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Abstract. The noisy polynomial interpolation problem is a new in-
tractability assumption introduced last year in oblivious polynomial eval-
uation. It also appeared independently in password identification
schemes, due to its connection with secret sharing schemes based on La-
grange’s polynomial interpolation. This paper presents new algorithms to
solve the noisy polynomial interpolation problem. In particular, we prove
a reduction from noisy polynomial interpolation to the lattice shortest
vector problem, when the parameters satisfy a certain condition that
we make explicit. Standard lattice reduction techniques appear to solve
many instances of the problem. It follows that noisy polynomial interpo-
lation is much easier than expected. We therefore suggest simple modi-
fications to several cryptographic schemes recently proposed, in order to
change the intractability assumption. We also discuss analogous meth-
ods for the related noisy Chinese remaindering problem arising from the
well-known analogy between polynomials and integers.

1 Introduction

At STOC ’99, Naor and Pinkas [26] introduced a new and useful primitive: obliv-
ious evaluation of polynomials, where a polynomial P is known to Bob and he
would like to let Alice compute the value P (x) for an input x known to her in
such a way that Bob does not learn x and Alice does not gain any additional
information about P . The scheme they proposed is quite attractive, as it is much
more efficient than traditional oblivious evaluation protocols, which leads to sev-
eral applications. For instance, Gilboa [14] applied the scheme to two party RSA
key generation. Naor and Pinkas mention other interesting applications in their
paper [26], such as a method enabling two agencies each having a list of names,
to find the common names on the lists without revealing other information.

Perhaps the only problem with the Naor-Pinkas scheme was a security issue,
since the scheme used a new intractability assumption. The underlying compu-
tational problem, the so-called noisy polynomial interpolation problem, can be
stated as follows:
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Problem 1 (Noisy polynomial interpolation). Let P be a k-degree polynomial
over a finite field F. Given n > k + 1 sets S1, . . . , Sn and n distinct elements x1,
. . . , xn ∈ F such that each Si = {yi,j}1≤j≤m contains m − 1 random elements
and P (xi), recover the polynomial P , provided that the solution is unique.

A simple counting argument suggests that mn � |F|n−(k+1) should be sat-
isfied to ensure the unicity of the solution. Several generalizations are possible:
for instance, one can assume that the sets Si’s have different sizes instead of m.
A related problem is the following:

Problem 2 (Polynomial reconstruction). Given as input integers k, t and n points
(x1, y1), . . . , (xn, yn) ∈ F

2, output all univariate polynomials P of degree at most
k such that yi = P (xi) for at least t values of i.

S1

x1 x2 x3

Polynomial reconstructionNoisy polynomial interpolation

PP

S3S2

The polynomial reconstruction problem is well-known because the generalized
Reed-Solomon list decoding problem reduces to it. The best algorithm known to
solve this problem is the recent algorithm of Guruswami and Sudan [17] (GS),
which was inspired by previous work of Ar et al. [3] on a related problem. Its
running time is polynomial in n, and the algorithm succeeds provided t >

√
kn,

for any field F of cardinality at most 2n. Naor and Pinkas remarked the existence
of a simple reduction from noisy polynomial interpolation to polynomial recon-
struction, which led them to conjecture that the noisy polynomial interpolation
problem was as hard as the polynomial reconstruction problem.

This paper provides evidence that the conjecture is likely to be false. More
precisely, we present new methods to solve noisy polynomial interpolation which
(apparently) do not apply to polynomial reconstruction. In particular, we prove
that the noisy polynomial interpolation problem can be transformed into a lat-
tice shortest vector problem with high probability, provided that the parameters
satisfy a certain condition that we make explicit. This result is qualitatively
similar to the well-known lattice-based methods [20,9] to solve the subset sum
problem: the subset sum problem can be transformed into a lattice shortest
vector problem with high probability, provided that a so-called low-density con-
dition is satisfied. As with subset sums, experimental evidence suggest that most
practical instances of the noisy polynomial interpolation problem with small m
can be solved. It follows that noisy polynomial interpolation is much easier than
expected (despite known hardness results [2,24] on the lattice shortest vector
problem), and thus, should be used cautiously as an intractability assumption.
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Interestingly, the noisy polynomial interpolation and the polynomial recon-
struction problems also appeared in password authentication schemes [25,13].
Both schemes use Shamir’s secret sharing scheme based on Lagrange’s poly-
nomial interpolation, where the shares are encrypted with low entropy secrets.
Shamir’s scheme achieves perfect security, but here, additional information is
available to the attacker. A closer inspection shows that [13] is based on the noisy
polynomial interpolation problem, and is therefore insecure for many choices of
the parameters. For instance, the authors propose to use n = 22, k = 14 and
m ≈ 256 to protect a 112-bit key. But this configuration can be broken using
a meet-in-the-middle attack (see Section 2.3) using n′ = 16 in time 264. The
solution described in [25] is much better as it is based on the hardness of the
discrete log problem and a variant of the polynomial reconstruction problem.

We also discuss analogous methods for a related problem, the so-called noisy
Chinese remaindering problem arising from the well-known analogy between
polynomials and integers. Curiously, problems such as point counting on elliptic
curves over finite fields and integer factorization of the form p2q, can be viewed
as generalized noisy Chinese remaindering problems. We explain why the lattice-
based approach does not appear to be as useful in such settings.

The paper is organized as follows. In Section 2, we review simple methods for
noisy polynomial interpolation. Section 3 is devoted to lattice-based methods.
Cryptographic implications of these results are discussed in Section 4. In Section
5, we study analogous methods for the noisy Chinese remaindering problem. Due
to lack of space, some details and proofs are omitted, but those can be found in
the full version available on our webpages.

2 Simple Methods for Noisy Polynomial Interpolation

2.1 An Error-Correction Method

When the noisy polynomial interpolation problem appeared in [26], the only
known algorithm to solve it (apart from exhaustive search) was based on a sim-
ple reduction from noisy polynomial interpolation to polynomial reconstruction.
More precisely, Naor and Pinkas noticed that by randomly choosing one element
yi,j in Si, one obtains an instance of the polynomial reconstruction problem with
the n (randomly chosen) points (xi, yi,j). The solution P is of degree k, and we
have P (xi) = yi,j for approximately n/m values of i. Therefore the solution is
expected to be outputted by the GS algorithm, provided that n

m
>

√
kn, that

is: m <
√

n
k
. In fact, one can obtain a better reduction by taking all the points,

which was apparently unnoticed. Indeed, if one picks all the nm points (xi, yi,j),
then the solution P of degree k satisfies P (xi) = yi,j for at least n values of
(i, j). Hence, the GS algorithm will output P if n >

√
knm, that is: m < n/k.

It is worth noting that this condition does not depend on the size of the finite
field. The previous reductions do not use the specificity of the noisy polynomial
interpolation instances. It is not known whether one can improve GS algorithm
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when applied to those particular instances, although [6] describes a simple al-
gorithm achieving the same bound m < n/k. We now present methods to solve
the problem when the condition m < n/k is not satisfied.

2.2 A Gröbner Basis Method

A natural way to solve the noisy polynomial interpolation problem is reducing
the problem to solving a system of polynomial multivariate equations. Write the
unknown polynomial P as P (X) =

∑k
i=0 aiX

i. For all i, there exists j such that
P (xi) = yi,j , therefore:

m∏
j=1

(P (xi) − yi,j) = 0.

One thus obtains n polynomial equations in the k + 1 unknowns a0, . . . , ak, in
the field F.

Gröbner basis is the usual way to solve such systems. However, the complexity
of such techniques is super-exponential in k: in practice, it is likely that the
method would be impractical if k is not very small (for instance, larger than
20). Theoretically, one could also apply the relinearization technique recently
introduced by Kipnis and Shamir [19], at least in the case m = 2 (that is,
a system of quadratic equations). At the moment, the behaviour of this new
method is not completely understood, however latest results [10] suggest that
the method is impractical for sufficiently large k, such as k ≥ 50.

2.3 A Meet-in-the-Middle Method

A meet-in-the-middle approach can be used to solve the noisy polynomial inter-
polation problem. Let n′ ≤ n be the smallest integer for which we expect the
solution to be unique. Define the Lagrange interpolation polynomials in F[X] :

Li(X) =
∏

1 ≤ j ≤ n′

j 6= i

X − xj

xi − xj
.

The degree of Li is n′ − 1. We are looking for coefficients ci, such that

deg


 n′∑

i=1

yi,ciLi(X)


 ≤ k.

For all c = (c1, . . . , cbn′/2c) ∈ {1, . . . , m}bn′/2c and c̃ = (cbn′/2c+1, . . . , c′n) ∈
{1, . . . , m}dn′/2e we compute the polynomials Uc(X) =

∑bn′/2c
i=1 yi,ciLi(X) and

Vc̃(X) = −∑n′

i=bn′/2c+1 yi,ciLi(X). We compare the two lists: If some Uc(X)
and Vc̃(X) have identical coefficients for the terms Xk+1, . . . , Xn′

then Uc(X)−
Vc̃(X) has degree at most k, and therefore, solves the problem.
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The method requires the computation of O(mdn′/2e) polynomials Uc(X) and
Vc̃(X). Since the values for yi,jLi(X) can be precomputed and partial sums can
be reused, the time complexity of this attack is O(c(n′ − k)mdn′/2e), where c
is the time for an addition in F. The memory requirement of this algorithm is
O((log q)mbn′/2c), but an improved algorithm needing O((log q)mdn′/4e) exists.

It is worth noting that the meet-in-the-middle method does not apply to the
polynomial reconstruction problem. This is because the Lagrange polynomials
Li(X) in this problem depend on the selection of the values yi,j used for the
interpolation. Different yi,j ’s correspond to different xi’s and therefore different
Lagrange polynomials. The meet-in-the-middle method takes advantage of the
fact that the xi’s are known in advance.

Note that the meet-in-the-middle method can still be used if we have to
compute gf(x0) for some public x0 and g, when given the gyi,j ’s rather than the
yi,j’s. This is because polynomial interpolation is a linear function of the inputs
yi,j.

3 Lattice-Based Methods for Noisy Polynomial
Interpolation

We now describe lattice-based methods to solve noisy polynomial interpolation.
To simplify the presentation, we assume in the whole section that the finite field
F is a prime field Zq (q being a prime number). The results extend to the general
case by viewing F as a finite dimensional vector space over its prime field.

In this paper, we will call lattice any integer lattice, that is, any subgroup
of (Zn, +) for some n. Background on lattice theory can be found in several
textbooks, such as [16,35]. For lattice-based cryptanalysis, we refer to [18].

Our lattice-based methods build in polynomial time a lattice from a given
instance of noisy polynomial interpolation. In this lattice, there is a particular
lattice point, the so-called target vector, which is both unusually short and closely
related to the solution of our problem. We will first give heuristic arguments
suggesting that the target vector is the lattice shortest vector. Then we will
modify our lattice to prove that the target vector is with high probability the
shortest vector of the modified lattice, when the parameters satisfy a certain
condition that we make explicit. The proofs are somewhat technical, but the
underlying idea is similar to the one used to show that the low-density subset
sum problem can be reduced with high probability to a lattice shortest vector
problem [20,9]. More precisely, we will estimate the probability that a fixed vector
belongs to the lattice built from a randomly chosen instance of the problem. By
enumerating all possible short vectors, we can then upper bound the probability
that there exists a nonzero lattice point shorter than the target vector for a
randomly chosen instance. From a practical point of view, one hopes to solve
the problem by using standard lattice reductions algorithms [21,30,31,32] as
lattice shortest vector oracles.
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3.1 Linearization of Noisy Polynomial Interpolation

Let Li(X) be the Lagrange interpolation polynomial defined as

Li(X) =
∏
j 6=i

X − xj

xi − xj
.

The solution P satisfies: P (X) =
∑n

i=1 P (xi)Li(X). We linearize the problem:
letting δi,j equal to 1 if P (xi) = yi,j, and 0 otherwise, one obtains P (xi) =∑m

j=1 δi,jyi,j , hence:

P (X) =
n∑

i=1

m∑
j=1

δi,jyi,jLi(X).

Since P (X) has degree k, while Li has degree n − 1, we obtain n − 1 − k linear
equations in the nm unknowns δi,j . As a linear system in the field F, it is
underdefined. However, one can also view the problem as a lattice problem for
which lattice reduction might apply.1

The set L of integer row vectors (d1,1, d1,2, . . . , dn,m) ∈ Z
nm such that the

polynomial
∑n

i=1

∑m
j=1 di,jyi,jLi(X) has degree at most k is clearly a lattice in

Z
nm. The vector (δ1,1, δ1,2, . . . , δn,m) belongs to L, we call it the target vector.

Its Euclidean norm is
√

n. To see how short this vector is compared to other
lattice vectors, we need to analyze the lattice L. We wish to obtain results of
the flavour of lattice-based algorithms to solve low-density subset sums [20,9]:
with high probability over a certain distribution of the inputs, and under specific
conditions on the parameters, the target vector is the lattice shortest vector.

3.2 Volume of the Lattice

The previous lattice is related to the lattices used by Ajtai [1] in his celebrated
worst-case/average-case equivalence for certain lattice problems. More precisely,
let A be a n × e matrix in Zq where q is any integer. Let L(A) be the set of
n-dimensional integer row vectors x such that xA ≡ 0 (mod q). We call L(A)
the Ajtai lattice associated to A. It is easy to see that L(A) is a n-dimensional
lattice in Z

n, from which one derives:

Lemma 1. Let A ∈ Mn,e(Zq). Then the volume of L(A) divides qe. It is exactly
qe if and only if {xA : x ∈ Z

n
q } is entirely Z

e
q.

Proof: By definition, L(A) is the kernel of the group homomorphism φ that
maps any x ∈ Z

n to (xA mod q) ∈ Z
e
q. Therefore the group quotient Z

n/L(A)
is isomorphic to the image of φ. But since L(A) is a full-dimensional lattice in
Z

n, its volume is simply the index [Zn : L(A)] of L(A) in Z
n, from which both

statements follow. ut
1 If we used the field GF(qa) rather than Zq we would have a(n− 1− k) equations in

nm unknowns over Zq and the linear system might be solvable directly.
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Letting Li(x) =
∑n−1

w=0 `i,wxw, the lattice L of Section 1 is equal to L(A), where
F = Zq and A is the following matrix of dimension nm× n − 1 − k.

A =




y1,1`1,k+1 · · · y1,1`1,n−1

...
...

yi,j`i,k+1 · · · yi,j`i,n−1

...
...

yn,m`n,k+1 · · · yn,m`n,n−1




Lemma 2. Assume that for all 1 ≤ i ≤ n there exists 1 ≤ wi ≤ m, such that
yi,wi 6= 0. Then rank(A) = n − 1 − k.

Proof: Remember, that for all c1, . . . , cn ∈ F
n and f(x) =

∑n
i=1 ciLi(x) we have

f(xi) = ci. Hence,
∑n

i=1 ciLi(x) = 0 implies c1 = · · · = cn = 0. This shows that
the n×n matrix (`i,j)1≤i≤n;0≤j≤n−1 is nonsingular. In particular, the last n−1−k
columns are linearly independent and thus the matrix (`i,j)1≤i≤n;k+1≤j≤n−1 has
rank n − 1 − k. We assumed that yi,wi 6= 0 and therefore the matrix A0 =
(yi,wi`i,j)1≤i≤n;k+1≤j≤n−1 has rank n− 1− k too. Since A0 is a submatrix of A
it follows that A has rank n − 1 − k too. ut
A consequence of this lemma is that the set {0, . . . , q − 1}nm contains exactly
qnm−n+1+k lattice points and hence the volume of L(A) is qn−1−k. Therefore, if
γd denotes Hermite’s constant of order d, we have:

λ1(L) ≤ √
γnmq

n−1−k
nm ,

where λ1(L) is the first minimum of L (the length of a shortest non-zero lat-
tice point). The best asymptotic estimate known of Hermite’s constant is the
following (see [7]):

d

2πe
+

log(πd)
2πe

+ o(1) ≤ γd ≤ 1.744d

2πe
(1 + o(1)).

It follows that one expects the target vector to be the shortest lattice vector if

√
n �

√
nm

2πe
q

n−1−k
nm .

This condition is very heuristic, as the lattice L cannot be considered as a “ran-
dom” lattice.

3.3 Structure of the Lattice

We now give a different heuristic argument to guess when the target vector is the
shortest vector. The argument is inspired by lattice-based attacks against low-
density subset sums (see [20,9]). If we denote by N(n, r) the number of integer
points in the n-dimensional sphere of radius

√
r centered at the origin, we have

the following elementary result :
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Lemma 3. Let A be a nm × e matrix in Zq (q prime) chosen at random with
uniform distribution. Then:

Pr
(
λ1(L(A)) <

√
n
) ≤ N(nm, n)

qe
.

Proof: Let x = (x1, . . . , xnm) ∈ Z
nm
q be a non-zero vector. The probability

that xA ≡ 0 (mod q) for a uniformly chosen matrix A = (ai,j)1≤i≤nm,1≤j≤e is
q−e. Indeed, there exists i0 ∈ {1, . . . , nm} such that xi0 6= 0. Then, for any
choice of (ai,j)i 6=i0,1≤j≤e, there exists a unique choice of (ai0,j)1≤j≤e such that
xA ≡ 0 (mod q), which gives the expected probability. Since the number of
possible x is less than N(nm, n), the result follows. ut
It follows that one expects the target vector to be the shortest lattice vector
when N(nm, n) � qn−1−k. Numerical values of N(nm, m) can be computed
by recursion. And sharp theoretical estimates of N(nm, m) can be obtained
using the power series h(x) = 1 +2

∑∞
k=1 xk2

(see [23, Lemma 1]). However, the
condition is still heuristic, since in our case, the matrix A cannot be considered
as uniformly distributed. In particular, it does not seem easy to compute the
probability that a fixed vector belongs to the lattice L(A) for a randomly chosen
instance of noisy polynomial interpolation.

3.4 Reduction by Lattice Improvement

To achieve a reduction from noisy polynomial interpolation to the lattice shortest
vector problem, we consider a certain sublattice. The improvement is based on
a property of the target vector which has not been used so far: for all i1 and i2,∑m

j=1 δi1,j =
∑m

j=1 δi2,j = 1. This leads us to define the lattice Λ as the set of
lattice points (d1,1, d1,2, · · · , dn,m) ∈ L such that for all i1 and i2:

m∑
j=1

di1,j =
m∑

j=1

di2,j . (1)

Since Λ is the intersection of the full-dimensional lattice L (in Z
nm) with a

(nm − n + 1)-dimensional vector subspace, Λ is a (nm − n + 1)-dimensional
lattice in Z

nm, which can be computed in polynomial time.
We will be able to compute the probability that a (fixed) short vector satis-

fying (1) belongs to Λ, which was apparently not possible for L. The probability
is with respect to the natural distribution induced by the definition of noisy
polynomial interpolation, which is the following:

– Let x1, . . . , xn be distinct elements of F = Zq, and g be a function from
{1, . . . , n} to {1, . . . , m}.

– Choose uniformly at random a k-degree polynomial P in F[X].
– For all i ∈ {1, . . . , n} and j ∈ {1, . . . , m} \ g(i), choose uniformly at random

an element yi,j in F, and let yi,g(i) = P (xi).



Noisy Polynomial Interpolation and Noisy Chinese Remaindering 61

Recall that the noisy polynomial interpolation problem is to recover either g or
P , given k, the yi,j ’s and the xi’s. The (secret) function g indicates which yi,j is
equal to P (xi).

Let d = (d1,1, . . . , dn,m) ∈ Z
nm be a vector satisfying (1). We define p(d)

as the probability that d belongs to the lattice Λ, that is, the probability that
deg(

∑n
i=1

∑m
j=1 di,jyi,jLi(X)) ≤ k, with respect to the previous distribution.

Let t(d) be the number of indices i for which there exists at least one nonzero
di,j modulo q with j 6= g(i):

t(d) =
∣∣{1 ≤ i ≤ n : ∃j ∈ {1, . . . , m} \ g(i) such that di,j 6≡ 0 mod q} ∣∣.

The following technical lemma gives a formula for p(d). It shows that the heuris-
tic assumptions made in Section 3.2 and Section 3.3 are correct for all vectors d
where t(d) ≥ n− k− 1, but p(d) is larger than expected when t(d) < n− k− 1.
As we will see later the effect of those vectors is often negligible. A proof can be
found in the full version of the paper.

Lemma 4. Let d ∈ Z
nm satisfying (1). Then:

p(d) = q−min(t(d),n−k−1).

It follows that p(d) > 1
q

if and only if t(d) = 0 (recall that n > k + 1). But if
d satisfies (1) and t(d) = 0, then either d is a multiple (possibly zero) of the
target vector, or at least one of d’s entries is a nonzero multiple of q, implying
‖d‖ ≥ q. By enumerating all possible d’s, we finally obtain a reduction:

Theorem 1. Let
√

r < q. Let a noisy polynomial interpolation instance be cho-
sen uniformly at random as described above and let Λ be the sublattice built from
the instance. Then the expected number of nonzero vectors E(r, n, m) contained
in Λ not equal to the target vector or a multiple of it with norm ≤ √

r is:

E(r, n, m) =
br/nc∑

λ=−br/nc

n∑
w=1

R(w, r, λ, n, m) q−min(w,n−k−1),

where R(w, r, λ, n, m) denotes the number of vectors d = (d1,1, . . . , dn,m) ∈ Z
mn

such that t(d) = w, ‖d‖ ≤ √
r and

∑m
j=1 di,j = λ.

If E(n, n, m) < 1 then E(n, n, m) is a nontrivial upper bound on the probability
that Λ contains a nonzero vector shorter than the target vector. The proof of
Theorem 1 and numerical methods to compute E(r, n, m) are given in the full
version of the paper. The results are more complicated than low-density subset
sum attacks for the following reasons. In low-density subset sum attacks, one
can compute fairly easily an upper bound of the probability that a fixed nonzero
short vector (different from the target vector) belongs to a certain lattice built
from the subset sum instance (see [20,9]). And the bound obtained is independent
of the vector. It then remains to estimate the number of possible short vectors,
by bounding the number of integer points in high-dimensional spheres (using
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techniques of [23]). Here, we have an exact formula for the probability instead
of an upper bound, but the formula depends on the vector, for it involves t(d).
This leads to more complicated enumerations and asymptotic formulas. Hence,
we cannot give a criterion as “simple” as the low-density criterion for subset sum,
to indicate when the reduction is expected to hold. However, for some special
cases we have some preliminary results:

Lemma 5. Let n ≥ 2, m ≥ 2 and n2 < q. Let 0 < x < 1 and h(x) = 1 +
2

∑∞
k=1 xk2

. Then:

N(n, bn/2c) + 2n+1 − 3
qn−1−k

≤ E(n, n, 2) ≤ N(n, bn/2c) + 2n+1

qn−1−k
+ 2n2/q + 4n/q

E(n, n, m) ≤ N(nm, n)
qn−1−k

+ 3x−n

((
1 +

h(x)m

q

)n

− 1
)

The proof of Lemma 5 can be found in the full version of the paper. Note that
h(x) can be approximated numerically. The result for the case m = 2 are much
stronger than the result for a general m. From a practical point of view, we
can alternatively compute the upper bound E(r, n, m) numerically for any given
choice of the parameters. And the bound seems to be sharp in practice.

The following table shows for some values of m, n, q the largest k, such that
the expected number of vectors with norm shorter or equal to

√
n is smaller than

1. We compare this to the largest k̃ for which we would expect the target vector
to be the shortest vector in the original lattice without improvement.

A missing entry in the column k says that for this particular choice of m and
n the problem is very likely not solvable with the lattice based method for any
k. We have chosen m and n such that the meet-in-the middle method has a time
complexity of 280. We have chosen q > 280, so that elements of Zq can be used
to represent 80 bit keys for symmetric ciphers.

m n log2(q) k k̃
2 160 80 155 152
3 115 80 110 108
4 105 80 100 98

16 44 80 40 39
256 20 80 − −

3.5 Non-prime Fields

When F is a field of the form GF(qa) with a > 1, Lemma 4 still holds if one
replaces q by qa, with the same definition of t(d) (that is, the number of indices
i for which there exists at least one nonzero di,j modulo q with j 6= g(i)), so
that p(d) = q−amin(t(d),n−k−1). Theorem 1 and Lemma 5 need to be modified
accordingly. It follows that the lattice-based approach is useful only when the
characteristic of F is sufficiently high (q >

√
n), so that any vector d satisfying

t(d) = 0 is strictly longer than the target vector.
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3.6 Experiments

We implemented the improved lattice-based method on a 500 MHz 64-bit DEC
Alpha using Victor Shoup’s NTL library [34]. For a randomly chosen instance,
we built the corresponding sublattice Λ. For lattice reduction, we successively
applied three different types of reduction : plain LLL [21], Schnorr’s BKZ re-
duction [30,31] with block size 20, and when necessary, Schnorr-Hörner’s pruned
BKZ reduction [32] with block size 54 and pruning factor 14. We stopped the
reduction as soon as the reduced basis contained the target vector.

To fix ideas on the efficiency of the lattice-based method, we chose n = 160
and m = 2, with a prime field of size 80 bits. The error-correction method
succeeds only if k ≤ 80. The meet-in-the-middle method requires at least 2k/2

operations. And the Gröbner basis approaches are very unlikely to be practical.
Numerical values given by theorem 1 (see Section 3.4) suggest that the noisy
polynomial interpolation problem can be reduced to a lattice shortest vector
problem, as while as k ≤ 155. The lattice dimension is then 160. Our imple-
mentation was able to solve noisy polynomial interpolation up to k = 154. For
k ≤ 152, only BKZ-20 reduction was necessary, and the total running time was
less than 4 hours. For 153 ≤ k ≤ 154, an additional Schnorr-Hörner pruned BKZ
reduction was necessary: 1 hour for k = 153, and 8 hours for k = 154. We do not
know if the theoretical value of k = 155 can be reached in practice: the corre-
sponding lattice problem is hard because there are many lattice points almost as
short as the target vector. The situation might be similar to lattice-based subset
sum attacks: when the subset sum density is very close to the critical density,
and the lattice dimension is large, the lattice problem is hard. It is worth noting
that to ensure the unicity of the solution, one should have k ≤ 156. This sug-
gests that the lattice-based method is likely to solve most instances of practical
interest for small m. We also made a few experiments with m > 2. A BKZ-20
reduction can solve in one day the problem with n = 115, k = 101, m = 3 and
n = 105, k = 80, m = 4. For such parameters, the meet-in-the-middle method
requires at least 280 operations.

4 Cryptographic Implications

We showed that when the parameters satisfy a certain relation, there exists a
provable reduction from noisy polynomial interpolation to the lattice shortest
vector problem. This results in an attack which is much more effective than pre-
viously known methods based on list decoding algorithms, due to the strength
of current lattice reduction algorithms. We could not apply the same method
to the polynomial reconstruction problem. This suggests (but does not prove)
that the polynomial reconstruction problem is harder than the noisy polyno-
mial interpolation problem, so that Conjecture 3.1 in [26] about the hardness
equivalence2 of the two problems does not hold.
2 In fact, Conjecture 3.1 relates the hardness of polynomial reconstruction and an

easier version of noisy polynomial interpolation.
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It follows that cryptographic protocols should – if possible – be based on the
polynomial reconstruction problem rather than the noisy polynomial interpola-
tion problem. Such a change is possible for the oblivious polynomial evaluation
of Naor and Pinkas [26]. There are two players Alice and Bob. Bob’s secret input
is a polynomial P (x), which he hides in a bivariate polynomial Q(x, y), such that
Q(0, y) = P (y). Alice has a secret value α and would like to learn P (α). Alice
chooses a polynomial S(x) with S(0) = α. In a crucial step of the protocol Alice
would like to learn Q(xi, S(xi)) without revealing S(x). This is done by sending
xi and a list of random values yi,j, except that one value S(xi). Bob computes
Q(xi, yi,j) for all these values and A retrieves the answer she is interested in
using a 1-out-of-m oblivious transfer. The privacy of Alice depends on the dif-
ficulty to find S(x) given xi and yi,j , i.e. the noisy polynomial interpolation
problem. However, the protocol can be changed by using the values Q(xi,j, yi,j)
for distinct xi,j’s rather than Q(xi, yi,j) [29].

Another way to prevent lattice-based attacks is to use a field where computing
discrete logarithms is intractable, and to publish the powers gyi,j rather than the
values yi,j. It is then still possible to perform a polynomial interpolation, that
is to compute gf(x0), given sufficiently many values gf(xi). In fact, the meet-in-
the middle method is the only algorithm known to us that is applicable in this
case and it can only be used for the noisy polynomial interpolation problem but
not for the polynomial reconstruction problem. A protocol using the polynomial
interpolation problem combined with the discrete logarithm problem is described
in [25].

5 Noisy Chinese Remaindering

There is a well-known analogy between polynomials and integers: the polynomial
degree corresponds to the integer size; Lagrange’s interpolation corresponds to
Chinese remainders; and polynomial evaluation corresponds to the modulo op-
eration (in fact, a polynomial P evaluated at x0 can also be viewed as the
remainder of P (x) modulo the linear polynomial x − x0). We refer to [15] for
some examples. The noisy polynomial interpolation and polynomial reconstruc-
tion problems then become the following ones:

Problem 3 (Noisy Chinese remaindering). Let 0 ≤ N ≤ B, and p1, . . . , pn be
coprime integers. Given n sets S1, . . . , Sn where each Si = {ri,j}1≤j≤m contains
m − 1 random elements in Zpi and N mod pi, recover the integer N , provided
that the solution is unique (e.g., mnB � ∏n

i=1 pi).

Problem 4 (Chinese remaindering with errors). Given as input integers t, B
and n points (r1, p1), . . . , (rn, pn) ∈ N

2 where the pi’s are coprime, output all
numbers 0 ≤ N < B such that N ≡ ri (mod pi) for at least t values of i.

We refer to [15] for a history of the latter problem, which is beyond the scope
of this article. We will only mention that the best decoding algorithm known
for the problem is the recent lattice-based work of Boneh [6], which improves
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previous work of Goldreich et al. [15]. The algorithm works in polynomial time
and solves the problem provided that a certain condition is satisfied. The exact
condition is analogous to the bound obtained by GS algorithm for polynomial
reconstruction.

We note that there are two well-known problems for which the general noisy
Chinese remaindering problem (in which one allows different sizes for the sets
Si’s) arises. The first problem is point counting on elliptic curves over finite
fields. The best general algorithm for this problem is the Schoof-Elkies-Atkin
(SEA) algorithm [33,12,4,5] (see [22] for implementation issues). Let E be an
elliptic curve over a finite field of cardinality q. Hasse’s theorem states that the
cardinality of E is of the form q+1−t where |t| ≤ 2

√
q. The SEA algorithm tries

to determine this t, using Chinese remainders. However, in practice, it turns out
to be too expensive to compute the exact value of t modulo sufficiently many
coprime numbers. Therefore, one actually determines many coprime numbers
of two kinds: for the first kind of numbers, t modulo such numbers is exactly
known; for the second kind of numbers, the value of t modulo such numbers is
constrained to a small number of values. This is exactly a noisy Chinese remain-
dering problem. To solve this problem, current versions of SEA apply a meet-
in-the-middle strategy. The second problem is integer factorization of numbers
of the form N = p2q. It has been noticed for some time (see for instance [28])
that for any number r, the Jacobi symbol

(
r
N

)
is equal to the Legendre symbol(

r
q

)
. It follows that for any number r, q mod r is limited to half of Zr, and such

a half can be determined. The problem of computing q can thus be viewed as
a noisy Chinese remaindering problem. However, the Si’s are so dense that this
formulation is likely to be useless.

We briefly review methods for noisy Chinese remaindering, analogous to the
ones we described for noisy polynomial interpolation. One can first use the analog
of the meet-in-the-middle method of Section 2.3. One can also use the reduction
to Chinese remaindering with errors and the algorithm of [6], in a way analogous
to Section 2.1. But the following simpler method achieves the same results.

5.1 Coppersmith’s Method

We obtain an analogous method to the Gröbner basis approach by translating
the problem in terms of polynomial equations. The solution N satisfies for each
i the following equation:

m∏
j=1

(N − ri,j) ≡ 0 (mod pi).

Using Chinese remainders and collecting all equations, one obtains a univariate
polynomial equation of degree m in the unknown N modulo

∏n
i=1 pi. We then

apply the following lattice-based result by Coppersmith [8] :

Theorem 2. Let P (x) be a polynomial of degree δ in one variable modulo an
integer M of possibly unknown factorization. In time polynomial in (log M, 2δ),
one can find all integers x0 such that P (x0) ≡ 0 (mod M) and |x0| ≤ M1/δ.
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In time polynomial in (
∑n

i=1 logpi, 2m), we can thus find the solution N to
noisy Chinese remaindering, provided that : Bm ≤ ∏n

i=1 pi. This condition is
analogous to the condition m < n/k we obtained by applying GS algorithm to
the noisy polynomial interpolation problem. The method is mentioned in [6].

5.2 Lattice-Based Methods

Let P =
∏n

i=1 pi. By analogy to the lattice-based method of section 3, we define
interpolation numbers Li in {0, . . . , P − 1} by : Li ≡ 1 (mod pi) and Li ≡
0 (mod

∏
j 6=i pj). The solution N of noisy Chinese remaindering satisfies:

N ≡
n∑

i=1

(N mod pi)Li (modP ).

We linearize the problem: letting δi,j equal to 1 if N ≡ ri (mod pi), and 0
otherwise, one obtains

N ≡
n∑

i=1

m∑
j=1

δi,jri,jLi (modP ).

This equation basically says that N is a small subset sum of the ri,jLi’s modulo
P . It is thus natural to consider the (nm + 1)-dimensional lattice L spanned by
the rows of the following matrix:




P 0 . . . . . . 0
r1,1L1 B 0 . . . 0

r1,2L1 0 B
. . .

...
...

...
. . . . . . 0

rn,mLn 0 . . . 0 B




The lattice L is the set of integer row vectors (M, d1,1B, d1,2B, . . . , dn,mB) ∈
Z

nm+1 such that M ≡ ∑n
i=1

∑m
j=1 di,jri,jLi (modP ). It contains the target

vector (N, δ1,1B, δ1,2B, . . . , δn,mB), which has norm
√

N2 + nB2 ≤ B
√

n + 1.
Since the previous matrix is triangular, the volume of L is simply P × Bnm. It
follows that the target vector is expected to be the shortest vector of L when

B
√

n + 1 � (PBnm)1/(nm+1) ≈ P 1/(nm+1)B,

that is
√

n � P 1/(nm+1). The condition should however be taken with care,
as the lattice L cannot be considered as random. For instance, note that any
sufficiently short linear relation between ri,1, ri,2, . . . , ri,m gives rise to a shorter
lattice point. It can be proved that such a case occurs when one of the pi’s is
small or one of the |Si|’s is big (using the notion of orthogonal lattice [27], see full
version). As with noisy polynomial interpolation, one can improve the lattice L
by considering the sublattice Λ of points (M, d1,1B, d1,2B, . . . , dn,mB) ∈ L such
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that, for all i1 and i2,
∑m

j=1 di1,j =
∑m

j=1 di2,j. However, the previous obstruction
still holds (see full version of the paper). Thus, the lattice-based approach is
unlikely to be useful for elliptic curve point counting or integer factorization.
Still, the reduction can be proved for certain choices of the parameters, for we
have the following analog of lemma 4.

Lemma 6. Let d = (M, d1,1B, d1,2B, . . . , dn,mB) ∈ Z
nm+1 satisfying (1) and

shorter than the target vector. Assume that B(m + 1)
√

n + 1 < P/2. Then:

p(d) ≤ q−min(t(d),n−k),

where q = minpi, k is the least positive integer such that B(m+1)
√

n + 1 < qk

2 ,
and t(d) =

∣∣ {1 ≤ i ≤ n : ∃j ∈ {1, . . . , m} \ g(i) such that di,j 6≡ 0 mod pi}
∣∣.

This lemma is useful, when none of the |Si|’s are big and none of the pi’s are
small (which is not the case arising in elliptic curve point counting or integer
factorization) in which case one can obtain a provable reduction to the lattice
shortest vector problem roughly similar to Theorem 1 since one can upper bound
the probability that there exists a nonzero vector strictly shorter than the target
vector. In particular, by taking all the pi’s of the same size (such as 32 bits), it
is easy to build instances for which the lattice-based approach can experimen-
tally solve noisy Chinese remaindering with a bound B much larger than with
Coppersmith’s method.

6 Conclusion

We presented various methods to solve the noisy polynomial interpolation prob-
lem. In particular, we proved the existence of a reduction from the noisy poly-
nomial interpolation problem to the lattice shortest vector problem, for many
choices of the parameters. This reduction appears to be very efficient in practice:
experimental evidence suggest that many instances can be solved using standard
lattice reduction algorithms. We therefore suggested simple modifications to sev-
eral cryptographic schemes for which the security assumption relied on the com-
putational hardness of noisy polynomial interpolation. We also briefly discussed
analogous methods to solve the related noisy Chinese remaindering problem.
The lattice-based approach is the best known method for certain choices of the
parameters, but unfortunately not in applications such as elliptic curve point
counting or integer factorization. There are several open problems, such as:

– Is there a better3 reduction from noisy polynomial interpolation or Chinese
remaindering to the lattice shortest vector problem ?

– Is there a lattice-based method to solve the polynomial reconstruction prob-
lem ?

3 holding for more or all choices of the parameters.
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