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Abstract We show that the so-called ‘Petri nets are monoids’ approach
initiated by Meseguer and Montanari can be extended from ordinary
place/transition Petri nets to contertual nets by considering suitable non-
free monoids of places. The algebraic characterizations of net concurrent
computations we provide cover both the collective and the individual
token philosophy, uniformly along the two interpretations, and coincide
with the classical proposals for place/transition Petri nets in the absence
of read-arcs.

Introduction

The basic features common to any ‘flavour’ of Petri net [28] essentially are that
states are (multi)sets of distributed, abstract resources, and that actions only
involve the coordination of local parts of the state, as they can consume some of
the resources available and release fresh resources. Accordingly, a computation
can be described abstractly as a partial order of events in which any two events
are either causally dependent — when one could not have been executed without
a resource provided by the other — or concurrent — when they could have hap-
pened in any order, because they affect independent subsystems. These features
make net models suitable for representing in a satisfactory way concurrent and
distributed systems in many interdisciplinary applications.

Meseguer and Montanari in [23]24] (and successively in [I2|I3I131/32I6]14) sev-
eral authors) have recasted these facts in algebraic terms to unveil properties of
net computations and, especially, of the intrinsic concurrency of the net model.
The underlying idea of the so-called ‘Petri nets are monoids’ approach is to lift
the algebraic structure of states to the level of computations, so that the dis-
tribution of the resources is reflected on the performed actions, analogously to
what happens in rewriting logic [2122], in structured transition systems [11] and
in tile logic [17/4]. In the case of ordinary place/transition Petri nets (PT nets),
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states are multisets of places, or equivalently, elements of the free commutative
monoid over the set of places. Moreover, a computation can be obviously com-
posed with any computation that originates from the same state in which the
first ends, yielding a computation that is the concatenation of the two. Hence,
computations possess by nature an intrinsic (partial) operation of ‘sequential’
composition that gives rise to a category — arrows are computations, identities
representing unused tokens. Lifting the monoidal structure of states to the cate-
gory of computations results in a monoidal category of computations, where the
functoriality law of the monoidal tensor product expresses a basic fact about the
true concurrency of the model. Namely, that in any computation the relative or-
der in which two concurrent actions are executed is always immaterial. In fact,
if ; and «g are computations such that «ay, for ¢ = 1,2, originates in u; and
leads to v; (written «;:u; — v;), then

(a1 (&) idU2); (idvl D 0[2) = Q1 (&) Qo = (Zdul D 0[2); (0[1 D ’L'dm),

where @ is the tensor product (modeling concurrent composition of computa-
tions) originated from multiset union on states, _; _ is the operation of sequential
composition, and the id,,, id,, are idle components of computations, with e.g.,
idy, ;00 = a1 = 05 idy, .

The extensive use of PT nets has given rise to different schools of thought con-
cerning their semantic interpretation. In particular, the main distinction is drawn
between collective and individual token philosophies (see e.g. [18]). According to
the collective token philosophy (CTph), one is not interested in distinguishing
among different tokens in the same place (i.e., among instances of the same re-
source), because all such tokens are operationally equivalent. However, tokens
may have different origins and histories, carrying different causality information
and hence consuming one instance rather than another, can make the difference
from being causally dependent or not on some previous event. The point of view
of the individual token philosophy (/Tph) is that these causal dependencies may
well form an essential information that should not be discarded when, e.g., flow
analysis is concerned. Of course, causal dependencies may influence the degree
of concurrency in abstract computations, and therefore CTph and ITph lead to
quite different concurrent semantics.

For ordinary PT nets the algebraic approach has been pursued under both
philosophies, characterizing different kinds of net processes, ranging from Best
and Devillers commutative processes [3] (that support the CTph) to concaten-
able processes [I3I31] and strongly concatenable processes [32] (that support the
ITph). Note that the /Tph relies on a tensor product which can be commutative
only up to a monoidal natural isomorphism. Therefore, the algebraic approach
requires some special mechanism in order to accommodate the lifting of the
(commutative) monoidal structure of states. It is worth mentioning that the al-
gebraic approach under the /Tph is completely straightforward for the recent
proposal of pre-nets [6] whose states are based on strings rather than multisets.
From this point of view, the approach initiated by Meseguer and Montanari is
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completely general and can be applied to more general net models where, e.g.,
tokens are some kind of more complex data [33I15].

Several extensions of the basic PT net paradigm have been considered in the
literature that either increase the expressive power or give a better represen-
tation of existing phenomena. This paper focuses on extending the ‘Petri nets
are monoids’ approach to contextual nets, also known as nets with read-arcs, or
condition-arcs, or test-arcs [10J27]20/35]. The motivating idea behind ‘read-arcs’
is that of reading resources without consuming them, thus providing a way of
modeling multiple concurrent accesses to the same resource. Using ordinary PT
nets such readings must be rendered as self-loops, and this imposes an unwanted
sequentialization of concurrent readings. On the contrary, with contextual nets,
besides pre and post-sets, transitions also have ‘contexts’, that is resources that
are necessary for the enabling but are not affected by the firing. Contextual
nets have found applications e.g., to transaction serializability in databases [30],
concurrent constraint programming [26], and asynchronous systems [34].

Independently of CTph and ITph, for contextual nets several different ap-
proaches have been proposed that differ in the way in which contexts are read.
For example, let us consider the nets N1, Ny and N3 in Figure[I] taken from [35].
(As usual, places are represented by circles, tokens by black bullets, transitions
by boxes, pre- and post-sets by directed weighted arcs, and contexts by undi-
rected weighted arcs, with unary weights always omitted.) According to the
semantic interpretation of [27], the transitions ¢y and ¢; can fire concurrently
in N1, but neither in N5 nor in N3, since the basic assumption is that a token
cannot be read and consumed in the same step. In [20], instead, the concurrent
step is allowed for all three nets, the basic assumption being that ¢y and ¢; can
both start together, read the context tokens, and need them not while the ac-
tions take place. Besides its possible merits, we find this interpretation not fully
convincing as, for instance, in N3 we would end up in a state that cannot be
reached by any firing sequence. Thus, to some extent, the firing steps of [20] allow
certain transition occurrences to synchronize. The basic assumption of [35] that
firings have duration leads to consider ST-traces, where explicit transition-starts
and transition-ends events are fired. Hence Ny can start ¢y and then ¢; before
to completes, allowing the concurrent step {to,t1} (with the hypothesis that ¢,



430 Roberto Bruni and Vladimiro Sassone

starts first). On the contrary, in Nj if either ¢y or ¢; starts, then the context for
the other transition is consumed and the concurrent step is forbidden. We follow
the interpretation of [27] that fits better our understanding of contexts.

Contextual Nets and Collective Token Philosophy. The algebraic theory
for PT nets developed under the CTph is well consolidated, and the relationships
between its computational, algebraic and logical interpretations are by now very
clear [5]. Starting with the classical ‘token-game’ semantics, many computational
models for Petri nets have been proposed that follow the CTph. In particular, the
commutative processes of Best and Devillers [3] reconcile the ‘diamond’ equiva-
lence (cf. § [T]) on firing and step sequences, and express very nicely the concur-
rency of the model. They also admit an exact algebraic representation by means
of the universal construction 7 (-) that yields strictly symmetric strict monoidal
categories from the category of PT nets. More precisely, given a PT net IV, the
objects of T(IN) are markings and its arrows correspond to the commutative
processes of N [24//13].

Surprisingly, CTph semantics for contextual nets have received poor attention
in the literature, not only for what concerns the algebraic treatment. Whether
because the problem has been underestimated, or simply because the /Tph is
more fascinating, we cannot tell. In any case, we think that it is useful to address
this discrepancy with the semantics of ordinary PT nets. Moreover, although one
can easily extend the diamond equivalence to firing sequences on contextual nets,
the formalization of a good algebraic model is not at all straightforward. Inspired
by a suggestion made by Meseguer in [22], we give here a satisfactory treatment of
this issue. The idea is to consider monoidal categories with a commutative tensor
product taken — differently from the case of PT nets — over a non-free monoid
of places. In particular, we regard each token a as an atom (for lack of a better
analogy) that can emit ‘negative’ particles a™ (electrons) while keeping track of
their number, i.e., as in [22], we assume that for all k € N, a = a*®k-a”, where a*
represents an atom that has released exactly k particles to the environment.

Replacing context arcs on a with self-loop arcs on a”, we are able to give an
axiomatic construction of a monoidal category whose arrows between standard
markings (i.e., containing no negative particles) are (isomorphic to) the concur-
rent computations of the net according to the CTph. A key ingredient for this
result to hold is the so-called mazimum sharing hypothesis, an axiom express-
ing that concurrent readings can always be seen as sharing the same token, a
fundamental idea in CTph.

Contextual Nets and Individual Token Philosophy. Building on the no-
tion of process introduced by Goltz and Reisig in [I9], several authors have
shown that the semantics of nets in the /Tph can still be understood in terms of
symmetric monoidal categories, where the tensor product, this time denoted by
_® -, is commutative only up to a monoidal natural isomorphism ~ called sym-
metry (for strictly symmetric monoidal categories the transformation =y is just
the identity). In particular, a simple variation of Goltz-Reisig processes called
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concatenable processes is introduced in [13| (see also [31]), which admits sequen-
tial composition and yields a symmetric monoidal category P(NN) for each net
N. Note that ® is commutative on the objects of P(N). A refined version of
concatenable processes is given by strongly concatenable processes [32] where
origins and destinations are totally ordered (as opposed to the orderings of ori-
gins and destinations of concatenable processes that are indexed by the places).
Also several unfolding semantics (see e.g. [3625]) have been proposed that give a
denotational interpretation of the interplay between concurrency, causality and
nondeterminism.

For contextual nets both the process and the unfolding approaches have
been studied [27RIY2/T], giving a satisfactory understanding of the computa-
tional model via the introduction of asymmetric event structures. The algebraic
approach, however, has been pursued only in a recent paper by Gadducci and
Montanari [16] using match-share categories. Their basic idea is that, together
with symmetries, two additional auxiliary constructors must be present: one for
duplicating tokens and one for matching them. Formally, for each place a the
auxiliary arrows V,:a — a ® a and Ag:a ® a — a are added to the compu-
tational model (and suitably axiomatized, by letting e.g., V,; A, = id, and
VaiYa,a = Vo With id, the identity arrow on a and v, the symmetry that
swaps two tokens in a). Read-arcs can then be replaced by self-loops (i.e., if
the transition ¢ consumes u, reads v and produces w, then one considers a de-
rived transition ¢,:u ® v — w ® v), and reading without consuming modeled by
duplicating the context, firing the transition concurrently with an idle copy of
the context, and then matching the idle copy with the corresponding produced
tokens (i.e., by considering the arrow t, = (idy @ Vy); (ty, ®1dy); (idy ® A,) illus-
trated in Figure[J(a)). Multiple concurrent access is achieved by producing via
duplication — and then absorbing via matching — enough copies of the context.
In [16], a suitable axiomatization of duplicators and matchers is introduced and
proved to represent faithfully the basic fact about concurrent access: steps shar-
ing the same context, but otherwise disjointly enabled, can execute concurrently
or in any interleaved order with no noticeable difference (e.g., using the notation
above, the term (idy ® £); (Yur o ® idy); (idw @ £); (Yar 0 @ idy), illustrated in
Figure Bl b), for ¢ that consumes u’, reads v and produces w’, is equivalent to
(V' @ idy); (idy, ® ); (Yuwr @ idy); (idy @ t,) in Figure Bl ¢), and both ad-
mit a normal form where the subterms ¢, and t, are executed concurrently, as
illustrated in Figure PI(d)).

The main drawback of this approach is that the initial model contains too
many arrows and, therefore, in order to obtain a bijection with contextual pro-
cesses one has to carve a suitable subcategory. Although the arrows of this
subcategory can be characterized by inspecting their structure, the lack of a
global correspondence somehow weakens the framework. We aim at improving
the approach of [16] starting from the observation that the unwanted arrows
are due to redundant information in the model. In fact, once a context token
is read by a transition we know the ‘real’ token it is connected to: the one
duplication was applied to. Hence, the match operation, needed for express-
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ing concurrent readings, does not add any further information and may intro-
duce inconsistent behaviors. For example, given two tokens in the place a, one
can first duplicate both and then match each copy of the first token with a
copy of the second token: it should be evident that the resulting arrow (written
(Vo ®@V4); (ide ® Va0 ®idy); (A ® Ay)) is meaningless from the computational
viewpoint, unless the two tokens represent the same context. We overcome this
problem by extending to the ITph the approach proposed for the CTph in the
first part of the paper.

The key of our proposal is to regulate the use of symmetries on the mark-
ings so to forbid the swapping of a a* and an adjacent a”. This prevents the
migration of electrons from atom to atom, as it might happen in the CTph
and in [I6]. The absence of electron migration represents, in the /Tph, a sort of
dual to the maximum sharing hypothesis, that we call exact sharing hypothesis.
Most notably, the restriction is imposed simply by omitting the corresponding
symmetries from the model. And reintroducing them would in fact result in a
redundant framework perfectly analogous to the one provided by match-share
categories. Observe that this yields a monoidal category that, formally speaking,
is mot symmetric anymore: we allow only selected commutations by explicitly
including selected symmetries. These will include, of course, all the symmetries
between standard markings (i.e., those in which tokens have released no parti-
cles), and will exclude all those that may lead to confuse the causal histories of
tokens. Our main result is that, again, the arrows between standard markings are
in bijection with a slight refinement of contextual processes, called concatenable
contextual processes. In this, it is crucial that the model be able to treat particles
in different ways depending on the context. On the one hand, according to the
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ITph, we need to distinguish between a” released by different atoms, but on the
other hand, similarly to the CTph, we want to identify those particles generated
by the same a. This is the precise content of our exact sharing hypothesis, as
formalized by a new axiom that we call (4.

Origin and structure of the paper. This paper builds on the work reported in [7].
Besides extending loc. cit. by detailed examples and proofs of the main results,
we improve its treatment of the /Tph in many respects. In particular, in [7] we
relied on a distinction between forward and backward contexts, realized through
a second kind of electron, a-, in addition to a”. Moreover, differently from here,
our representation result was phrased in terms of strongly concatenable contex-
tual processes. Axiom ([4]) is instrumental in these improvements, and is first
introduced here.

In Section [0l we recall some basics about contextual nets and the algebraic
semantics of PT nets. In Sections[Z and Blwe define algebraic semantics for contex-
tual nets under both the CTph and the /Tph, providing original characterization
results for commutative and concatenable contextual processes. We remark that
in the absence of read-arcs, our semantics coincide with the classical ones.

Acknowledgements. We would like to thank José Meseguer and Paolo Baldan for
some interesting discussion on the topic and also Matteo Coccia for his reading of
a preliminary version of our work. We are also grateful to the anonymous referees
for their careful reading of the manuscript (they spot several well-hidden typos)
and their helpful comments.

1 Preliminaries

1.1 Contextual Nets

Contextual nets were introduced for extending PT nets with the ‘read with-
out consume’ operation [I0J27J20/35]. The states of contextual nets are called
markings and represent distributions of resources (tokens) in typed repositories
(places). Given the set of places S, markings can be seen as finite multisets
u:S — N, where u(a) denotes the number of tokens that place a carries in u.
The set of finite multiset on S is the free commutative monoid on S. We denote
it by S®, and indicate multiset inclusion, union and difference by C, ® and &,
respectively, with u © v defined only for v C w. For k a natural number and
u a multiset, k - u is the multiset such that (k- w)(a) = k- u(a) for all a. We
denote by [u] the underlying set of u, that can be seen as the multiset such that
lu](a) =1 if u(a) > 0 and |u](a) = 0 otherwise. If u = |u] and v = |v] we use
the standard set notation v U v and uNv to denote, respectively, the union and
intersection of w and v. Since we consider finite multisets only, the reader should
not get confused if in the following the adjective ‘finite’ is sometimes omitted.

Definition 1. A contextual net N is a tuple (S,T,0y,01,5), where S is the set
of places, T is the set of transitions, 0y, 01: T — S are the pre and post-set
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functions, and ¢:T — S® is the context function. Besides the usual assumption
that s(t) and Oo(t) ® 01(t) are disjoint for each transition t, we assume that <(t)
15 a set.

Informally, 0y (t) @¢(t) is the minimum amount of resources that ¢ requires to
be enabled. Of these resources, those in dy(t) are retrieved and consumed, while
those in ¢(t) are just read and left on their repositories. When ¢ has accomplished
its task, it returns 04 (t) fresh tokens and releases the context. Only at this point
other transitions will be able to consume the tokens in ¢(¢), whereas they can
use the same context concurrently with ¢.

Definition 2. Let u and v be markings, and X a finite multiset of transitions
of a contextual net N = (S,T,0y,01,5). We say that u evolves to v under the
step X, in symbols u [X) v, if the transitions in X are concurrently enabled at

u, i.e., [Pers(t)| ® Byer X(t) - 0o(t) Cu, and

v=uo (@X(t) -ao(t)> e P X(t) ou(t).

teT teT
A step sequence from ug to u, is a sequence ug [X1) uy ... up—1 [Xpn) Un.

Thus the execution of the step X requires that the marking u contains at
least all the tokens in the preconditions dy(t) of transitions ¢t € X plus at least
one token for each place that is used as context by some transition in X. This
matches the intuition that a token can be used as context by many transitions at
the same time. From the point of view of concurrency, the fact that transitions
in X are executed in a step means that they can be equivalently executed in
any order. Thus, likewise ordinary PT nets, step sequences for contextual nets
can be considered up to the equivalence induced by the diamond transformation
relation _o _ defined by v [X ®Y) v o u [X) uy [Y) v for any step u [X ®Y) v
(and suitable u; ). The diamond equivalence is the reflexive, symmetric, transitive
and sequences concatenation closure of the relation _¢ _.

Definition 3. Given a contextual net N, the strictly symmetric strict monoidal
category (cf. §[1.3) of contextual commutative processes CT (N) has the mark-
ings of N as objects, its step sequences, taken modulo the diamond equivalence,
as arrows, and composition is given by sequence concatenation.

In the ITph, computations are commonly described in terms of structures
representing the causal relationships between event occurrences. In the case of
nets, this is fruitfully formalized through the following notion of process. We
remark that these notions are conservative extension of the corresponding no-
tions for ordinary PT nets, to which they reduce in the absence of read-arcs.
The relation _ ~ _ referred to in the definition below is the least preorder in
which ¢ precedes t/, written ¢ ¢/, if either 01(t) N (9o(t') U s(t)) # @, see
Figures Bl(a) and B(b), or <(t) N do(t') # &, see Figure Bc). (Relation - & _
is used in [2I] for nondeterministic contextual processes; note however that we
deal with deterministic processes only.)
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Fig. 3. Three situations in which ¢ (immediately) precedes ¢'.

Definition 4. A (deterministic) contextual process net is a finite, acyclic w.r.t.
A, contextual net © such that

1. for allt € To, Oo(t) and 01(t) are sets (as opposed to multisets), and
2. for all pairs tg # t1 € Te, 0i(to) N 0;i(t1) = &, for i =0,1.

Remark 1. One could argue that in the contextual process net illustrated in
Figure Bl ¢) the transition ¢’ might also fire before ¢, inhibiting it. In fact, this
cannot be the case. Since the net is a process, i.e., the description of a deter-
ministic run, both ¢ and ¢ must be fired, and the only possible interpretation is
that ¢ must execute before ¢'. There is however no causal dependence between
the two events, but only a temporal one. Therefore ¢ ¢’ means that ¢ precedes
', either causally or just temporally.

Two transitions ¢ and ¢’ in a deterministic occurrence net are called concur-
rent if they are not related by  (i.e., if there is none of the two transitions
that causally or temporally dependends on the other). We remark that the same
definition does not apply to nondeterministic processes, where the concurrency
relation must be defined on arbitrary sets of transitions and not just on pairs.

Definition 5. A contextual process m of a contextual net N is a contextual
process net O together with a pair of functions (wp,mg), where mp:To — Ty and
ms:Se — SN, that respect source, target and context, i.e., such that On,; o mp =
ms 0 Og,, for i = 0,1, and ¢y o mp = 7g o Go, where the symbol o denotes
the ordinary composition of functions. Contextual processes are considered up to
isomorphism.

If no confusion can arise, we denote the components mp and mg just by .

1.2 Petri Nets Are Monoids

The paper [24] built on the monoidal structure of markings to provide an al-
gebraic characterization of the concurrent computations of nets. The basic idea
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was to lift the structure of states to the level of transitions, providing an al-
gebraic representation of concurrent firing. In turn, these ‘algebraic’ steps can
be sequentially concatenated in order to express more complex computations.
While sequential composition endows computations with a categorical structure
— markings are objects, computations are arrows, and idle tokens are identities
— the parallel composition yields a tensor product. The interplay of parallel and
sequential composition, regulated by functoriality of tensor products, models a
basic fact about concurrency, namely that concurrent transitions can occur in
any relative order. Under the CTph the tensor product can simply be commuta-
tive. Then, each PT net N freely generates a strictly symmetric strict monoidal
category T (N) whose arrows are in bijection with the commutative processes of
N [

Under the ITph the situation is more complex. To be able to model causal
dependencies, multisets of transitions are not enough. Degano, Meseguer and
Montanari proposed to keep simple markings as objects, but to consider a tensor
product non commutative on the arrows, together with a collection of arrows
that may be used to explicitly change the order in which transitions fetch and
produce tokens [I3]. Such arrows, collected together as the components of a
natural isomorphism, turn out to be the classical notion of symmetry in category
theory, thus leading to the construction of a (non strictly) symmetric strict
monoidal category P(N) for each net N, whose arrows define the concatenable
processes of N. A more concrete construction, Q(N), was introduced in [32] in
order to remove some deficiencies of the previous approach. The main feature of
Q(N), which captures the so-called strongly concatenable processes, is that its
objects are strings rather than multisets of tokens.

For the reader’s convenience, we briefly recall the definition of monoidal cat-
egories and related concepts. As usual, for C a category, we denote the identity
arrow on the object u by id,: u — u and the composition of two arrows f:u — v
and g:v — w by f;g:u — w (i.e., the operation _;_ composes in the diagram-
matic order). In what follows we let O¢ and Ac denote respectively the objects
and the arrows of C and let x denote the ordinary cartesian product of categories.

Definition 6. A strict monoidal category is a triple (C,®,e), where C is the
underlying category, the functor ®:C x C — C is called tensor product and
the object e € O¢ is called the unit. Moreover, the tensor product satisfies the
associativity law fR(gh) = (fQg)®h for all f,g,h € Ac and has the constant
functor associated to e as neutral element, i.e., id. @ f = f = f ® id., for all

feAc.

For non-strict monoidal categories, the associativity and unit laws are sat-
isfied only up to suitable natural isomorphisms. Since we shall always consider
strict monoidal categories, the adjective ‘strict’ can be omitted to simplify the
terminology. When the tensor product is commutative up to a suitable natural
isomorphism, the monoidal category is called ‘symmetric’.

Definition 7. A symmetric monoidal category is a 4-tuple (C,®,e,~), where
(C,®,e) is a monoidal category and v: 1 @ 2 = 2 ® _1 is a natural isomor-



Two Algebraic Process Semantics for Contextual Nets 437

phism satisfying the Kelly-MacLane coherence axioms expressed by the following
equations:

Yu,vs Yo,u = Zdu & 7'dv
Yu,p@w = (’Yu,v ® idw); (idv 0 '7u,w)

for all objects u,v,w € O¢.

Note that the equality v, . = id, follows from the fact that u ® e = u to-
gether with axioms above. When ~ is the identity natural transformation, then
the tensor product is commutative and the category is called ‘strictly symmet-
ric’. Commutative products are often denoted by the additive symbol & instead
of ®. The arrows of a symmetric monoidal category that can be obtained as
the sequential and parallel composition of identities and symmetries are called
permutations and ranged by o, ¢/, o1, and so on.

Definition 8. Let (C,®,¢e) and {C',Q',e') be monoidal categories. A functor
F:C — (' is called strict monoidal if F(e) = €' and F(f ® g) = F(f) ® F(g)
forall f,g € Ac.

Again, we shall omit the term ‘strict’, since all monoidal functors that we
consider are so. The category of monoidal categories and monoidal functors is
commonly indicated by MonCat. Moreover, we denote by CMonCat the full
subcategory of strictly symmetric monoidal categories, and use CMonCat® for
the full subcategory of CMonCat consisting of categories whose sets of objects
are freely generated commutative monoids. In particular, we have that both
T(N) and CT(N) belong to CMonCat®.

Definition 9. Let (C,®,e,7) and (C',Q',¢',v") be symmetric monoidal cate-
gories. A monoidal functor F:(C,®,e) — (C',®',¢') is called symmetric if
F(uw) = Vr(),ro)-

We denote by SSMC the subcategory of MonCat whose objects are sym-
metric monoidal categories and whose arrows are symmetric monoidal func-
tors. Let SSMC® (resp. SSMC®) be the full subcategory of SSMC consist-
ing of monoidal categories whose sets of objects are freely generated monoids
(resp. commutative monoids). Note that the tensor products of categories in
SSMC® are not necessarily commutative: the superscript @ refers to commu-
tative monoidal composition of objects only, not of arrows. We have P(N) €
SSMC® and Q(N) € SSMC®.

2 Collective Contexts

In [22], Meseguer suggested to represent contexts in rewriting logic theories by
considering two kinds of entities for each term: ‘counters’ and ‘copies’. Given
a term, one can release as many copies of it as needed, while recording the
number of such copies in the corresponding counter. Copies can only be accessed
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(1) ()" & (r)=r (5) ((r)) =2
(2) ((r)) 7 =(r) (6) (1)) =(r)
3) (res)t=(r)" e ()" (7 (r&s) =) &(s)
) (0) =2 ®) (o) =2
(unit) rdI=0 (ass) r@(s@dr)=(rds)dr
(comm) rds=sdr

Fig. 4.

as contexts. On the contrary, when rewriting a term, one has to retrieve the
counter and as many copies as indicated by the counter. That is, all the copies
ever released. Formally, in the case of contextual nets, the data type of places is
modified as follows:

a = {a,0)
(a,n) = (a,n+1) & [a].

The terms having the form (a,n) (for a a place and n a natural number) are
counters, and the [a] are copies, with a = (a,n) @ n - [a]. Then, a transition with
precondition a, context b and postcondition ¢ becomes a rewrite rule a @ [b] =
¢ @ [b] with a self-loop on a copy of b. However, this fits well with the CTph
approach only.

We tried to characterize the algebraic structure that gives the basis for
Meseguer’s encoding and have come out successfully with a representation that
can be extended to deal with the /Tph as well. As explained in the Introduction,
we build the algebraic theory over a non-free monoid of places. In particular,
apart from the commutative monoidal operation _ @ _ with unit &, we consider
other two operations (_)* and (_)” that are axiomatized as in Figure [, where
we also included the ordinary unit, associativity and commutativity axioms for
_® _. Quite simply, these mean that (_)™ and (_)” are monoid homomorphisms
—laws (3), (4), (7) and (8) — such that (1)t @ (.)” =id, ()T o (-)” = ()7, and
(1) o (2)” = @. Observe that (6) actually follows from (1), (7) and (5). We call
the elements of this algebra molecules, ranged over by r, s, .... Given a set S,
we let 11(S) denote the set of molecules generated by S, i.e., u(.S) is the quotient
term algebra generated by S over the signature with @, ®, (1) and ()" (modulo
the axioms in Figure H).

By these laws we can always eliminate consecutive applications of (1)* and
(), except for sequences of ())T. We shall write r* as a shorthand for (_)*
applied k times to r and omit the parentheses. We assume % = r, but we
remark that in general r ¥ =71 #£r.

Lemma 1. For each molecule r € u(S) and each k € N, we have (r*)" =r".

Proof. By induction on k, applying law (6). ¢
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r € u(S) teT
idr:ir =7 t:s(t)” ® Oo(t) — <(t)” ® o1 (¢)
or — s, Bi5— s oar — s, Bir’ — 8
o Bir =& a®Bir@r’ —sds
Fig. 5.

o; (B;0)=(c; B); 6 o;ids=id, ;0 = a
adBed)=(adB)®d a®B=Lda a®ids =
(@ 8) @ (6;m)=(a@d); (B@n) idr gs=id, @ ids
Fig. 6.
Proposition 1. For each molecule v € u(S) and each k € N, we have r* =

rktla -,

Proof. By law (1), we have r* = (r*)* @ (r*)", and (r*)” = r~ by Lemmalll 4

Corollary 1. For each molecule r € u(S) and each k € N, we have r = r* @
k-r-.

Of course we are interested in molecules generated from places, which can
be of two forms: either a* or a”. From the computational point of view, the a”
are the basic contexts and carry very little information, since the nucleus a* can
produce as many of them as needed. To appreciate the point, we can think of
the tokens as ticket rolls with unbounded number of tickets available. Readers
just take a ticket and return it after use for recycle, whereas consumers must

retrieve the entire roll, including all used tickets.

Definition 10. For N = (S,T,0y,01,<) a contextual net, define M(N) as
the category in CMonCat with objects the molecules on S, and arrows gen-
erated from the rules in Figure[d, modulo the azioms of strictly symmetric strict
monoidal categories in Figure[d.

We can now characterize contextual commutative processes algebraically.

Theorem 1. The category CT(N) is isomorphic (via a monoidal functor) to
the full subcategory of M(N) whose objects are S5 .

A very important property needed in the proof is what we call the mazimum
sharing hypothesis, that can be expressed as in the proposition below. This con-
tains the core of the CTph for contextual nets, since it shows that whenever two
or more tokens in the same place a are used as contexts, we can always find an
equivalent computation where only one token in a is used (twice or more) as a
context. In other words, tokens in the same place are completely interchangeable
in contexts.
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Proposition 2. For each molecule v € u(S) and k,n € N, we have r" @ r* =
r*th g,

Proof. By Corollary[dl, we have r "**@r = r"t* @r*@k.r-. By commutativity
(and associativity) of - @ _we get r"* @r =r"** o k.r~ @ rk. By applying
k times Proposition [[l we have the result. ¢

Before proving Theorem [1l we need some other technical lemmata.
Lemma 2. Each molecule r € pu(S) factorizes uniquely as u @ re ® ry wherd]

> uc SY;
>Dre=k -ai®...8ky-a, withn>0andk; >0, fori=1,...,n;
> rn:b’fIEB...EBbfnm withm >0 and h; >0, for j=1,...,m;

where all the a; and b; are distinct places.

Proof. The normal form representation follows by observing that (.)* and ()
are monoid homomorphisms and, therefore, distribute over &. Then, by laws
(2), (5) and (6), we can reduce the molecule to the ‘sum’ of places a, electrons
a” and nuclei a”. Then, by Proposition [, we can simplify the expression to a
form where at most one nucleus a” with h > 0 is present for each a. Finally, if
both a” and k - a~ are present in the expression, we can simplify the expression
according to the following three possibilities, until all the nuclei and electrons
refer to different places.

(h > k): then a" = (a"=%)¥ and, by Lemma[l k-a” = k- (a"~%)", hence " @
k-a = (a""* k- (a"F) = a"F by Corollary I}

(h =k): then a* © k- a~ = a by Corollary [T}

(h<k): thena"®k-a” =a"@h-a @ (k—h)-a =a®(k—h)-a by applying
Corollary Mto a” & h - a”. ¢

Lemma 3. If the source of an arrow o € M(N) factorizes according to
Lemma@ as u ®re By, then :u ®re D1y — v D re ® 1y for some v € SP.

Proof. 1t is straightforward to observe that r, and r, are invariants of the gen-
eration rules in Figure [ ¢

Lemma 4. Each arrow 6:r — s in M(N) can be decomposed as
(t1 ®idy,); (ta B idy,);...; (ts B idy ),
for some k > 0, where all the t; are transitions.

Proof. By structural induction on the expression denoting d. The complex case
is when § = a ® 3. We can then apply the functoriality of & to get § = (a ®
id.1); (8 @ ids) where r’ is the source of 3 and s’ is the target of a. Then we
apply the inductive hypothesis to « and S. ¢

! We choose the subscripts ‘e’ and ‘n’ as abbreviations for ‘electron’ and ‘(uncomplete)
nucleus’, respectively.
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We are now ready to prove the main theorem.

Proof. (of Theorem [1l). We start by defining the functor F:CT(N) — M(N).
Given a generic step sequence ug [X1) ug ... up—1 [Xp) u, with length n (repre-
senting a generic arrow in CT(N)), we let

Fluo [X1) w1 .o tne1 [Xn) un) = Flug [X1) w1);. .. Flun—1 [Xn) un),
with F(u [X) v) as defined below. Let

> ux = EBteLXJ X(t) : (90(75);
> vx = @teLXJ X(t) : 31(t);
> wx = By x) X () - <(t).

We can assume that
wX:k1~a1@k2oa2®...®km~am

with m >0, k; > 0, for ¢ = 1,...,m and all the a; different places. Since the
step X is enabled at u, then u = v ® ux & |wyx| for some v’ € SP. Hence
v=1u ®vx ® |wx]. With this notation fixed, let
Flu [X) v) =idy ® X @ idafl D ida’;2 D ... Didkm.

Note that with this definition, the k; tokens needed as context relatively to place
a; yield an idle nucleus afi, for i = 1,...,m. Also notice that when X = @ the
result is just the identity on .

To show that the mapping F is well-defined we must show that it respects
the diamond equivalence, i.e., that when u [X @ Y) v is defined, then

Flu[X®Y)v)=F(u[X)u);F(us [Y)v)

with u; uniquely determined by w and X. This follows easily by definition of F
and by the functoriality of the tensor product.

To show that F is faithful it suffices to observe that the only axiom that
potentially may break this property (i.e., that could induce too many equali-
ties on terms) is the functoriality of tensor product which, on the other hand,
corresponds precisely to the diamond equivalence.

Finally, to show that F is full (on the full subcategory of M(N) whose objects
are markings), we take a generic arrow a:u — v € M(N) with u,v € S® and
show that there exists a step sequence in CT (V) that is mapped to « by F. In
fact, by Lemma ] we take a ‘linearization’ of « (i.e., a sequential composition of
transitions in parallel with identities) and show that the obvious firing sequence
associated to it can be executed in N. In doing this we employ Lemma [3] and
the fact that v € S®. Observe that this construction defines the inverse to F. ¢

Ezample 1. Let us consider the net N in Figure[d In M(N) we have three basic
arrows
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a C b
v TAAT
to ta t1
Fig. 7.

> tp:a®dc —c,
> t1:bdc¢ — ¢ and
> to:c — I,

but neither tg, nor ¢ can represent a commutative contextual process, since their
sources and targets are not elements of S®. To remedy this, we must put ty and
t; in an environment where the ¢ become instances of a ‘complete’ token, as
id+ @to:a®c— cand id 4+ ®t1:0® c — c. The concurrent execution of ¢y and
t1 with shared context is instead written as id.2 @ toPt1 : a P bPH c — c: since
two electrons are needed the idle nucleus has ‘degree’ 2. By the functoriality of
_® _, we have that

ide2 Dtg Dt = (idc+ Dig D ’idb); (idc+ 57 tl) = (idc-i,- SRR ida); (’idc+ 57 to),

(recall that id.2 @ id,- = idc+), i.e., tp and t; can execute in any order. Also
interesting is to observe that

(id+ Dto) ® ((id+ Dt1);t2) = ((id4+ Dto);ta) ® (id .+ & t1),

i.e., we have no causal information about the token consumed by to: is it the
one read by to, or the one read by ¢;? In fact by id .+ @ty = (id + ®to);id. and
applying the functoriality of & we have:

(idc_t,_ &) to) D ((idc-i,- ©® tl);tg) = (idc+ Dty D idc+ ©® tl); (ch >, t2).

Then, id. ®to = to Pid,. by commutativity of & and by applying the functoriality
(in the opposite direction than before) we get the equality. Furthermore,

idc+ Dty P ’idc+ Bty =1id2 Pty Bt Side
(by Proposition 2l and the commutativity of @), and thus
(td 4 Bt0) @ ((Id 4 Bt1);t2) = (ide2 Bt Pt1 Pide); (id. Bta) = id2 Bto Dt Sto

i.e., tg, t1, and t5 can be executed in a concurrent fashion without the possibility
of distinguishing this case from those in which ¢, causally depends on tg or t;.

Since a PT net N can always be seen as a contextual net with no read-arcs,
in which case the commutative contextual processes of N are just the ordinary
commutative processes (cf. § and [24]), then by Theorem [Il we obtain the
following corollary.
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Corollary 2. If N is a PT net, then T(N) is a full subcategory of M(N).

We remark that the constructions we have shown can be easily extended to
deal with multiplicities on read-arcs (i.e., to the case in which ¢(¢) is a multiset
rather than a set).

3 Individual Contexts

The maximum sharing hypothesis creates obvious problems when dealing with
the ITph, whose entire point is to be able to recognize which electrons are emitted
from each token. For ordinary PT nets, the information about causality is recov-
ered in the algebraic setting by using (non strictly) symmetric strict monoidal
categories, i.e., by introducing symmetries to control rearrangements of tokens
in process sequential composition. While at the level of states one can still view
standard markings as indexed collections of ordered tokens (rather than resort-
ing to take as states the elements of the free monoid on places, i.e., strings of
places), at the level of computations (arrows), however, the tensor product is
not commutative anymore, so that one is able to interpret in a canonical way
the correct flow of causality through token histories. Thus, the first attempt to
a uniform extension of the CTph treatment of the previous section to the /Tph
view is to introduce symmetries on molecules.

There is however another problem to solve. Since the context ¢(t) is modeled
by a self-loop on ¢(t)7, two transitions with the same context can be concatenated
on it, as if one depended on the execution of the other. This spurious causal
dependency is to be avoided, as it gives rise to a wrong semantic model. To
some extent, one would like to follow the /Tph on ‘complete’ molecules (standard
markings), and the CTph on electrons of the same nucleus, so that one has
no information about which electron is consumed by a firing, but only about
which molecule it comes from. We therefore need a canonical interpretation of
molecules that respects this intuition. To fix the ideas, we take initially a non
commutative monoidal operation ® on molecules. Let us consider the molecule
a?®at ®a ®a ®a. We would like to view it under an interpretation that
connects each of the three electrons with one the two nuclei, and that is invariant
not only under all possible computations that can originate from the state, but
also under composition of the molecule to form larger states. Our idea is to
associate an electron to the first incomplete nucleus (ion) that precedes it. In the
present case, for instance, the first electron is associated to the second ion (a™),
while the second and third electrons (the two rightmost in the expression) are
interpreted as electrons released by the leftmost ion a?. A good way to explain
the mechanism, is to view ions as open parentheses and electrons as closing
parentheses, where of course an ion a* opens several parentheses, namely k, at
once. Clearly, we are mainly interested in balanced expressions, but unbalanced
expressions must exist, and can always be completed by parallel composition to
yield balanced terms. To complete the picture, consider now that the order in
which atoms, nuclei and electrons of different kinds — i.e., coming from different
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(9) at ®a =a (13) (p )y =92

(10) () =p (14) ) =p

(1) (PR @*=p*®q* (15) o*=0

(12) a’ @ b°=b* ® a’ (16) a®a =a Qa
(Lunit) @ @p=p (ass) p®(a®@p)=(p®q) ®p

(r.unit) PR D=p

Fig. 8. Axioms for bimolecules (with a #b € S, 6,e e NU{ "} and x € {7, }).

places — appear in an expression is not relevant. Hence, the monoidal operation
® better be commutative in such situations. In other words, we have:

A" R =" bR ®d =t ®bRa =aT ®a ®b=a®b,

but we definitely want that a™ ® et ®a” # a™ ®a” ®a™, because the particle a”
in the two terms is associated to different nuclei and, therefore, the two states
may give rise to different causal histories when a transition reads that particle.

We call bimolecules, ranged over by p, q, . . ., the (generalized) markings of the
algebra illustrated above. It includes a set of axioms almost identical to those in
Figure @] plus some extra axioms to deal with restricted commutativity. Given a
set S, we write v(S) for the set of bimolecules on S. The complete axiomatization
of bimolecules is shown in Figure B Note that law (9) — the analogous to (1)
for molecules — on bimolecules applies only when a nucleus is immediately on
the left of an electron, i.e., a™ ® a* # a. Furthermore, while law (1) applies to
generic molecules, law (9) deals with a single atom (place) a.

The final and key ingredient in our construction is to abandon the symme-
try of the monoidal categories involved. With a step similar to the one that
led from strictly symmetric to symmetric categories, we choose (non symmet-
ric) monoidal categories to which we adjoin ezactly and only the symmetries
we need. In this way, we are able to omit those symmetries that would cause
migration of electrons from atom to atom. In the following we shall build on a
construction somehow intermediate between P(N) and Q(N) for PT nets [12/32]
and, therefore, take a non commutative monoid of objects: it is commutative
only on some objects, in particular on the markings. We use the symbol ® for
the monoidal operation and denote the free monoid on the set S by S©.

Definition 11. For N = (S,T, 0o, 01,5) a contextual net, B(N) is the monoidal
category with objects the bimolecules on S, and arrows generated from the rules
in Figure[d, together with the symmetries

Vad be ca® Qb = b ®d’, fora#beS anddec NU{},
Yaa- QA —a Qa,

Vom0 ®a—a®a.
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p € v(S) teT u,v € 8%
idp:p = p t:5(t)” ® Bo(t) = <(t)” ® o1 (t) Vupl U@V > VR U

ap—q, Big—r ap—=q, Bip =
afip—r a®pfpep —qed

Fig. 9.

a; (B;0)=(a; B); 0 aidg=idp;a=a (4 B8)® (os8)=(a®a); (B )
a® (BRo)=(a®pf)®c aQids=ide @ =« idpeq=idy, @ idq
(@ ® B); Va0 =Ypp's (BR ) Yp,q5 Va,p=1dp ® idq Vp,a@r=Vp,q ® idr); (idg & Vp,r)

Fig. 10.

The arrows are taken modulo the axioms of strict monoidal categories in Fig-
ure [I0 (whenever the v’s are defined) and the laws:

oit;o’ =t (17)
Vas pe = idgsgpe,  fora#be S and d,e e NU{} (18)
Yo = iy (19)

idgr @t = idger1 @t R 1d,- (AQ)

for all transitions t: p — q, permutations o:p — p, 0’:q — q, and k > 0.

Since 7,- , is inverse to v, ,- = id,g,-, it follows that v,- , = id g -. Note
that we do not introduce symmetries such as 7v,- -, Yok o=, and Ygr gn, for
k,n > 1, that would allow the particles to flow from a nucleus to a different
one. For example, starting from ¢ ® a™ = a™ ® ™ ® a™ and applying an hypo-
thetical arrow id,+ ®7,- ,+, we would reach a* ®a* ®a™ = a* ®a, allowing the
nuclei to exchange electrons, which is problematic. Another non-example would
be applying the arrow id + g ,+ ®7,- ,- to a®a = a* ®a®a” = " ®a* @4 @@
because, after the exchange, the token of the first and second nucleus get con-
fused. By forcing 7,- ,- to be the identity we would confuse the electrons of two
different nuclei, because of the naturality axiom, and by leaving it free we would
allow again for electrons migration. In fact, our representation invariant is that
the electrons associated to a certain nucleus a* in a bimolecule g are determined
by following the discipline of proper nesting of open and closed parentheses. The
absence of those symmetries maintains this invariant for us.

Laws (I) and (IR) are classical laws for the P(IN) construction; here they
have a slightly more general role, because they also deal with nuclei and electrons.
In particular, law (7)) is the analogous of axiom (¥) for PT nets (cf. [12]).
Law (I9) says that electrons can be freely moved around ‘complete atoms’ of the
same kind. Law (4] is original and really central to our development. In fact,

even though the symmetries 7,- - are not allowed, we certainly do not want to
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distinguish between electrons of the same nucleus (the first released, the second,

..), as otherwise we would obtain a notion of computation very concrete and
far from our target, that is to capture algebraically the notion of contextual
process. Axiom (4] takes care of identifying such particles, as the Example
below illustrates.

Ezample 2. Let N be the contextual net in Figure [l Then we have three basic
arrows in B(N) associated to the transitions of N:

> tg:c Qa— C;

> t1:¢ ®b—

> to:c— .

Then, new arrows can be built by composing (sequentially and in parallel) these
three arrows with identities and symmetries. For example, the arrow id.2 Qg R1t1
goes from 2@ ®a®c ®b=c®abtoc?®c ®c = c. Analogously we
have the arrow id.: ® t1 ® tg:c ® b ® a — ¢. Then, it is possible to prove that
these two arrows are identified in B(N). In fact, we have:

ide> @to @11 = (ide2 @1y @ id,-g,); (ide2 ® id,- @ t1) (by functoriality)
= (id + ® to ® idp); (td .+ ® t1) (by law [A).

Then, by naturality, we have to ® idy = ¥, g, i (idp @ t0); 7 -, but these sym-
metries are just identities and therefore ¢ty ® id, can be replaced by idy ® to in
the expression above.

ide2 Qtg Rt = (idc+ ®idy R tp); (idc+ ®11)
= (id2g, @ idy @ to); (ide2 @ 1y @ id,-) (by law [A])
=id.2 ®t; ®to (by functoriality)

Notice that, as formalised by the following Definition [IZ, there is only one con-
catenable contextual process that starts from a ® b ® ¢ and involves exactly one
firing of tg and one firing of ¢;. By repeatedly applying law () we then have,
e.g.,

ide2 Q@tg Rt = identmiz Q1 ® idn,c— Rty ® idm,c—
for all n,m € N. This means that the order in which the electrons are read is
not important provided that they originated from the same nucleus.

To establish our representation result we need to refine contextual processes
in order to be able to concatenate them. As for similar cases in the literature, this
leads to the introduction of an ordering on the tokens in the source and target
of the process net, yielding the notion of concatenable contextual processes.

Definition 12. For N a contextual net, a concatenable contextual process is a
tuple (7,0, <0, <1), where w is a contextual process with underlying contextual
process net ©, <oy and <1 are partial orders on the minimal and mazimal places
of ©, respectively, such that: (1) x <; y implies that w(x) = w(y); and (2) if
x # y are minimal places (respectively mazimal places) such that w(x) = w(y),
then either x <o y or y <o x (respectively, x <1y ory <1 ).
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As usual, concatenable processes are taken up to isomorphism. The two con-
ditions imposed in the definition above ensure that we order only places of ©
that are instances of the same place of N, and that on such places the ordering
is total.

Likewise concatenable processes of PT nets, a partial operation of sequential
composition can be defined. Provided the target of process 7 coincides with the
source of process 7', it merges the mazximal places of m with the minimal places
of 7" according to the orders <; and <.

Definition 13. Let (7/,0',<(,<}) and (7"”,0",<{, <) be two concatenable
contextual processes of a contextual net N, where Tgr NTor = @ and S N Sor
is both the set of mazimal places for @' and the set of minimal places for ©",
with 7' (x) = 7"’(x) for any © € Ser N Sor, and x <\ y iff x < y for all
x,y € Se: N Sor. Then, their concatenation (7,0 UO" <(, <) = («',0, <
,=<0); (7,07, <0, <) is well defined, where 7 is the componentwise union of 7
and " (i.e., m(x) =7'(x) if x € O and 7(x) = " (z) if x € O”).

The composition is well defined because by hypothesis we have 7/(z) = 7"/ (z)
for all z € © NO" = Sg: N Sgr, i.e., merged places have the same names.

The parallel composition of two processes consists of taking their disjoint
union and extending the orders on minimal and maximal places by = <; y
whenever x belongs to the first process, y to the second, and 7(z) = m(y).

Definition 14. Let (7,0, <{, <}) and (7",0",<{,=<Y) be two concatenable
contextual processes of a contextual net N, where To-NTor = & and Sg:NSgr =
@. Let Sy and S{ be the set of minimal places of @' and O, respectively. Like-
wise, let S and Sy be the set of mazimal places of ©' and O", respectively. Then,
the parallel composition (m,0'UO0" <o, <1) = (7,0, <}, <)@ (7", 0", <[, <)
s well defined, where

> 7 is the componentwise union of © and 7; and
px <y iff (tyy € Sine <L y)V(e,ye Sine < yyViee Sinye
S AT (x) =7"(y)).

It can be shown that with these two operations the concatenable contextual
processes of N form the arrows of a strict monoidal category CP(N). Symmetries
can be defined by taking a process that contains just places (no transitions) with
suitable orderings <y and <;. Each place is both minimal and maximal. These
symmetries make CP(N) a symmetric monoidal category in SSMC®.

Definition 15. A concatenable contextual process is called elementary if it con-
tains at most one transition.

Definition 16. Given a contextual net N and a transition t € Ty, the elemen-
tary concatenable contextual process [t] = (w, 0, <o, <1) associated to t is given

by
> So ={{(a,0,n) |a € [0(t)], 1 <n<dh(t)(a)}U
{{a,1,n) [a e [01()], 1 <n <i(t)(a)}U{(a,2,1) [ ac [¢(t)]}



448 Roberto Bruni and Vladimiro Sassone

> To = {(t)};

> 9o((t)) = {{a,0,n) | a € [do(t)], 1 <n < o(t)(a)};
> 01((t) = {{a,1,n) |a € [01(1)], 1 <n < di(t)(a)};
> <((t) ={(a,2,1) | a € |<(t)]};

> w({a,j,m) =a and 7({t)) =t

> (az kY <o (b,j,h) iff a=bAi=5j=0Ak<h.
> (a,i,k) <1 (b,4,h) iff a=bAi=j=1Ak<h.

Note that the places in {(a,2,1) | @ € [s(f)|} are both minimal and maximal.
Only the trivial (empty) order is needed on them, because we rely on the basic
assumptions that ¢(¢) is a set and that ¢(t) N |9y (t) U (t)] = @, for any ¢t € Ty.

Proposition 3. Fach elementary concatenable contextual process (w, 0, <g, <1)
that contains ezactly one transition, say z, can be obtained as o1; ([7(z)|®03); 03
for suitable elementary concatenable contextual processes o1, oo and o3 that
contains no transition.

Proposition 4. The concatenable contextual processes of a contextual net N
can be obtained as the sequential composition of elementary concatenable con-
textual processes.

Proof. Likewise the analogous statement for ordinary PT nets, the proof is by
induction on the number of transitions in the process net (exploiting Proposi-

tion [3)). ¢

Theorem 2. The category CP(N) is isomorphic (via a symmetric monoidal
functor) to the full subcategory of B(N) whose objects are the elements of S®
(which is symmetric).

Before proving the main representation theorem above, we need some tech-
nical lemmata that state useful properties of the arrows in B(N). We start by
extending some of the properties of molecules to the framework of bimolecules.

Lemma 5. For each bimolecule p and each k € N, we have (p*)” =p".

Proposition 5. For each place a and each k € N, we have a¥ = a**t' @ a”.

Proof. The proof proceeds by induction on k. For the base case (k = 0) we get
a=a"®a directly by law (9). For the inductive case, we assume the property
to be valid for kK = n and prove it for K = n + 1. Then,

= (a™)" (by definition)

= (a"" ®a")" (by inductive hypothesis)
= (a"™T @ (a")* (by law 11)
=a"" @a (by law 10).

This concludes the proof. ¢
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Corollary 3. For each place a and each k € N, we have a =a* @ k-a”.

Lemma 6. Each bimolecule p can be decomposed as p = p1 Qp2 Q. ..Rpy,, where
each p; has the form kig-a; ® ai"' @ af? ® ... ® af“”i with a; # a;, fori#j.
Lemma 7. Ifp® q € S®, then for each u € S® we have pRu® q € S®.

Proof. 1t suffices to prove the property for u € S, which can be done via a simple
case analysis, exploiting the representation of p and g provided by Lemma 6] and
applying law (16). ¢

Note that in the previous lemma, p and ¢ are generic bimolecules and not
necessarily markings, in fact p ® ¢ € S® does not imply that p € S® A q € S®.
We can now state some invariant and decomposition properties for the arrows
in B(N).

Lemma 8. Ifa = idy®7,,,®id, withpRr@y®q € S®, then pQyr®q € S®
Proof. By a simple case analysis: all symmetries are collapsed to identities, ex-
cept when z =y = a for some a € S. ¢
Lemma 9. If a =id, ®t ®id, and pR<(t)" ® dp(t) ® g € S, then pR<(t)” ®
o (t) ®qe S®.

Proof. Follows from Lemma[7 ¢

Proposition 6. Each o € B(N) can be decomposed as
a = op; (Idy, ®t1 ®idy, );01; (idp, Rta ®idy,); 095 ... (idp, @ty @idy,); on,

where the o; are permutations (i.e., sequential and parallel compositions of sym-
metries and identities) and the t; are transitions.

Proof. By structural induction. The complex case is for @ = a3 ® ag for some
ar:rp — ) and ag:ry — ). But then, by functoriality we have o = (a3 ®
id,); (id,; ® az) and by inductive hypothesis

a1 = ap; (idy @) @idg); 01; (idp, @ty @idg); 055 .5
(idyy @t ®idy 1)io ol
ag = oy); (zd v @t ® ’Ld )i 01 s (idpy @ty @idgy); 095
(de’/“ ® t,/ri// & qu//” ) n//7
Then, by functoriality:
ar ®idy, = (JO ® idy, ); (Zd ® tl ® qu’ ®ra); (‘71 ® idy, ); (Zd ® t2 ® qu’ ®r2);
(0 ®@idyy); .. (zdr ®t! e ®idg, @r); (00 ,®zdrz)
zdri ® g = (Zdri ® 00)7 (Zdr’ ®@pY ® tl ® id, ”) (Zdrl ® 01) (Zd'r‘i@p” ® t2 ®id ”)
(Zdri ® 0'2 ), B (’Ld%@p:;” & tn/, & qu;/, ); (Zd & Un//)

From which the hypothesis follows trivially — o; = 0} ®id,,, for i =0,...,n -1,
o = (0, ®idy, ); (idy ® 0g), and opr 4 = idy @ 0}, for i =1,...,n". ¢
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The main law (4)) can then be extended to generic arrows whenever we know
that the rightmost electron belongs to the nucleus that precedes the arrow.

Corollary 4. For each a:p — q € B(N), a € S and k > 0 such that a*' @ p®
a” = d* @ p we have id 1 ® @ ® id,- = id @ o

Corollary 5. If a:u — q € B(N) with u € S®, then q € S®.

Proof. Consequence of Proposition [fl and Lemmata B and ¢

Lemma 10. If o = id, @ t ® id, € B(N) with t a transition and p ® (t)” ®
d(t) @ q € S®, then a = o; (idg(t),u ®t®idy,); 0" for some permutations o and
o' and some marking u € S®.

Proof. By the decomposition of Lemmalfl and by the fact that the source of a/is a
marking, it follows that p = ®, g a**! ®...@a"m and ¢ = Qe ha-a” ®h,-a.
It follows that each electron a” in ¢(t)” belongs to the closest ion on the left of
the electron (namely, the i,th nucleus of type a in p with i, the greatest index
in 1 <14, < ng such that k, ;, > 0). Moreover, the h, electrons of type a in ¢ can
be attached to their corresponding nuclei in p, by applying law (A]). Therefore
we have a = idy @t ® id, where p' = @ cq(ia —1)-a®a® ® (ng —iq) -a (if a
is not read by t then the corresponding argument in the sum is just n, - a), and
v =Q,cg My - a. Then, by naturality of symmetries, we have:

&= (idp” ® Yol 5 (£)" @80 () ® idy); (idp” @t ®idy@v); (idp” ® Vs (t)"®01 (t),v’ ®idy),

where p” = Q,cgliac —1) - a®at and v/ = @Q,cg(na — %a) - a. In fact the
symmetries that we have used in the expression are defined since they involve
the swappings of ‘complete’ tokens with either ‘complete’ tokens, or electrons.
By naturality we have also:
idp” Rt® idv’@v = ('Yv”&(t)@c%(t) 02y idv’@v); (Z.dg(t)+ RER® idv”@v’@v);
(Vswy@on (1), @ idvgo)

where v = Q) __<(is — 1) - a. By taking

a€sS

0 = (idpr ® Yy c(tyw00(t) @ 10); (Vo s(0)@00(1) @ 1w o)
o' = (oot @ idvey); (idyr @ Vo (1yga, (1), © ido)
u=v"®v v

we have the thesis. ¢

Proposition 7. Fach a:u — q € B(N) with u € S® can be decomposed as

a = op; (idg(tl)+ ® t1 ®idy,);01; (idg(t2)+ ® to ®idy,);02;. ..}
(idg‘(tn)7L Qtn ® Zdu"), On,

where the o; are permutations, the t; are transitions and u; € S®, for i =
1,...,n.
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Proof. The proof exploits the decomposition provided by Proposition[6land then
applies n times the result of Lemma [I0 ¢

We are now ready to prove the main representation result of this section.

Proof. (of Theorem[d). We start by defining the monoidal functor G:CP(N) —
B(N), which is the identity on objects. By Proposition Bl the functor is com-
pletely determined by defining the mapping of elementary processes, since then
G(o; B) = G(a); G(B) and G(a® B) = G(a) ® G(H). For symmetries, the mapping
is the classical one (see e.g. [31]). For the elementary process [t] associated to
the transition ¢ € Ty, we let G([t]) = id )+ ®t. It remains to prove that:

1. G is well defined;
2. G is full (on the full subcategory of B(IN) whose objects are markings);
3. G is faithful.

The fact that G is well defined means that different decompositions of the
same process in terms of elementary processes are mapped to the same arrow.
This corresponds to show that different orderings of the events in a process
o = (m,6,=<0p,<1) that are consistent with the ordering of events o yield the
same arrow in B(N). To see this, it suffices to show that given a decomposition
of the process o, and taken any two concurrent events that are executed con-
secutively according to the order imposed by the fixed decomposition, then the
decomposition in which the two concurrent events are executed in the reverse
order is mapped to the same arrow of o. The proof is easy (by functoriality of
the tensor product) if the two events do not share a context. Otherwise, ax-
iom (A) must be employed, as we did in Example 2] Formally, we consider the
process P = Py;([t1] ® 01);0;([t2] ® 02); P> where o7 is the identity process
on the marking us @ 9p(t2) ® v, o is the process associated to the permutation
idy @ Yoy 001 (t1),u2®d0(t2) @ dy, and oy is the identity process on the marking
up @ O1(t2) ® v, ie., ¢(t1) = u D u, s(t2) = u ® ug, and the two occurrences
share the context u (note that while u; and us are not necessarily disjoint, the
corresponding sets of tokens read by ¢; and t5 in the process P are disjoint).
Then, we have also P = Py;0’; ([t2] ® 0b);0”; ([t1] ® o});0"; P2, for suitable
permutation processes:

o’ associated to idy ® Yu, @00 (t1),us@d0 (t2) @ iy,

ob idle process associated to uy @ dp(t1) ® v,
o' associated to idy ® Yuy@d, (t2),u @00 (t1) © iy,
o} idle process associated to uz & 9y (t2) B v,

o' associated to idy ® Yuy @0, (t1),us@0: (t2) @ idy.

Hence we want to prove that the two decompositions are mapped to the same
arrow in B(N). More precisely, we show that

G(([t1] ® 01); 05 ([ta] ® 02)) = G(0”; ([t2] ® 05);0”; ([t1] ® 07);6™).

The complete proof is shown in Figure[TTl. We briefly comment the critical steps:
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Step [20: we have exploited axiom (4] and then the fact that symmetries on
electrons and tokens are identities to transform the second subexpression;

Step [Z1: we have applied the naturality of symmetries to the first and second
subexpressions — in order to match source and target of ¢t; with the compo-
nents of the symmetries, observe that u; @ u~ = uf ®u” ®uy since u and uq
are disjoint;

Step [22: we have used axiom (4] to transform the second and third subexpres-
sions;

Step [23: we have applied the functoriality of the tensor product to the second
and third subexpressions;

Step : we have applied the functoriality of the tensor product to the second
subexpressions to reverse the order in which ¢ and ¢; appear in the previous
expressions;

Step [23: we have used axiom ([4]) to reduce the second and third subexpressions;

Step [20: we have applied the naturality of symmetries twice to expand the third
subexpression;

Step [Z7: we have used axiom (4]) and then the fact that symmetries on electrons
are identities to transform the first, third and fifth subexpressions.

The fact that G is full follows from Propositions @ and [7 since G([t]) =
Z'dg(t)+ ®t.

Finally, regarding faithfulness, let Py and P; be such that G(Fy) = G(P;), and
let a be a term representing G(P,). Observe, by simply inspecting the axioms
that define B(N), that all the possible choices for o have the same number
of transitions. More precisely, exactly the same transitions occur in each term
obtained by rewriting o according to such axioms. Moreover, by definition of G,
these are in one-to-one correspondence with the transitions of Py and with those
of P;. We can therefore proceed by induction on the number n of transitions
of @ (and Py and P;) to prove that Py and P; are isomorphic processes.

The base case, where n equals zero, is obvious, as « is simply a permutation.
For the induction case, let fix any decomposition of « according to Proposition [7]
say

a = 00; (id (4, )+ @t @ idy, ); 015 (id (4 + @ o ®idy, ); 023 .. 5
(idg(tn)+ Qtn ® idun); On,

An argument similar to the one employed to establish the well-definedness of
G, but working in the opposite direction, proves that all the steps needed to
transform « in the normal form selected above can be mimicked both on Py and
P;. It then follows that P;, for i« = 0,1, can be written as P; = P/;04; ([tn] ®
ol); 0!, where G(Pj) = G(P{). Then, by induction hypothesis, we can conclude
that P} and P] are isomorphic processes. It is then easy to prove that so are P,
and Pl. ‘

Besides the fact that all the arrows of B(IN) have a meaningful computa-
tional interpretation, a further advantage of the present approach with respect
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G(([t] ® 01); 03 ([t2] ® 02)) =
= (id uwt @u] + ®t1 ® iduy 29y (t2) v ; (idu @ Yu1®81 (t1),u2 @00 (t2) ® idy);
(id, 4 g ®t2 @ idu, 00, (t1)80

)
)

= (Zdu-&-@uj- ®t1® idu2®30(t2)®v); (idu+ ® Yu1®@u~®01 (t1),u2®0 (t2) ® idy);
)

(idu+®u2+ @ t2 @ idy, o, (t1) v (20)
= (1,4 ® Vuygu0a0(t1),uz80(t2) @ 1) (4 o 1oyt @ T2 @ Bdo);

(id, 1 g © t2 @ iy 50 (11)30) (21)
= (1,4 ® Yuy gu 00 (t1), 4200 (t2) ® W0)3 (W2 4 - 004 (1)t @ 11 @ T6);

(g @2 @ 1o 00, (11)00) (22)

= (id 4 ® Vay @u- @00 (t1) s @0 (1) © 1 ); (id 2eud Rt ® iduf ®t1 ®idy);  (23)
= (id,+ © Vo, gu- @80 (t1),u2@80 (t2) @ 1); (Zdu2®u;— ®t2® iduf@u'@u;@@ao(tl)@u);

(id w2 eut @u-ou;e0; (t)eut © 1 ®idy); (24)
= ( ut ® Yu1®@u~®80(t1),us@80 (t2) ® idy ) (idu+®u;i- ®l2® idm@%(h)@v)?

(id ut Bus @01 (t2)@u; ®t1 ®idy); (25)

= (1,4 ® Yuy gu= 00 (t1),uz 80 (t2) ® 1l ); (1 1 4 B2 @ iduy 00 (11)80);

(Zdu-&- ® VYua®01 (t2),u1 @u~ @0 (t1) ® idy); (idu+®u1i- X ® idu2®31(t2)®v)§

(id 1+ ® Vuy um 00y (41) uz00: (t2) © 1v); (26)

= (idu ® Vuy 880 (t1),u2 880 (t2) @ 1dv); (idu+®uér ® b2 @ idu, 00y (t1)00);
(1du ® Vaup8; (t2),u1 080 (t1) @ idw); (idu+®u1‘r ® t1 ® iduy 0, (12)00);

(idy ® 7u1®31(t1)7U2®81(t2) ® idy); (27)
= G(0'; ([t2] ® 03); 0”; ([t1] ® 71))

Fig. 11. The proof of G(([t1] ® o1); 0; ([t2] ® 02)) = G(o”; ([t2] ® 03);0”; ([t1] ® 71)).

to the match-share categories of [16] is that the arrows of the model category
corresponding to pure concatenable process can be distinguished just by look-
ing at their sources and targets, rather than by inspecting their construction.
And as for the CTph, our proposal is a conservative extension of the ordinary
concatenable process semantics (cf. §[L2 and [T2J31]).

Corollary 6. If N is a PT net, then P(N) is a full subcategory of B(N).

Moreover, the present axiomatics of B(IN) improves sensibly the construction
presented in [7]. In particular, the monoid of objects is here ‘morally’ commuta-
tive, thus making redundant the idea of instances of transitions and the related
axioms [327]. Moreover, the exact sharing hypothesis has found a mature, sat-
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isfactory formulation in terms of law ([A) which, among other things, allowed us
to dispense with the particles a-.

Concluding Remarks and Future Work

Building on an important suggestion of Meseguer in [22], we have shown a way
to extend the algebraic semantics of PT nets proposed in [24] to contextual nets,
both in the collective token and the individual token interpretation. The con-
structions rely on the choice of a non-free monoid of objects, whose elements we
called molecules and bimolecules. In the case of the collective token philosophy,
our work extends Meseguer’s by identifying the maximum sharing hypothesis
as the fundamental law of collective contextual processes. The key to transport
these ideas to the individual token philosophy was to renounce to the symmetry
of the monoidal category, being thus able to select only the symmetries consis-
tent with our computational interpretation in terms of concatenable contextual
processes. The axioms of ezact sharing provided us with a way to regulate the
interplay between all the different ingredients.

Although we have worked only at the level of single nets, we believe that
our approach can be extended to constructions between categories of nets and
models, with restrictions analogous to those well-known in the literature [31132].

As one of the anonymous referees suggested, it would be interesting to apply
our algebraic approach to high level Petri nets. In fact, these are often used for
modeling programming languages where expressions can involve several variables
read but not modified, so that in the computational analysis of the associated
nets it would be important to understand the maximum degree of parallelism
allowed in complex steps. Since the definition of high level nets has algebraic
foundations, we think that our approach could be extended to that framework,
but this is outside the scope of the present paper and left for future work.
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