
Cox-Rower Architecture for

Fast Parallel Montgomery Multiplication

Shinichi Kawamura1, Masanobu Koike2, Fumihiko Sano2, and Atsushi Shimbo1

1 Toshiba Research and Development Center
1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki, 212-8582, Japan

2 Toshiba System Integration Technology Center
3-22, Katamachi Fuchu-shi, Tokyo, 183-8512, Japan

{shinichi2.kawamura,masanobu2.koike,fumihiko.sano,atsushi.shimbo}
@toshiba.co.jp

Abstract. This paper proposes a fast parallel Montgomery multipli-
cation algorithm based on Residue Number Systems (RNS). It is easy
to construct a fast modular exponentiation by applying the algorithm
repeatedly. To realize an efficient RNS Montgomery multiplication, the
main contribution of this paper is to provide a new RNS base extension
algorithm. Cox-Rower Architecture described in this paper is a hardware
suitable for the RNS Montgomery multiplication. In this architecture, a
base extension algorithm is executed in parallel by plural Rower units
controlled by a Cox unit. Each Rower unit is a single-precision modular
multiplier-and-accumulator, whereas Cox unit is typically a 7 bit adder.
Although the main body of the algorithm processes numbers in an RNS
form, efficient procedures to transform RNS to or from a radix repre-
sentation are also provided. The exponentiation algorithm can, thus, be
adapted to an existing standard radix interface of RSA cryptosystem.

1 Introduction

Many researchers have been working on how to implement public key cryptogra-
phy faster. A fast modular multiplication for large integers is of special interest
because it gives a basis for a fast modular exponentiation which is used for
many cryptosystems such as, RSA, Rabin, Diffie-Hellman and ElGmal. Recent
improvement of factoring an integer leads to a recommendation that one should
use a longer key size. So, even faster algorithms are required. A lot of work has
been done with a view to realizing a fast computation in a radix representation. It
might seem that in a radix representation, all the major performance improve-
ments have been achieved. Nevertheless, use of the Residue Number Systems
(RNS) appears to be a promising approach for achieving a breakthrough.

RNS is a method of representing an integer with a set of its residues in
terms of a given base which is a set of relatively prime moduli. A well-known
advantage of RNS is that if addition, subtraction, or multiplication are to be
done, the computation for each RNS element can be carried out independently. If
n processing units perform the computation, the processing speed will be n times

B. Preneel (Ed.): EUROCRYPT 2000, LNCS 1807, pp. 523–538, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

524 Shinichi Kawamura et al.

faster. So, RNS is studied with a view to its application in the areas where fast
and parallel processing methods are required[1,2,3,4]. Digital signal processing is
one such area. As for cryptographic applications, a paper by Quisquater, et al.[5]
was the first report on the application of RNS to RSA cryptosystem[6]. With
respect to RNS, however, it deals with a limited case since one cannot choose
an arbitrary base, rather one has to choose secret keys p and q as the RNS base.
Thus, it can be applied only to decryption. The disadvantages of RNS are that
division and comparison are not efficiently implemented. Therefore, although
RNS is considered to be a good candidate for a fast and parallel computation
for public key cryptography, it was not until the early 90’s that RNS was shown
to be really applicable for that purpose.

To overcome the disadvantages of RNS, a novel approach to combine RNS
with Montgomery multiplication was proposed. The idea behind this is that
since Montgomery multiplication effectively avoids the division in a radix repre-
sentation, it is expected to be effective for avoiding difficulties in implementing
division in RNS as well. To the best of our knowledge, Posch, et al. are the first
who invented an RNS Montgomery multiplication[7]. Other works [9] and [11]
also discuss RNS Montgomery multiplications. These works deal with methods
where RNS base can be chosen almost independently of secret keys p and q. So,
these algorithms can be applied to RSA encryption as well as decryption. Note
that Paillier’s algorithm in [11] is aimed at a special case where the base size is
limited to 2. The latter two systems,[9] and [11], are partly based on a mixed
radix representation. It seems to us that a fully parallel computation cannot be
realized in this setting and thus the methods are slower. So far, Posch, et al.’s
method seems the fastest for a parallel hardware and general parameters.

According to three forerunners above, most of the processing time for RNS
Montgomery multiplication is devoted to base extensions. A base extension is
a procedure to transform a number represented in an RNS base into that in
another base, the subset of which is the original base. So, the main contribution
of this paper is to provide a new base extension algorithm. This results in a new
RNS Montgomery multiplication algorithm which requires less hardware and is
more sophisticated than Posch, et al.’s. It is easy to realize modular exponen-
tiation algorithm by applying the RNS Montgomery multiplication repeatedly.
In addition, it is important that the algorithm can be adapted to an existing
standard RSA interface, i.e., usually, a radix representation. Therefore, another
purpose of this paper is to provide efficient ways to transform RNS to or from a
radix representation.

This paper is organized as follows: Section 2 briefly describes basic notions
such as an RNS representation, a Montgomery multiplication, and an RNS Mont-
gomery multiplication. In section 3, a new base extension algorithm is proposed,
which plays an important role in an RNS Montgomery multiplication. Section
4 presents Cox-Rower Architecture and the RNS Montgomery multiplication
algorithm, which is applied to construct an exponentiation algorithm. Trans-
formations between RNS and a radix representation are shown as well. Section

Cox-Rower Architecture for Fast Parallel Montgomery Multiplication 525

5 deals with implementation issues such as parameter design and performance.
Section 6 concludes the paper.

2 Preliminaries

2.1 Residue Number Systems

Usually, a number is expressed in a radix representation. A radix 2r representa-
tion of x is n-tuple (x(n−1), · · · , x(0)) which satisfies

x =
n−1∑
i=0

x(i)2ri = (2r(n−1), . . . , 2r, 1)

x(n−1)

...
x(1)

x(0)

 (1)

where, 0 ≤ x(i) ≤ 2r − 1.
Residue Number Systems (RNS) are also a method for representing a number.

Let < x >a denote an RNS representation of x, then

< x >a= (x[a1], x[a2], · · · , x[an])

where, x[ai] = x mod ai. The set a = {a1, a2, · · · , an} is called a base whose
number of elements is called a base size. In this example, a base size is n. We
require here that gcd(ai, aj) = 1 (if i 6= j).

According to the Chinese remainder theorem, x can be computed from <
x >a as

x =

(
n∑

i=1

x[ai]A−1
i [ai]Ai

)
mod A =

(
n∑

i=1

(x[ai]A−1
i [ai] mod ai)Ai

)
mod A(2)

where, A =
∏n

i=1 ai, Ai = A/ai, and A−1
i [ai] is a multiplicative inverse of Ai

modulo ai. In Equation (2), the expression in the middle is a general form,
whereas our base extension is based on the last one.

In the following section, we use two different bases, a and b, to realize an RNS
modular multiplication. They are assumed to satisfy gcd(A, B) = 1. A symbol
m is sometimes used instead of a or b when the symbol can be replaced by either
a or b. We also use a convention that < z >a∪b= (< x >a, < y >b) which means
that z is a number that satisfies z ≡ x(modA), z ≡ y(modB), and z < AB.

The advantages of an RNS representation are that addition, subtraction,
and multiplication are simply realized by modular addition, subtraction, and
multiplication of each element:

< x >a ± < y >a = ((x[a1]± y[a1])[a1], · · · , (x[an]± y[an])[an])
< x >a · < y >a = ((x[a1]y[a1])[a1], · · · , (x[an]y[an])[an]) .

Since each element is independently computed, if n computation units run in
parallel, this computation finishes within a time required for a single operation of
the unit. The disadvantages of an RNS representation are that it is comparatively
difficult to perform comparison and division[12].

526 Shinichi Kawamura et al.

2.2 Montgomery Multiplication

Montgomery’s modular multiplication method without division is a standard
method in a radix representation to implement a public key cryptography which
requires modular reduction[13]. The algorithm is presented in five steps below
whose inputs are x, y, and N (x, y < N), and the output is w ≡ xyR−1(mod N),
where w < 2N .

1: s← xy
2: t← s · (−N−1) mod R
3: u← t ·N
4: v ← s + u
5: w← v/R

where, gcd(R, N) = 1 and N < R. In step 2, t is computed so that v is a
multiple of R. Actually, assume that v is a multiple of R, i.e., v mod R = 0,
then (s+ tN) mod R = 0. This equation is solved as t ≡ −sN−1(modR), which
is equivalent to the computation in step 2. R must be chosen so that steps 2
and 5 are efficiently computed. It is usually chosen to be 2’s power in a radix 2
representation. gcd(R, N) = 1 ensures existence of N−1 mod R. Condition N <
R is sufficient for w < 2N because w = (xy+ tN)/R < (N2 +RN)/R = (N/R+
1)N < 2N . Since wR = xy + tN , wR ≡ xy (modN) holds. By multiplying
R−1 mod N on both sides, w ≡ xyR−1(modN) is obtained. The Montgomery
multiplication is also useful for avoiding inefficient divisions in RNS.

2.3 Montgomery Multiplication in RNS

To derive an RNS Montgomery multiplication algorithm, we introduce two RNS
bases a and b, and translate 5 steps in the previous section into the RNS com-
putation in base a∪ b. It is assumed that A and B is chosen sufficiently large, so
that all intermediate values are less than AB. Under this assumption, steps 1, 3,
and 4 in the previous section is easily transformed into RNS form. For instance,
step 1 will be performed by < s >a∪b=< x >a∪b · < y >a∪b.

As for step 2, a constant R is set to B =
∏n

i=1 bi. Then, t can be computed
simply by < t >b=< s >b< −N−1 >b. It is necessary, however, that < t >a∪b is
derived from < t >b so that the computation in base a ∪ b is continued. In this
paper, such a procedure is called a base extension, where a number represented
in either base a or base b is transformed into that in base a ∪ b.

The remaining step is 5. Since v is a multiple of B, w is an integer which
satisfies v = wB. So, if A is larger than w, w can be computed by < w >a=<
v >a · < B−1 >a. Note that base b representation is unnecessary to realize step
5 in RNS. In addition, base b representation in step 4 is always < v >b=< 0 >b,
because v is a multiple of B. So, the computation in base b at steps 3 and 4 can
be skipped as well.

Figure 1 shows an overview of the RNS Montgomery multiplication algo-
rithm. In this Figure, operations in base a and base b are shown separately.
Each step corresponds to the step of the same number in the previous section.

Cox-Rower Architecture for Fast Parallel Montgomery Multiplication 527

Input: < x >a∪b, < y >a∪b, (where x, y < 2N)
Output: < w >a∪b (where w ≡ xyB−1(modN), w < 2N)

Base a Operation Base b Operation

1: < s >a←< x >a · < y >a < s >b←< x >b · < y >b

2a: — < t >b←< s >b · < −N−1 >b

2b: < t >a∪b⇐=< t >b

3: < u >a←< t >a · < N >a —
4: < v >a←< s >a + < u >a —
5a: < w >a←< v >a · < B−1 >a —
5b: < w >a=⇒< w >a∪b

Fig. 1. Overview of the Montgomery Multiplication in RNS

Almost the same procedure is provided by Posch, et al[7]. Note that the range
of input is changed from less than N to less than 2N . The purpose of it is to
make the range of input and output compatible with each other, so that it be-
comes possible to construct a modular exponentiation algorithm by repeating
the Montgomery multiplication. Base extension at step 5b is necessary for the
same reason.

If the two base-extension steps in Fig.1 are error-free, we can specify the
condition that A and B should satisfy for a given N . Condition that gcd(B, N) =
1 and gcd(A, B) = 1 is sufficient for the existence of N−1 mod B and B−1 mod
A, respectively. 4N ≤ B is also sufficient for w < 2N to hold when x, y < 2N .
Actually,

w =
v

B
=

xy + tN

B
<

(2N)2 + BN

B
=
(

4N

B
+ 1
)

N ≤ 2N.

This equation also shows that condition 2N ≤ A is sufficient for w < A and
v < AB. Since v is the maximum intermediate value, all values are less than
AB. In summary, the following four conditions are sufficient:

– gcd(B, N) = 1,
– gcd(A, B) = 1,
– 4N ≤ B, and
– 2N ≤ A.

Since the base extension algorithm proposed later introduces approximations,
the last two conditions will be modified in section 4.1 by Theorem 3.

In Fig.1, if n processing units perform in parallel, the processing time is
roughly estimated as the time for 5 single-precision modular multiplications plus
two base extensions. Therefore the devising of a fast base extension algorithm is
crucial for realizing a fast RNS Montgomery multiplication.

528 Shinichi Kawamura et al.

3 New Approach for Base Extension

3.1 Reduction Factor k

One might transform an RNS expression to another via a radix representation,
i.e., < x >m→ x→< x >m′ and thus, obtain < x >m∪m′= (< x >m, < x >m′).
However, such a naive approach usually requires multi-precision integer arith-
metic which it is preferable to avoid. Nevertheless, considering how to represent
x with < x >m’s elements is a key approach in our work as well as in [7], [9],
and [11]. From Equation (2), there exists a unique integer k that satisfies

x =
n∑

i=1

(x[mi]M−1
i [mi] mod mi)Mi − kM. (3)

In this paper, k is called a reduction factor. Our objective here is to represent k
with known variables. Let us define a value ξi as

ξi = x[mi]M−1
i [mi] mod mi.

Then, Equation (3) is simplified as

x =
n∑

i=1

ξiMi − kM. (4)

Here unknown parameters are k and x. If both sides are divided by M , it follows
that

n∑
i=1

ξi

mi
= k +

x

M
. (5)

Since 0 ≤ x/M < 1, k ≤∑n
i=1

ξi
mi

< k + 1 holds. Therefore,

k =

⌊
n∑

i=1

ξi

mi

⌋
.

Here, 0 ≤ k < n holds, because 0 ≤ ξi/mi < 1. It is important that k is
upperbounded by n. Due to this property our algorithm is simpler than Posch,
et al.’s algorithm.

3.2 Approximate Representation for Factor k

In the previous section a close estimate for k is derived. It requires, however,
division by base values which is in general not easy. To facilitate the computation,
two approximations are introduced here:

– a denominator mi is replaced by 2r, where 2r−1 < mi ≤ 2r

– a numerator ξi is approximated by its most significant q bits, where q < r

Cox-Rower Architecture for Fast Parallel Montgomery Multiplication 529

In this paper it is assumed that r is common to all base elements to realize
modularity of hardware, whereas in general r may be different for each mi.
With these approximations, k̂ is given by

k̂ =

⌊
n∑

i=1

trunc(ξi)
2r

+ α

⌋
(6)

where, trunc(ξi) = ξi

∧
(

q︷ ︸︸ ︷
1 . . .1

(r−q)︷ ︸︸ ︷
0 . . .0)(2), and

∧
means a bitwise AND operation.

An offset value α is introduced to compensate errors caused by approximation.
Suggested values of α will be derived later. Since division by 2’s power can be
realized by virtually shifting the fixed point, the approximate value k̂ is computed
by addition alone. Further, k̂ can be computed recursively bit by bit using the
following equations with an initial value σ0 = α:

σi = σi−1 + trunc(ξi)/2r, ki = bσic, σi = σi − ki (for i = 1, · · · , n). (7)

It is easy to show that the sequence ki satisfies k̂ =
∑n

i=1 ki, and ki ∈ {0, 1}.
To evaluate the effect of the approximation later, εs’ and δs’ are defined as

εmi = (2r −mi)/2r, δmi = (ξi − trunc(ξi))/mi (8)
εm = Max(εmi), δm = Max(δmi) (9)

ε = Max(εa, εb), δ = Max(δa, δb). (10)

ε is due to a denominator’s approximation and δ is related to a numerator’s.

3.3 Recursive Base Extension Algorithm

Integrating Equations (4), (6), and (7), a main formula for a base extension from
base m to base m ∪m′ is derived as

x[m′
i] =

 n∑
j=1

{ξjMj [m′
i] + kj(m′

i −M [m′
i])}
 mod m′

i (for ∀i). (11)

Figure 2 shows the overall base extension procedure, where step 7 corresponds
to Equation (11) and steps 2, 4, 5, and 6 to Equation (7). n processing units
are assumed to run in parallel. Each unit is dedicated to some mi or m′

i and
independently computes

cj = (cj−1 + fjgj + dj) mod mi.

Since the algorithm introduces approximation, the base extension algorithm
does not always output a correct value. The following two theorems state how
much error will occur under two different conditions. Refer to Appendix A for
their proofs.

530 Shinichi Kawamura et al.

Input: < x >m; m, m′; α
Output: < z >m∪m′= (< x >m, < y >m′)
Precomputation: < M−1

i >m, < Mi >m′ (for∀i), < −M >m′

1: ξi = x[mi] ·M−1
i [mi] mod mi (for∀i)

2: σ0 = α, yi,0 = 0 (for∀i)
3: For j = 1, · · · , n, compute.
4: σj = σ(j−1) + trunc(ξj)/2

r

5: kj = bσjc /* Comment: kj ∈ {0, 1} */
6: σj = σj − kj

7: yij = yi,(j−1) + ξj ·Mj [m
′
i] + kj · (−M)[m′

i] (for∀i)
8: End for

9: y[m′
i] = yi,n mod m′

i (for∀i)

Fig. 2. Base Extension Algorithm (BE)

Theorem 1. If 0 ≤ n(εm + δm) ≤ α < 1 and 0 ≤ x < (1 − α)M , then k̂ = k
and the algorithm BE (in Fig.2) extends the base without error, i.e., z = x
holds with respect to output < z >m∪m′ .

Theorem 2. If α = 0, 0 ≤ n(εm + δm) < 1 and 0 ≤ x < M , then k̂ =
k or k− 1 and the algorithm BE (in Fig.2) outputs < z >m∪m′ which satisfies
z ≡ x(modM) and z < {1 + n(εm + δm)}M .

Theorem 1 means that if an offset α is properly chosen, the algorithm BE
is error-free so long as the input x is not too close to M . Note that x is not
lowerbounded. On the other hand, Theorem 2 means that without an offset α,
for any input x, the algorithm BE outputs a correct value or correct value plus
M . As for Theorem 2, in [7], Posch, et al., observed a similar fact with respect
to their own base extension algorithm.

4 Cox-Rower Architecture

4.1 RNS Montgomery Multiplication Algorithm

The Montgomery multiplication algorithm in Fig.3 is derived by integrating base
extension algorithm in Fig.2 into the flow in Fig.1. At the base extension in step
4, an offset value is 0 and the extension error upperbounded by Theorem 2 will
occur. In Fig.3, a symbol t̂ is used in place of t to imply extension error. In
step 8, on the other hand, the offset value α is chosen so that the extension is
error-free by Theorem 1. As will be shown later, typical offset value is 1/2.

By defining ∆ = n(ε + δ), the theorem below ensures correctness of the
algorithm. Refer to Appendix B for the proof.

Theorem 3. If (1) gcd(N, B) = 1, (2) gcd(A, B) = 1, (3) 0 ≤ ∆ ≤ α < 1,
(4) 4N/(1 − ∆) ≤ B, and (5) 2N/(1 − α) ≤ A, then for any input x, y <
2N , the algorithm MM (in Fig.3) outputs < w >a∪b which satisfies w ≡
xyB−1(modN), w < 2N .

Cox-Rower Architecture for Fast Parallel Montgomery Multiplication 531

Condition (4) is derived to satisfy w < 2N . Conditions (3) and (5) are necessary
in order that the base extension at step 8 is error-free. Conditions (4) and (5)
are sufficient for the largest intermediate value v to be less than AB. Theorem
3 ensures that the range of an output w is compatible with that of inputs x
and y. This allows us to use the algorithm repeatedly to construct a modular
exponentiation.

Input: < x >a∪b, < y >a∪b (where x, y < 2N)
Output: < w >a∪b (where w ≡ xyB−1(modN), w < 2N)
Precomputation: < −N−1 >b, < N >a, < B−1 >a

1: s[ai] = x[ai] · y[ai] mod ai (for∀i)

2: s[bi] = x[bi] · y[bi] mod bi (for∀i)

3: t[bi] = s[bi] · (−N−1)[bi] mod bi (for∀i)

4: < bt >a∪b← BE(< t >b; b, a; 0)

5: u[ai] = bt[ai] ·N [ai] mod ai (for∀i)

6: v[ai] = (s[ai] + u[ai]) mod ai (for∀i)
7: w[ai] = v[ai] ·B−1[ai] mod ai (for∀i)
8: < w >a∪b← BE(< w >a; a, b; α > 0)

(Note: BE is the algorithm shown in Fig.2.)

Fig. 3. RNS Montgomery Multiplication Algorithm (MM)

Figure 4 shows a typical hardware structure suitable for the RNS Mont-
gomery multiplication. There are n sets of Rower units and a Cox unit. Each
Rower unit has a multiplier-and-accumulator with modular reduction by ai or
bi. Cox unit consists of truncation unit, q-bit adder, and its output register.
It computes k̂ bit by bit. Cox unit acts as if it directs the Rower units which
compute the main part of a Montgomery multiplication.

Our proposal has an advantage over the Posch, et al.’s [7][8] in that the
base extension in step 8 is error-free. This makes extra steps for error correction
unnecessary in our algorithm. In addition, in our algorithm, the reduction factor
k can be computed by addition alone, whereas a multiplier-and-accumulator
similar to a Rower unit is required in their algorithm. Unlike Posch, et al.’s,
there is no lower bound for N in our algorithm. This means an LSI which can
execute 1024 bit RSA cryptosystem can also deal with 768 bit, 512 bit, and so
on.

4.2 Exponentiation with RNS Montgomery Multiplication

Figure 5 shows an exponentiation algorithm based on the binary method, other-
wise known as square-and-multiply method. The main loop of the algorithm is
realized by the repetition of Montgomery multiplications in Fig.3. The first step
of the algorithm transforms an input integer x into x′ = xB mod N . The last

532 Shinichi Kawamura et al.

Fig. 4. The Cox-Rower Architecture

step is the inverse of the first step. It is possible to replace a binary exponenti-
ation method by other more efficient methods such as a window method.

In [7] and [10], it was proposed that RNS should be used as the input and
output representation of the algorithm, presumably to avoid further steps nec-
essary for Radix-to-RNS and RNS-to-Radix transformations. Actually, they did
not provide any Radix to or from RNS transformations. In order to adapt the ar-
chitecture to an existing interface of the RSA cryptosystem, it seems important
to provide Radix to or from RNS transformations suitable for the Cox-Rower
Architecture. Such transformations will be provided in the following two sections.

Input: < x >a∪b, e = (ek, · · · , e1)(2) (where ek = 1, k ≥ 2)
Output: < y >a∪b (where y ≡ xe(modN), y < 2N)
Precomputation: < B2 mod N >a∪b

1: < x′ >a∪b←MM(< x >a∪b, < B2 mod N >a∪b)
2: < y >a∪b←< x′ >a∪b

3: For i = k − 1, · · · , 1, compute.
4: < y >a∪b←MM(< y >a∪b, < y >a∪b)
5: If ei = 1, then < y >a∪b←MM(< y >a∪b, < x′ >a∪b)
6: End for
7: < y >a∪b←MM(< y >a∪b, < 1 >a∪b)

(Note: MM is the algorithm shown in Fig.3.)

Fig. 5. RNS Modular Exponentiation Algorithm (EXP)

Cox-Rower Architecture for Fast Parallel Montgomery Multiplication 533

4.3 RNS-Radix Conversion

As Equation (4) is the basis for the whole algorithm, the equation is used as the
basis for the RNS-to-Radix conversion. Radix-2r representations for Ai and A
are derived below.

Ai = (2r(n−1), . . . , 2r, 1)

Ai(n−1)

...
Ai(1)

Ai(0)

 , A = (2r(n−1), . . . , 2r, 1)

A(n−1)

...
A(1)

A(0)

By substituting these into Equation (4) and rearranging the equation, we obtain,

x = (2r(n−1), . . . , 2r, 1)
n∑

i=1

ξi

Ai(n−1)

...
Ai(1)

Ai(0)

− ki

A(n−1)

...
A(1)

A(0)

 . (12)

Each row in Equation (12) can be computed in parallel by using the Cox-Rower
Architecture. Note that in this case, carry should be accumulated in each unit
while the n steps of summation are being continued. After the summation is
finished, the saved carry is propagated from Rower unit 1 up to Rower unit n.
The carry propagation circuit is shown in Fig.4 with arrows from Rower unit
(i − 1) to i. This carry propagation requires n steps. The transformation is
error-free if Conditions in Theorem 1 is satisfied.

Although the transformed value is error-free, the output value of the Mont-
gomery multiplication itself may be larger than modulus N . Therefore it is nec-
essary that N is subtracted from the transformed radix representation if it is
larger than N . This is called a (final) correction, and is carried out in n steps
on the same hardware.

4.4 Radix-RNS Conversion

Given a radix-2r representation of x as (x(n−1), · · · , x(0)), we have to derive a
method to compute < x >m , that matches the Cox-Rower Architecture. By
applying mod mi operation to Equation (1), we obtain

x[mi] =

n−1∑
j=0

x(j) · (2rj[mi])

 mod mi (for ∀i).

If constant 2rj[mi] is precomputed, this computation is well suited to the Cox-
Rower Architecture. The computation finishes in n steps when executed by n
units in parallel.

534 Shinichi Kawamura et al.

5 Implementation

5.1 Parameter Design

This section describes a procedure to determine parameters r, n, ε, δ, α, and q,
for a given modulus N to satisfy five Conditions in Theorem 3. First we assume
N is 1024 bit number and all base elements ai and bi are 32 bit, i.e., r = 32.
This requires nr > 1024 and thus n ≥ 33.

Since ε = Max(2r −mi)/2r, if ai and bi are taken sufficiently close to 2r, ε
can be small. Actually, by computer search, for n = 33, we can find a and b with
ε < 2−22, which satisfy Conditions (1) and (2) in Theorem 3.

δ’s upper bound is mainly restricted by q, namely, the precision of the adder
in Cox unit. We can derive the following inequality (See Appendix C).

δ ≤ 1
2q
· 1− 2−(r−q)

1− ε
' 1

2q

The last approximation is correct if 2−(r−q) � 1 and ε� 1. On the other hand,
Condition (3) ∆ = n(ε + δ) ≤ α is rearranged to δ ≤ α/n − ε. Therefore, the
following condition is sufficient for ∆ to be less than α.

1
2q

<
α

n

(
1− εn

α

)
If we choose α = 1/2, n = 33, and ε < 2−22, the minimum acceptable value for
q is 7. This means Cox unit should have a 7 bit adder to satisfy Condition (3)
and the initial value α of its output register can be 1/2.

Finally, by the definition of ε, A, B ≥ 2nr(1−ε) can be shown. Comparing this
value with 4N/(1−∆) and 2N/(1− α), it is shown that for n = 33, Conditions
(4) 4N/(1−∆) ≤ B and (5) 2N/(1− α) ≤ A are satisfied.

5.2 Performance

Table 1 summarizes number of operations necessary to estimate the modular ex-
ponentiation time. Columns (1), (2), and (3) of the table correspond to a Mont-
gomery multiplication, an exponentiation, and other functions, respectively. Let
L, f , and R denote the total number of operations, a frequency of operation,
and a throughput of exponentiation, respectively. L is then roughly estimated
by L = (1)× (2) + (3) and R = f · nr/(L/n). Here, L is divided by n because n
processing units operate at a time. The throughput R is then approximated by

R ≈ f

3n + 27/2
.

For 1024-bit full exponentiation, R is about 890 [kbit/sec] if r = 32, n = 33,
and f = 100MHz are chosen. According to [8], these are a reasonable choice
for deep sub-micron CMOS technologies such as 0.35 – 0.18 µm. If a binary
exponentiation is replaced by a 4-bit window method, R is improved to 1.1
[Mbps] with a penalty of approximately 4 kByte RAM increase. Table 2 shows
the required memory size for a binary exponentiation.

Cox-Rower Architecture for Fast Parallel Montgomery Multiplication 535

Table 1. Number of Operations in algorithm EXP

(1) (2) (3)
Alg. MM Alg. EXP Others

Alg. BE Others No. of MM Radix-RNS RNS-Radix Correction

Operation mod-mul mod-mul – mod-mul mod-mul Subtraction

No. of
Operations 2n(n + 2) 5n 3nr

2
+ 2 n2 2n2 + n n2

Table 2. Memory Size (r = 32, n = 33)

RAM (Byte) ROM (Byte)

Symbol nr nr(7n + 11)/8

Total 1k 32k

Per Rower Unit 32 970

6 Conclusion

A new RNS Montgomery multiplication algorithm has been presented. Our al-
gorithm together with representation transformations can be implemented on
the Cox-Rower Architecture proposed in this paper. The performance is roughly
estimated and turns out to be quite high because of the inherent parallelism of
RNS. This paper contains no explanation about the fact that a modular reduc-
tion operation y = x mod mi which is used in Equation (11) etc. can be relaxed
to y ≡ x(modmi) and y < 2r. In this case as well, theorems similar to Theorem
1, 2, and 3 can be proven. The relaxed modular reduction will result in simpler
hardware. In addition, for moduli mi = 2r − µi, µi can be chosen so that the
modular reduction is fast, and µi � 2r is one such criteria. A VLSI design and
a detailed performance estimation remains to be studied.

References

1. A. P. Shenoy, R. Kumaresan, “Fast Base Extension Using a Redundant Modulus
in RNS,” IEEE Trans. on Computers, Vol.38, No.2, pp.292–297, Feb. 1989.

2. A. P. Shenoy, R. Kumaresan, “Residue to Binary Conversion for RNS Arithmetic
Using Only Modular Look-up Tables,” IEEE Trans. on Circuit and Systems, Vol.35,
No.9, pp.1158–1162, Sep. 1988.

3. M. A. Soderstrand, C. Vernia, Jui-Hua Chang “An Improved Residue Number
System Digital-to-Analog Converter,” IEEE Trans. on Circuit and Systems, Vol.30,
No.12, pp.903–907, Dec. 1983.

4. C. H. Huang, “A Fully Parallel Mixed-Radix Conversion Algorithm for Residue
Number Applications,” IEEE Trans. on Computers, Vol.32, No.4, pp.398–402,
April, 1983.

536 Shinichi Kawamura et al.

5. J.-J. Quisquater, C. Couvreur, “Fast Decipherment Algorithm for RSA Public-Key
Cryptosystem,” Electronics Letters, Vol.18, pp.905–907, Oct., 1982.

6. R. Rivest, A. Shamir, L. Adleman, “A Method for Obtaining Digital Signatures and
Public Key Cryptosystems,” Communications of the ACM, Vol.21, No.2, pp.120–
126, Feb., 1978.

7. K. C. Posch, R. Posch, “Modulo Reduction in Residue Number Systems,” IEEE
Trans. on Parallel and Distributed Systems, Vol.6, No.5, pp.449–454, May 1995.

8. J. Schwemmlein, K. C. Posch, R. Posch, “RNS-Modulo Reduction Upon a Restricted
Base Value Set and its Applicability to RSA Cryptography,” Computer & Security,
Vol.17, No.7, pp.637–650, 1998.

9. Jean-Claud Bajard, Laurent-Stephane Didier, Peter Kornerup, “An RNS Mont-
gomery Multiplication Algorithm,” Proceedings of ARITH13, IEEE Computer So-
ciety, pp.234–239, July 1997.

10. Jean-Claud Bajard, Laurent-Stephane Didier, Peter Kornerup, “An RNS Mont-
gomery Multiplication Algorithm,” IEEE Trans. on Computers, Vol.47, No.7,
pp.766–776, 1998.

11. Pascal Paillier, “Low-Cost Double-Size Modular Exponentiation or How to Stretch
Your Cryptoprocessor,” Proc. of PKC’99, pp.223–234, 1999.

12. D. E. Knuth, The Art of Computer Programming, Vol.2, Seminumerical Algo-
rithms, Second Edition, pp.268–276, Addison-Wesley, 1981.

13. P. L. Montgomery, “Modular Multiplication without Trial Division,” Mathematics
of Computation, Vol.44, No.170, pp.519–521, April, 1985.

A Proof of Theorem 1 and 2

From Equation (8), δmi = (ξi − trunc(ξi))/mi. This leads to trunc(ξi) = ξi −
miδmi . Similarly, since εmi = (2r −mi)/2r, 2r = mi/(1 − εmi) holds. Taking
these into account, the following equation can be derived.

n∑
i=1

trunc(ξi)
2r

=
n∑

i=1

(ξi −miδmi)(1− εmi)
mi

=
n∑

i=1

(1 − εmi)ξi

mi
−

n∑
i=1

(1 − εmi)δmi

≥ (1− εm)
n∑

i=1

ξi

mi
− nδm >

n∑
i=1

ξi

mi
− n(εm + δm)

Apparently,
n∑

i=1

trunc(ξi)
2r

≤
n∑

i=1

ξi

mi
.

Now it follows that
n∑

i=1

ξi

mi
− n(εm + δm) <

n∑
i=1

trunc(ξi)
2r

≤
n∑

i=1

ξi

mi
.

By adding α on each sides and substituting Equation (5), the following equation
is obtained.(

k +
x

M

)
− n(εm + δm) + α <

n∑
i=1

trunc(ξi)
2r

+ α ≤
(
k +

x

M

)
+ α (13)

Cox-Rower Architecture for Fast Parallel Montgomery Multiplication 537

Case 1: If 0 ≤ n(εm + δm) ≤ α < 1 and 0 ≤ x < (1−α)M : Equation (13) leads
to

k <

n∑
i=1

trunc(ξi)
2r

+ α < k + 1.

Therefore,

k̂ =

⌊
n∑

i=1

trunc(ξi)
2r

+ α

⌋
= k

holds. This proves Theorem 1.

Case 2: If α = 0, 0 ≤ n(εm + δm) < 1, and 0 ≤ x < M : From Equation (13)

k − 1 <

n∑
i=1

trunc(ξi)
2r

< k + 1.

Then,

k̂ =

⌊
n∑

i=1

trunc(ξi)
2r

⌋
= k or k − 1.

It is easy to see that, if x/M−n(εm + δm) ≥ 0, then k̂ = k. Contraposition leads
to that if k̂ = k − 1, then x/M − n(εm + δm) < 0. Therefore, if k̂ = k − 1,

z =
n∑

i=1

ξiMi − k̂M = x + M < {n(εm + δm) + 1}M.

Of course, if k̂ = k, then z = x and z < M . This proves Theorem 2.

B Proof of Theorem 3

The following requirements should be considered:

– Both N−1 mod B and B−1 mod A exists,
– All intermediate values are less than AB,
– For inputs less than 2N , the algorithm outputs w which is less than 2N ,
– Base extension error at step 4 does not cause any trouble,
– w is computed correctly at step 7 and base extension at step 8 is error-free.

First requirement is satisfied by Conditions (1) and (2) in Theorem 3.
Here we define t̂ as a result of base extension at step 4. We also define the

correct value as t = s(−N−1) mod B. Due to Theorem 2, t̂ = t or t + B, and

t̂ < {1 + n(δb + εb)}B ≤ (1 + ∆)B.

538 Shinichi Kawamura et al.

With this inequality, the largest intermediate value v is evaluated as follows:

v = xy + t̂N < 4N2 + (1 + ∆)BN

≤ (1−∆)BN + (1 + ∆)BN (by Condition (4))
= 2BN

≤ (1− α)AB (by Condition (5))
≤ AB (by Condition (3)). (14)

This satisfies the second requirement above. Further, by dividing each term of
Equation (14) by B, we also obtain w = v/B < 2N ≤ (1 − α)A. Thus, third
requirement above is satisfied and the value < w >a is extended to < w >a∪b

without error if α is chosen according to Condition (3) and w is an integer.
We still have to confirm that v computed with t̂ is a multiple of B, and

whether w is correctly computed by < v >a< B−1 >a. Since v is either xy + tN
or xy + (t + B)N and xy + tN ≡ 0 (modB), we obtain v ≡ 0 (modB). So v is
a multiple of B and w = v/B is an integer, which is less than A. Taking these
into account, w can be computed by < v >a< B−1 >a, because vB−1 mod A =
(wB)B−1 mod A = w mod A = w (last equation is due to w < A). On the other
hand,

w =
v

B
=

xy + tN

B
or

xy + (t + B)N
B

. (15)

In both cases, it is easy to confirm w ≡ xyB−1(modN). This proves Theorem
3.

C δ’s Upper Bound

From Equation (8), δmi = (ξi − trunc(ξi))/mi. So,

δ = Max
(

ξi − trunc(ξi)
mi

)
≤ Max(ξi − trunc(ξi))

Min(mi)
. (16)

On the other hand,

ε = Max
(

2r −mi

2r

)
=

2r −Min(mi)
2r

.

This leads to

Min(mi) = 2r(1− ε). (17)

Also,

ξi − trunc(ξi) = ξi − ξi

∧
(

q︷ ︸︸ ︷
1 . . . 1

(r−q)︷ ︸︸ ︷
0 . . .0)(2) ≤ (

r−q︷ ︸︸ ︷
1 . . .1)(2) = 2r−q − 1. (18)

Substituting (17) and (18) to (16) results in

δ ≤ 2r−q − 1
2r(1− ε)

=
1
2q
· 1− 2−(r−q)

1− ε
.

	Introduction
	Preliminaries
	Residue Number Systems
	Montgomery Multiplication
	Montgomery Multiplication in RNS

	New Approach for Base Extension
	Reduction Factor k
	Approximate Representation for Factor k
	Recursive Base Extension Algorithm

	Cox-Rower Architecture
	RNS Montgomery Multiplication Algorithm
	Exponentiation with RNS Montgomery Multiplication
	RNS-Radix Conversion
	Radix-RNS Conversion

	Implementation
	Parameter Design
	Performance

	Conclusion
	Proof of Theorem 1 and 2
	Proof of Theorem 3
	$delta $'s Upper Bound

