where

x̃ = x4∆, v′ = vzv−c
i , x′ = x̃zx−2c

i .

Now, x̃, vi, x
2
i , v

′, x′ are all easily seen to lie in Qn, and we are assuming that v
generates Qn. So we have

x̃ = vα, vi = vsi , x2
i = vβ , v′ = vγ , x′ = vδ ,

for some integers α, β, γ, δ. Moreover,

z − csi ≡ γ mod m and zα − cβ ≡ δ mod m.

Multiplying the first equation by α and subtracting the second, we have

c(β − siα) ≡ αγ − δ mod m. (7)

Now, a share is correct if and only if

β ≡ siα mod m. (8)

If (8) fails to hold, then it must fail to hold mod p′ or mod q′, and so (7) uniquely
determines c modulo one of these primes. But in the random oracle model, the
distribution of c is uniform and independent of the inputs to the hash function,
and so this even happens with negligible probability.

Second, consider zero-knowledge simulatability. We can construct a simulator
that simulates the adversary’s view without knowing the value si. This view
includes the values of the random oracle at those points where the adversary has
queried the oracle, so the simulator is in complete charge of the random oracle.
Whenever the adversary makes a query to the random oracle, if the oracle has
not been previously defined at the given point, the simulator defines it to be
a random value, and in any case returns the value to the adversary. When an
uncorrupted player is supposed to generate a proof of correctness for a given x,
xi, the simulator chooses c ∈ {0, . . . , 2L1 − 1} and z ∈ {0, . . . , 2L(n)+2L1 − 1} at
random, and for given values x and xi, defines the value of the random oracle
at (v, x̃, vi, x

2
i , v

zv−c
i , x̃zx−2c

i ) to be c. With all but negligible probability, the
simulator has not defined the random oracle at this point before, and so it is
free to do so now. The proof is just (z, c). It is straightforward to verify that the
distribution produced by this simulator is statistically close to perfect.

From soundness, we get the robustness of the threshold signature scheme.
From zero-knowledge, and the above arguments, we get the non-forgeability
of the threshold signature scheme, assuming that the standard RSA signature
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scheme is secure, i.e., existentially non-forgeable against adaptive chosen message
attack. This last assumption can be further justified (see [BR93]): in the random
oracle model for H , this assumption follows from the RSA assumption—given
random x ∈ Z∗

n, it is hard to compute y such that ye = x.

5 Protocol 2: A Modification and Security Analysis when
k ≥ t + 1

We now present Protocol 2 and analyze its security when k ≥ t + 1. In our
analysis of Protocol 2, we need to make use of the random oracle model in a
fundamental way. As such, we fully exploit the random oracle model to get a
scheme that is a bit simpler and more efficient that Protocol 1.

Protocol 2 is obtained by modifying Protocol 1 as follows.
Instead of computing the secret key share si as in (1), the dealer computes

it as
si = f(i)∆−1 mod m.

We add to the verification key VK an element u ∈ Z∗
n with Jacobi symbol

(u|n) = −1. Note that the Jacobi symbol can be efficiently computed, and such
a u can be found just by random sampling.

We then modify the share generation algorithm as follows. Let x̂ = H(M).
We set

x =
{

x̂ if (x̂|n) = 1;
x̂ue if (x̂|n) = −1.

This forces the Jacobi symbol of x to be 1. The share generation, verification,
and combination algorithms then run as before, using this new value of x, except
that we make the following simplifications: we redefine xi, x̃, and e′ (defined in
(4), (5), and (6)) as

xi = x2si, x̃ = x4, e′ = 4.

Thus, we eliminate the somewhat “artificial” appearances of ∆ in the share
generation and combination algorithms.

The original share combination algorithm produces y such that ye = x. If
x = x̂ue, then we can divide y by u, obtaining an eth root of H(M), so we still
obtain a standard RSA signature.

That completes the description of Protocol 2.
To analyze the security of Protocol 2, we will need to work in the random

oracle model for H . The intractability assumptions we will need to make are
then as follows:

– The RSA assumption—it is hard to compute y such that ye = x, given
random x ∈ Z∗

n;
– The Decision Diffie-Hellman (DDH) assumption—given random g, h ∈ Qn,

along with ga and hb it is hard to decide if a ≡ b mod m.



Practical Threshold Signatures 217

We make our DDH assumption a bit more precise. For h ∈ Qn, a, b ∈ Zm,
and c ∈ {0, 1}, define

F (h, a, b, c) =
{

ha if c = 0;
hb if c = 1.

The DDH assumption states that for random g ∈ Qn, and random h, a, b, c
as above, it is hard to compute—with negligible error probability—c given
g, h, ga, F (h, a, b, c).

Note that this is an average-case complexity assumption. It is equivalent
to a worst-case complexity assumption, by a standard “random self reduction”
argument [Sta96,NR97], provided the inputs are restricted in the following way:
g and h should generate Qn, and gcd(a − b, m) /∈ {p′, q′}.

Note that the DDH is a reasonable assumption here, since the group Qn has
no small prime factors [Sho97].

By a standard “hybrid” argument (see [NR97]), the above DDH assumption
is equivalent to the following: the distributions

(g, ga1 , . . . , gas ; h, ha1 , . . . , has)

and
(g, ga1 , . . . , gas; h, hb1, . . . , hbs)

are computationally indistinguishable. Here s is any (small) number, g and h
are random elements of Qn, and the ai’s and bi’s are random numbers modulo
m. Note that it is possible to prove the same equivalence using the random
self-reducibility property of the DDH (see [Sho99] or [BBM00]).

Theorem 2. In the random oracle model for H and H ′, under the RSA and
DDH assumptions Protocol 2 is a secure threshold signature scheme (robust and
non-forgeable) for k ≥ t + 1; moreover, when k = t + 1, the same holds under
the RSA assumption alone.

The proof of the robustness property goes through as before. We focus here
in the proof of non-forgeability.

The reason we need the DDH assumption is the following: when k > t + 1,
some honest players may have to generate shares for the “target” message, and
we need the DDH to allow us to generate “dummy” shares in this case.

The random oracle model for H will allow the simulator to choose the outputs
of H as it wishes, so long as these outputs have the right distribution.

We now describe a series of simulators.

The First Simulator. The simulator chooses the shares for the corrupted play-
ers si1 , . . . , sit as random numbers chosen from {0, . . . , bn/4c−1}, just as it did
in the previous section.

Let g, git+1 , . . . , gik−1 be random elements in Qn. Here, it+1, . . . , ik−1 are
arbitrary indices of uncorrupted players. We assume that all of these group ele-
ments are generators for Qn, which is the case with all but negligible probability.
The values g, git+1 , . . . , gik−1 implicitly define sit+1 , . . . , sik−1 modulo m by the
equation gij = gsij .
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We next show how to sample from the distribution

x̂, x1, . . . , xl.

We choose r ∈ {0, . . . , bn/4c − 1} at random, and b1, b2 ∈ {0, 1} at random.
We set x̂ = (gr)∆2eu−b1e(−1)b2 , thus defining the corresponding value x to be
(gr)∆2e(−1)b2 . For one of the uncorrupted players ij ∈ {it+1, . . . , ik−1}, we have
xsj = (gr

ij
)2∆2e. For other uncorrupted players i, we can compute xi as

xi = (gr)2(λS
i,0+∆e(λS

i,i1
si1+···+λS

i,it
sit))(gr

it+1
)2∆eλS

i,it+1 · · · · · (gr
ik−1

)2∆eλS
i,ik−1 ,

where S = {0, i1, . . . , ik−1}. Again, this follows from (3).
We can generate values in this way so that x̂ is the output of the random

oracle H . We can also generate the verification keys v, v1, . . . , vl in basically the
same way.

This simulator generates x̂ in this way for every random oracle query, so we
will not be able to break the RSA problem with this simulator (this is only the
first step).

It is easy to see that this simulation is statistically close to perfect. The
one thing to notice is that x̂ is nearly uniformly distributed in Z∗

n. The proof
of this utilizes the fact that every element in Z∗

n can be expressed uniquely as
gau−eb1(−1)b2 , for a ∈ {0, . . . , m− 1}, and b1, b2 ∈ {0, 1}.
The Second Simulator. This simulator is the same as the first, except as
follows. Let g, git+1 , . . . , gik−1 and h, hit+1, . . . , hik−1 be random elements in Qn.
This simulator “guesses” which message will be forged by the adversary; that is,
we can assume that the forged message is an input to the random oracle, and
the simulator just guesses one of these queries is the “target” message.

Everything is the same as before, except that when generating x̂, x1, . . . , xl

for the target message, the simulator performs the same calculations using the
values h, hit+1, . . . , hik−1 instead of gr , gr

it+1
, . . . , gr

ik−1
in the calculation.

This simulation is no longer statistically indistinguishable from from the
real game, but this is where we use the DDH assumption. On this assumption,
with non-negligible probability, the adversary will still forge a message, and that
message will be the selected target.

Notice that the “correctness proofs” of the shares can be still be simulated
using the random oracle model for H ′ just as before—the fact that the statement
being “proved” is false is interesting, but irrelevant.

The Third Simulator. This simulator is the same as the first, except as fol-
lows. Let z be a random element in Z∗

n. For the target message hash value, the
simulator sets x̂ = z. Also, whenever the adversary asks for a signature share
xi on the target message from any uncorrupted player, the adversary simply
outputs a random quadratic residue. The “correctness proofs” can still be simu-
lated, just as before. If the adversary ever asks for more than k− t− 1 signature
shares on the target message, the simulator simply halts and reports an error.
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It is easy to see that the distribution of this simulation is identical to that of
the second simulation, provided the adversary does not ask for too many shares
of the target message. Indeed, because of the way the second simulator constructs
the signature shares xi from the uncorrupted players on the target message, any
subset of k − t − 1 of them is uniformly distributed in Qn, and independent of
all other variables in the adversary’s view. So with non-negligible probability,
the adversary will forge a signature on the target message, which means, in
particular, the he does not ask for too many shares. Moreover, if he forges this
signature, then he has computed an eth root of z in Z∗

n, thus contradicting the
RSA assumption.

To complete the proof of the theorem, we simply note that when k = t + 1,
the DDH is not needed at all in the above arguments.

Acknowledgments

Thanks to Rosario Gennaro for suggesting improvements to a previous version
of the paper.

References

BBM00. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a
multi-user setting: security proofs and improvements. In Advances in
Cryptology–Eurocrypt 2000, pages 259–274, 2000.

BR93. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for
designing efficient protocols. In First ACM Conference on Computer and
Communications Security, pages 62–73, 1993.

CKS00. C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantino-
ple: practical asynchronous Byzantine agreement using cryptography.
Manuscript, 2000.

CP92. D. Chaum and T. Pedersen. Wallet databases with observers. In Advances
in Cryptology–Crypto ’92, pages 89–105, 1992.

DDFY94. A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a func-
tion securely. In 26th Annual ACM Symposium on Theory of Computing,
pages 522–533, 1994.

Des87. Y. Desmedt. Society and group oriented cryptography: a new concept. In
Advances in Cryptology–Crypto ’87, pages 120–127, 1987.

DF89. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Advances in
Cryptology–Crypto ’89, pages 307–315, 1989.

DF91. Y. Desmedt and Y. Frankel. Shared generation of authenticators and
signatures. In Advances in Cryptology–Crypto ’91, pages 457–569, 1991.

ElG85. T. ElGamal. A public key cryptosystem and signature scheme based on
discrete logarithms. IEEE Trans. Inform. Theory, 31:469–472, 1985.

FD92. Y. Frankel and Y. Desmedt. Parallel reliable threshold multisignature.
Technical Report TR-92-04-02, Univ. of Wisconsin–Milwaukee, 1992.

Fel87. P. Feldman. A practical scheme for non-interactive verifiable secret shar-
ing. In 28th Annual Symposium on Foundations of Computer Science,
pages 427–437, 1987.



220 Victor Shoup

FGMY97a. Y. Frankel, P. Gemmall, P. MacKenzie, and M. Yung. Optimal-resilience
proactive public-key cryptosystems. In 38th Annual Symposium on Foun-
dations of Computer Science, 1997.

FGMY97b. Y. Frankel, P. Gemmall, P. MacKenzie, and M. Yung. Proactive RSA. In
Advances in Cryptology–Crypto ’97, 1997.

FS87. A. Fiat and A. Shamir. How to prove yourself: practical solutions to
identification and signature problems. In Advances in Cryptology–Crypto
’86, Springer LNCS 263, pages 186–194, 1987.

GJKR96a. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and efficient
sharing of RSA functions. In Advances in Cryptology–Crypto ’96, pages
157–172, 1996.

GJKR96b. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold
DSS. In Advances in Cryptology–Eurocrypt ’96, pages 354–371, 1996.

Har94. L. Harn. Group-oriented (t, n) threshold digitial signature scheme and
digital multisignature. IEE Proc.-Comput. Digit. Tech., 141(5):307–313,
1994.

MS95. S. Micali and R. Sidney. A simple method for generating and sharing
pseudo-random functions, with applications to Clipper-like key escrow sys-
tems. In Advances in Cryptology–Crypto ’95, pages 185–196, 1995.

NR97. M. Naor and O. Reingold. Number-theoretic constructions of efficient
pseudo-random functions. In 38th Annual Symposium on Foundations of
Computer Science, 1997.

Rab98. T. Rabin. A simplified approach to threshold and proactive RSA. In
Advances in Cryptology–Crypto ’98, 1998.

RSA78. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the
ACM, pages 120–126, 1978.

Sha79. A. Shamir. How to share a secret. Communications of the ACM, 22:612–
613, 1979.

Sho97. V. Shoup. Lower bounds for discrete logarithms and related problems. In
Advances in Cryptology–Eurocrypt ’97, 1997.

Sho99. V. Shoup. On formal models for secure key exchange. IBM Research
Report RZ 3120, April 1999.

Sta96. M. Stadler. Publicly verifiable secret sharing. In Advances in Cryptology–
Eurocrypt ’96, pages 190–199, 1996.


	Introduction
	System Model and Security Requirements
	Protocol 1: A Very Simple RSA Threshold Scheme
	Security Analysis of Protocolnobreakspace {}1
	Protocol 2: A Modification and Security Analysis when $k ge t+1$

