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Abstract. Partial algebra is a suitable tool to define sequential seman-
tics for arbitrary restrictions of the occurrence rule, such as capacity or
context restrictions. This paper focuses on non-sequential process seman-
tics of Petri nets over partial algebras. It is shown that the concept of
partial algebra is suitable as a basis for process construction of different
classes of Petri nets taking dependencies between processes that restrict
concurrent composition into consideration.

Thus, Petri nets over partial algebra provide a unifying framework for
Petri net classes in which some processes cannot be executed concur-
rently, such as elementary nets with context. We will illustrate this claim
proving a one-to-one correspondence between processes constructed us-
ing partial algebra and processes based on partial orders for elementary
nets with context. Furthermore, we provide compositional process term
semantics using the presented framework for place/transition nets with
(both weak and strong) capacities and place/transition nets with in-
hibitor arcs.

1 Introduction

Petri nets are applied in an increasing number of areas. As a consequence, nu-
merous different variants of Petri nets have been developed, many of them based
on the same behavioral principles but with slightly different occurrence rules.
Examples include Petri nets extended by capacities, inhibitor arcs, read arcs or
asymmetric synchronization of transitions.

The restrictions of the occurrence rule can be expressed by restricting the
set of legal markings in the case of nets with capacities or by means of different
kinds of arcs in the case of nets with inhibitor arcs, read arcs or asymmetric
synchronization. Whereas the definition of sequential semantics for these vari-
ants can be obtained in a straightforward way from the occurrence rule, partial
order semantics providing an explicit representation of concurrent transition oc-
currences is usually constructed in an ad-hoc way. The aim of this paper is to
present a unifying concept for generalized Petri nets, i.e. for Petri nets with
restricted occurrence rule, to obtain non-sequential semantics in a systematic
way.
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m = X + post(t)

Fig. 1. Occurrence of a transition ¢ from a marking m to a marking m’ and its inter-
pretation as a concurrent rewriting of the transition ¢ and the marking .

In [25,26] and in [18] the authors realized that non-sequential semantics of
elementary nets and place/transitions nets can be expressed in terms of con-
current rewriting using partial monoids and total monoids, respectively. In such
an algebraic approach, a transition t is understood to be an elementary rewrite
term allowing to replace the marking pre(t) by the marking post(t). Moreover,
any marking m is understood to be an elementary term, rewriting m by m itself.
A single occurrence of a transition ¢ leading from a marking m to a marking

m/ (in symbols m —— m/) can be understood as a concurrent composition of
the elementary term ¢ and the elementary term corresponding to the marking
x, satisfying m = z + pre(t) and m’ = x + post(t), where + denotes a suitable
operation on markings (see Figure 1). For example, in [18] + is the addition
of multi-sets of places, and hence this approach describes place/transition nets.
The non-sequential behaviour of a net is given by a set of process terms, con-
structed from elementary terms using operators for sequential and for concurrent
composition, denoted by ; and ||, respectively.

Now, assume that for some class of Petri nets a suitable operation + over the

set of markings is given such that for each transition occurrence m L m/ there
exists a marking x satisfying x + pre(t) = m and = + post(t) = m’. Then the
occurrence of ¢ at m is expressed by the term z || t. Conversely, ¢ cannot neces-
sarily occur at any marking = + pre(t) but its enabledness might be restricted.
Such restrictions of the occurrence rule will be encoded by a restriction of con-
current composition, i.e. if z 4+ pre(t) does not enable ¢, then = and ¢ are not
allowed to be composed by ||. To describe such a restriction, we use an abstract
set I of information elements together with a symmetric independence relation
on I. Every marking x as well as every transition ¢ has attached an information
element. A marking x and a transition ¢ can be composed concurrently if and
only if their respective information elements are independent. For independent
information elements we define an operation called concurrent composition with
the intended meaning that the information of the composed term is the compo-
sition of the information elements of its components. Because the operation of
concurrent composition between elementary terms and information elements is
defined only partially, i.e. partial algebra is employed, such nets are called Petri
nets over partial algebra [14,15].
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Fig. 2. An elementary net with places pi1,p2, p3, ps, ps and the elementary terms cor-
responding to transitions. For example, transition a is enabled to occur if the places
p1 and ps are marked and the place ps is unmarked. Its occurrence removes a token
from p; and ps and adds a token to p3. In other words, transition a rewrites its pre-
set pre(a) = {p1,ps} by its post-set post(a) = {p3}. It has attached the information
element {p1,ps,ps}, given by the union of its pre- and post-set.

For example, in the case of elementary nets, where markings are sets of
places, we attach to a transition ¢ as information element the union of pre(t)
and post(t), while the information element for a marking m is the marking
m itself. Two information elements are independent if they are disjoint. The
concurrent composition of independent information elements is their union. For
an illustrating example see Figure 2.

If a restriction of the occurrence rule is encoded by means of a partial al-
gebra of information elements, one can build non-sequential semantics of nets
over partial algebra. This semantics is given by process terms generated from
the elementary terms (transitions and markings) using the partial operations
sequential composition and concurrent composition.

Each process term has associated an initial marking, final marking and a set
of information elements. For elementary process terms, the set of information
elements is the one-element set containing the attached information element.

Initial and final markings are necessary for sequential composition: Two pro-
cess terms can be composed sequentially only if the final marking of the first
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process term coincides with the initial marking of the second one. The set of
information elements associated to the resulting process term is given by the
union of the sets of information elements associated to the two composed terms.

Concurrent composition of two process terms is defined only if each infor-
mation element associated to the first process term is independent from each
information element associated to the second. Then the initial and final marking
of the resulting term are given by concurrent composition of the initial markings
and of the final markings of the two terms. The set of information elements of the
resulting process term contains the concurrent composition of each information
element associated to the first term with each information element associated to
the second.

Thus, sets of information elements are employed for concurrent composition
of terms. As already observed by Winkowski in [25,26], for a process term of an
elementary net (where information elements are markings, i.e. sets of places),
instead of considering the set of information elements, it is sufficient to consider
just those places which appear in at least one of the markings being information
elements. In [6] we generalize this idea: Two sets of information elements A and
B do not have to be distinguished, if for each set of information elements C' either
both A and B are independent from C! or both A and B are not independent
from C'. Therefore, we can use any equivalence = ¢ 2/ x 27 that is a congruence
with respect to the operations concurrent composition and union (for sequential
composition) and satisfies: If A = B and A is independent from C, then B is
independent from C. That means, we can use any equivalence =2 € 2! x 2!/ which
is a closed congruence with respect to the operations concurrent composition
and union. Equivalence classes of the greatest closed congruence represent the
minimal information assigned to process terms necessary for concurrent com-
position. Thus, instead of sets of information elements we associate to process
terms equivalence classes with respect to the greatest closed congruence.

There is a strong connection between the process term semantics described
above and the usual partial order based semantics. Consider, for example, the
process given in Figure 3. It determines that transition a occurs before b and c,
and that transition d occurs before b. This process can be decomposed into the
sequence ac occurring at the marking {p1, ps, ps} (described by the process term
(a;c) || {psa}), followed by the sequence d b occurring at the marking {p1, ps, D5}
(described by the process term (d;b) || {p1}). The resulting term is ((a;c) ||
{p4}); ((d;b) || {p1}) (see Figure 4). Another interpretation of this process is
the following: Transitions a and d occur concurrently at the marking {p1, ps, ps}
replacing this marking by {ps, p3.Ps}. At this marking transitions ¢ and b occur
concurrently. The corresponding term is (a || d);(c || b) (see Figure 5). Each
process term « defines a partially ordered set of events representing transition
occurrences in an obvious way: an event es depends on another event e; if the
process term « contains a subterm «q; ao such that e; occurs in a7 and ey occurs
in ap. For example, the process term o = ((a;¢) || {pa}): ((d;0) || {p1}) generates

! Two sets of information elements X and Y are independent if and only if each
information element of X is independent from each information element of Y.
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Fig. 3. The elementary net from Figure 2 with the initial marking {p1, p4, ps} together
with a process and the corresponding partial order of the occurring transitions. The
place annotated by ps establishes an order between the occurrence of a and b, due to the
contact situation at ps after the occurrence of d. For details how to construct processes
of elementary nets with contacts see e.g. [23] or Subsection 8.1. The interpretation of
D5 is that ps is not marked.

the partial order given in Figure 6, while the process term 5 = (a || d); (¢ || b)
generates the partial order given in Figure 7.

Unfortunately not all reasonable partial orders can be generated in this way.
For example, consider the partial order shown in Figure 3, which is determined
by the process from Figure 3. It is easy to show by induction on the structure of
process terms that this partial order cannot be generated by any process term.
However, this partial order can be constructed from the partial orders generated
by process terms a and 3, i.e. by two possible decompositions of the process
from Figure 3, removing the contradicting connections between ¢ and d. We will
define an equivalence of process terms identifying exactly those process terms
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Fig. 4. Derivation of a process term of the elementary net from Figure 2. Instead of
the whole set of information elements, each process term has attached only the set of
all involved places, i.e. the set of places characterizing the greatest closed congruence
class of the related set of information elements. For example, the process term a; ¢ has
attached the information {p1,ps.ps} instead of the set of two information elements

{{p1,p3, 05}, {pP1.p3}}

representing the same run. Then each run is represented by an equivalence class
of process terms.

The paper is organized as follows. Section 2 gives mathematical preliminaries.
After introducing formally our concept in Section 3, we provide a couple of
examples in Sections 4-9.

The first example given in Section 4 will re-formulate results achieved in
[25,26,6] for elementary nets, showing that the information for concurrent com-
position used in [25,26] is in fact (isomorphic to) the equivalence class of the
greatest closed congruence of the related partial algebra and therefore is the
minimal information necessary for concurrent composition.

Usually, if a transition depends on the state of a place, then this state is
changed by the transition’s occurrence. We call this a write operation and the
place a write place. Extensions with context requirements release this property:
a transition can only occur if in addition the context places are in a certain state
but this state remains unchanged by the transition’s occurrence (read operation).
In [19] elementary nets with context are defined, generalizing the notions of
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Fig. 5. Derivation of another process term of the elementary net from Figure 2.

a > C » d » b

Fig. 6. Partial order generated by the process term o = ((a;¢) || {pa}); ((d;b) || {p1})

a > C

d » b

Fig. 7. Partial order generated by the process term 3 = (a || d); (c || b)

inhibitor arcs (negative context) and read arcs (positive context). In Sections
5—7 we apply our concept to elementary nets with context. For these nets, two
enabled transitions using common places as (positive or negative) context can
occur concurrently if their pre- and post-sets are disjoint. Accordingly, if two
processes do not employ common places for the flow of tokens but partly use
the same context, then the composition of these process terms should not be
excluded. This means that read operations on a place can occur concurrently,
whereas mixed read and write operations as well as two write operations are
incompatible with respect to concurrent composition, just as concurrent access
to a storage element is only possible for read access (this interpretation of context
places was also chosen in [19] whereas [13,17] allows concurrent read and write
operations). Hence we need information about the nature (write or read) of the
access to places for each process term. Therefore, the necessary information is
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more complex as the simple collection of markings associated to a process. In each
case, i.e. in case of elementary nets with positive context (Section 5), negative
context (Section 6), and mixed context (Section 7), the minimal information for
concurrent composition is computed. Further, in Section 8 we prove that the
non-sequential semantics given by process terms coincides with the partial order
semantics given by process nets of elementary nets with context introduced in
[19].

Section 9 illustrates the generality of our approach by applying it to two
more net classes, namely place/transition nets with inhibitor arcs (negative con-
text) and place/transition nets with capacities. In Subsection 9.1 we show that
for place/transition nets with inhibitor arcs, concurrent composition of two pro-
cesses should only be excluded if a place is a common context and write place,
and therefore it is enough to store the set of context and the set of write places.
Thus, the set of information is less complex (it is particularly a finite set) than
the set of markings (which in this case is the infinite set of multi-sets over the set
of places). We conclude by showing that our approach fits well for place/transtion
nets with strong and with weak capacities (Subsection 9.2).

2 Mathematical Preliminaries

We use N to denote the nonnegative integers and NT to denote the positive
integers. Given two arbitrary sets A and B, the symbol B4 denotes the set of
all functions from A to B. Given a function f from A to B and a subset C' of A
we write f|c to denote the restriction of f to the set C. The symbol 24 denotes
the power set of a set A. Given a set A, the symbol |A| denotes the cardinality
of A and the symbol id4 the identity on the set A. We write id to denote id 4
whenever A is clear from the context. The set of all multi-sets over a set A is
denoted by N*. Given a binary relation R C A x A over a set A, the symbol RT
denotes the transitive closure of R.

A partial groupoid is an ordered tuple Z = (I,domj,+) where I is a set
called the carrier of Z, domy C I x I is the domain of 4+, and 4+ : domyi — Iis
the partial operation of Z. In the rest of the paper we will consider only partial
groupoids (I, dom,+) which fulfil the following conditions:

— If a + b is defined then b+ a is defined and a + b =b + a.
— If (a+0b) 4 ¢ is defined then a + (b+c¢) is defined and (a+b) +c¢ = a+ (b+c¢).

We use the symbol I for a set of information elements associated to elemen-
tary terms and the operation + to express concurrent composition of information
elements. Not each pair of process terms can be concurrently composed, hence
+ is a partial operation. The relation dom contains the pairs of elements which
are independent and can be concurrently composed.

As explained in Introduction, generated terms have associated sets of infor-
mation elements. So, the partial groupoid (I, dom i, +) is extended to the partial
groupoid (27, domyy, {+}), where

— domgpy = {(X.Y) e 2! x2! | X xY C dom;}.
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— XHY ={z+y|lzeXAyeY}

We will use more than one partial operation on the same carrier. A partial
algebra is a set (called carrier) together with a couple of partial operations on
this set (with possibly different arity). Given a partial algebra with carrier X,
an equivalence ~ on X satisfying the following conditions is a congruence: If

op is an n-ary partial operation, a3 ~ b1,...,a, ~ by, (a1,...,a,) € dom,
and (by,...,b,) € dom,y, then op(ay,...,a,) ~ op(by,....b,). If moreover
ay ~ by,...,an ~ b, and (a1,...,a,) € domey, imply (by,...,b,) € dom,, for

each n-ary partial operation then the congruence ~ is said to be closed. Thus,
a congruence is an equivalence preserving all operations of a partial algebra,
while a closed congruence moreover preserves the domains of the operations.
For a given partial algebra there always exists a unique greatest closed con-
gruence. The intersection of two congruences is again a congruence. Given a
binary relation on X, there always exists a unique least congruence contain-
ing this relation. In general, the same does not hold for closed congruences.
Given a partial algebra X with carrier X and a congruence ~ on X, we write
[l ={y € X |z ~y} and X/ = [J,cx[7]~. A closed congruence ~ de-
fines the partial algebra X'/ with carrier X/, and with n-ary partial oper-
ation op/~. defined for each n-ary partial operation op : dom,, — X of X as
follows: dom,y,, . = {([a1]~,....[an]~) | (@1,...,a,) € dom,y} and, for each
(a1,...,an) € domeyy, op/~(lai]~,...,[an]~) = [op(ai,...,an)]~. The partial
algebra X'/ is called factor algebra of X with respect to the congruence ~.
Let X be a partial algebra with k operations opff, ie{l,...,k},and let Y be
a partial algebra with k£ operations opfiy i€ {1,...,k} such that the arity nZX of
ops¥ equals the arity n,Ly of op,?) for every i € {1,...,k}. Denote by X the carrier of
X and by Y the carrier of Y. Then a function f : X — Y is called homomorphism
if for every i € {1,...,k} and Ty Tpx € X we have: if opf“)(azl,...,asnix) is
defined then opY (f(z1), ..., f(z,x)) is also defined and flopF(xq,. .. ,Tpx)) =
opY (f(x1), .. -, J(@nx)). A homomorphism f : X — Y is called closed if for
every i € {1,...,k} and zy,...x,» € X we have: if op? (f(z1),. .. S (@) is
defined then op;-Y (z1,...,z,x) is also defined. If f is a bijection, then it is called
an isomorphism, and the pafrtial algebras X and ) are called isomorphic.
There is a strong connection between the concepts of homomorphism and
congruence in partial algebras: If f is a surjective (closed) homomorphism from
X to Y, then the relation ~ C X x X defined by a ~ b < f(a) = f(b) is a
(closed) congruence and ) is isomorphic to X'/~. Conversely, given a (closed)
congruence ~ of X, the mapping h : X — X/. given by h(z) = [z]. is a
surjective (closed) homomorphism. This homomorphism is called the natural
homomorphism w.r.t. ~. For more details on partial algebras see e.g. [4].

3 The General Approach

An algebraic Petri net as introduced in [18] is based on a graph with vertices rep-
resenting markings and edges labeled by transitions representing steps between
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markings. Moreover, an operator + adds markings. The set of markings together
with addition of markings denotes a commutative monoid M = (M, +) with
neutral element e (the empty marking). To obtain the process term semantics
of an algebraic Petri net, we assign to every marking and to every transition an
information element used for concurrent composition. Two elementary process
terms can be concurrently composed only if their associated information ele-
ments are independent. The set of all possible information elements is denoted
by a partial groupoid Z = (I,+,dom ), where + denotes the composition of
independent information elements, and independence is given by the symmetric
relation domy C I x I.

Since we will compose process terms concurrently and process terms have
associated sets of information elements, we lift the partial groupoid (I, +, dom )
to the partial groupoid (27, {H}, domy).

A process term «: my — mg represents a process transforming marking m; to
marking mo. Process terms «: mqy — mo and B: m3z — my can be sequentially
composed, provided ms = mg, resulting in a;06 : m; — my. This notation
illustrates the occurrence of 3 after the occurrence of a. The set of information
elements of the sequentially composed process term is the union of the sets of
information elements of the single process terms. The process terms can also
be composed concurrently to « || 8 : m; + m3 — mo + my, provided the set of
information elements of « is independent from the set of information elements of
B. The set of information elements of « || § contains the concurrent composition
of each element of the set of information elements of a with each element of the
set of information elements of (.

For sequential composition of process terms we need information about the
start and the end of a process term, which are both single markings. For con-
current composition, we require that the associated sets of information elements
are independent.

Two sets of information elements A and B do not have to be distinguished,
if for each set of information elements C either both A and B are independent
from C or both A and B are not independent from C. Therefore, we can use
any equivalence ¢ 27 x 27 that is a congruence with respect to the opera-
tions {4} (concurrent composition) and U (sequential composition) and satisfies
(A= BA(AC) €cdomyyy) = (B,C) € domyy, i.e. which is a closed con-
gruence of the partial algebra X = (21, {4}, dom iy, U). The equivalence classes
of the greatest (and hence coarsest) closed congruence represent the minimal in-
formation assigned to process terms necessary for concurrent composition. This
congruence is unique ([4]).

Definition 1 (Algebraic (M,Z)-net and its process term semantics).
Let M = (M,+) be a commutative monoid and T = (I,domy,+) be a partial
groupoid satisfying the properties defined in the previous section. Let =€ 2T x 21
be the greatest closed congruence of the partial algebra X = (27, {+}, domy. V).

An algebraic (M, Z)-net is a quadruple
A= (M,T,pre: T — M,post: T — M)
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together with a mapping inf: M UT — [ satisfying
(a) Vz,y € M :  (inf(z), nfly)) € dom} = inf(x +y) = mf(z) + mfly).

(b) vt e T : {mnf(t)} = {inf(t), mf(pre(t)), inf(post(t))}.

Out of an algebraic net A we can build process terms that represent all ab-
stract concurrent computations of A. Every process term « has associated an
initial marking pre(a) € M, a final marking post(a) € M, and an information
for concurrent composition Inf(a)) € 2! /~. In the following, for a process term
a we write . : a — b to denote that a is the initial marking and b is the final
marking of a.

The elementary process terms are
idy, :a —> a
with associated information Inf(id,) = [{mf(a)}]~ for each a € M, and
t:pre(t) — post(t)
with associated information Inf(t) = [{inf(t)}|~ for each t € T.

If a:ay — ao and (B : by — by are process terms satisfying
(Inf(cr), Inf(3)) € domiy /=, their concurrent composition yields the process term

O¢||ﬁ:a1+b1 — a9 + by

with associated information Infla || B) = Infla) {+} /=~ Inf(B).

If a:ay — ao and (B : by — by are process terms satisfying
as = by, their sequential composition yields the process term

a: B :ay — by

with associated information Inf(a; B) = Infla)) U/~ Inf(5).

The partial algebra of all process terms with the partial operations concurrent
composition and sequential composition as defined above will be denoted by P(A).

We consider the used factor algebra X'/~ up to isomorphism. Hence one can
freely use any partial algebra isomorphic to X'/~.

Requirement (a) in the previous definition means that the concurrent com-
position of information elements attached to markings respects the concurrent
composition of the markings. Requirement (b) means that the information about
the initial and the final marking of a transition is already included in the infor-
mation associated to the transition.

As mentioned in Introduction, we now define an equivalence of process terms
identifying exactly those process terms representing the same run. Then each
run is represented by an equivalence class of process terms. We require this
equivalence to preserve the concurrent composition and sequential composition
of process terms, i.e. to be a congruence with respect to these operations.
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Definition 2 (Congruence of process terms). The congruence relation ~
on the set of process terms of an algebraic (M, T)-net is the least congruence on
process terms with respect to the partial operations || and ; given by the following
axioms for process terms oy, o, s, aq and markings x,y € M:

(a1 || ag) ~ (g || @1), whenever || is defined for aq and as.

((a1 || a2) || @3) ~ (1 || (a2 || @v3)), whenever these terms are defined.
((a1;9); a3) ~ (aq; (ao; a3)), whenever these terms are defined.

a= (a1 ]| a2);(as || as)) ~ 8= ((a1:a3) || (a2; 4)), whenever these terms
are defined and Inf(a)) = Inf((3).

(o Z.dpost(oz)) ~ (idpre(a); ).

id(gqy) ~ (idy || idy), whenever these terms are defined.

7. a || idy ~ «a whenever the left term is defined, pre(a) + x = pre(a) and
post(a) + = post(a).

e~

S &

In the sequel we will write x to denote the elementary term id,.

Proposition 1. By construction, o ~ 3 implies pre(a) = pre(8), post(a) =
post(B) and Infla) = Inf(B).

Axiom (1) represents commutativity of concurrent composition, axioms (2)
and (3) associativity of concurrent and sequential composition. Axiom (4) states
distributivity whenever both terms have the same information. It is also used
in related approaches such as [18]. Notice that the partial order induced by
0 is a subset of the partial order induced by «. Therefore, the partial order
induced by « can be understood as a partial sequentialization of the partial
order induced by (3, i.e. it is a partial sequentialization of the run represented
by the corresponding equivalence class of process terms. Axiom (5) states that
elementary terms corresponding to elements of M are partial neutral elements
with respect to sequential composition. Axiom (6) expresses that composition of
these neutral elements is congruent to the neutral element constructed from their
composition. Finally, axiom (7) states that elements of M which are neutral to
the initial and final marking of a term are neutral to the term itself.

For example, the process term ((a;c) || {pa}); ((d;b) || {p1}) of the elementary
net from Figure 2 generated in Figure 4 and the process term (a || d); (¢ || b) of
the elementary net from Figure 2 generated in Figure 5 are congruent:

((a50) | ) (&) [ ) X7 (@l fpad)i (e | pah)); (@ | i) (b || 1)

DRE @ fpa)s (5 o) || pads ) B 1] )
R R R CA RO IR
D (@l ) () || (ki) B ]l i)

—
N
N2

2

(@l fpab)s ((d 1| pah): (e I fp21)): 0 | 1))
WD (@ i e ) b
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Note that given a transition ¢ of a (M,Z)-net, the elementary term ¢ rep-
resents the single occurrence of the transition ¢ leading from the marking m =
pre(t) to the marking m’ = post(t), and any term in the form ¢ || z, where
x € M, represents the single occurrence of the transition ¢ leading from the
marking m = x + pre(t) to the marking m’ = = + post(t).

Despite the differences between different classes of Petri nets, there are some
common features of almost all net classes, such as the notions of marking (state),
transition, and occurrence rule (see our contribution [8]).

Thus, in the following definition we suppose a Petri net with a set of markings,
a set of transitions and an occurrence rule characterizing whether a transition is
enabled to occur at a given marking and if yes determining the follower marking.
We suppose that the considered Petri net has no fixed initial marking.

Definition 3 (Corresponding algebraic (M,Z)-net). Let N be a Petri net
with a set of markings My, and a set of transitions I'y. Let m s m' denote
that a transition t is enabled to occur in m and that its occurrence leads to the

follower marking m'.
Let M = (M,+) and Z = (I,domj,+). Then an algebraic (M,T)-net

A= (M,T,pre: T — M,post: T — M)

together with a mapping mf : M UT — [ s called a corresponding algebraic
(M, I)-net to the net N iff:

— A has the same domain for markings as N, i.e. M = My

— transitions of A are those transitions of N which are enabled to occur in
some marking, i.e. T ={t € Ty | Im,m' € M : m N m'}, and

— the occurrence rule is preserved, i.e. Ym,m' € M.t € T : m Lom! =
((m = pre(t)Am’ = post(t))V(Fz € M : (inf(x), inf(t)) € dom i ANx+pre(t) =
m A x + post(t) =m')).

In the following sections we construct corresponding algebraic (M, Z)-nets
for several classes of Petri nets using the following scenario:

— We give a classical definition of the considered net class including the occur-
rence rule.

— We identify M and construct Z such that the requirements from Section 2
are satisfied.

— We construct functions pre, post, inf in such a way that condition (a) from
Definition 1 is valid and that dom i, the independence relation of Z, encodes
the restriction of the occurrence rule.

— We construct the greatest closed congruence = of the partial algebra
(21, domyiy, {+}.U). Then, we construct a partial algebra isomorphic to
(21, domiy, {H,U) /.

— We show that property (b) from Definition 1 is satisfied.
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4 Elementary Nets

In this section we represent elementary nets as algebraic (M, Z)-nets.

An elementary net consists of a set of places P, a set of transitions 1" and
relations between them. Places can be in different states. Transitions can occur,
depending on the state of some places. The occurrence of a transition can change
the state of some places.

Definition 4 (Elementary nets). An elementary net is a triple N = (P, T, F),
where P (places) and T (transitions) are disjoint finite sets, and F C (P xT)U
(T x P) is a relation (flow relation). For a transition t € T, *t = {p € P |
(p,t) € F} is the pre-set of t and t* = {p € P | (t,p) € F} is the post-set of
t. Throughout the paper we assume that each transition has nonempty pre- and
post-sets.

Each subset of P is called a marking. A transition t € T is enabled to occur
in a markingm C P 4ff *t Cm A (m\ *t)Nt* = 0. In this case, ils occurrence
leads to the marking m’' = (m\ *t) Ut*.

As usual, places are graphically expressed by circles, transitions by boxes and
elements of the flow relation by directed arcs. A marking of the net is represented
by tokens in places. For an example of an elementary net see Introduction.

The union of markings represents concurrent composition. Hence the ap-
proach of the previous section looks as follows: M = (M, +) = (2, ).

The information element associated to an elementary process term con-
sists of the set of used places. An information element is independent from
another information element, if they are disjoint. Hence we define the set of
information elements I = M = 2 together with the independence relation
dom; = {(w,w') € M x M | wnNw" =0} and the operation w + w' = wUw'.
The partial groupoid Z = (I, dom i, +) respects the requirements of Section 2.

To find a (M, Z)-net corresponding to an elementary net N = (P,T, F), we
need to define mappings pre,post : T' — M which assign an initial and final
marking to every transition, and a function inf: M UT — I which assigns an
information element to every marking m € M and every transition ¢t € T":

— For a transition ¢t € T, pre(t) = °t and post(t) = t°.
— For a marking m € M, inf(m) = m.
— For a transition t € T, mf(t) = *tUt*.

It is easy to observe that the mapping af satisfies the property (a) from
Definition 1.

The following lemma shows that the occurrence rule is encoded by mf and
dom i, as described in Introduction.

Lemma 1. A transition t € T is enabled to occur in a marking m and its
occurrence leads to the marking m' iff there exists a marking x such that
(nf(x), nf(t)) € domi, x + pre(t) = m and x + post(t) = m’.
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Proof. =: Choose z =m \ °t.

<: Assume an z with zN(*tUt*) = (0. Obviously, *¢ C (zU *t). Furthermore
we have x = (z U *t) \ *¢t and x Nt* = (). Therefore ¢ is enabled to occur in
x U *t = x + pre(t) and its occurrence leads to x Ut® = x + post(t). O

To define a corresponding algebraic net and its process terms we have to
find the greatest closed congruence on (27, {+}, domjy,U). Actually, instead of
considering the set of all information elements associated with a process term, it
will be enough to consider the information about all involved places of a process
term. We define the mapping supp : 2! — I, supp (A) = Uwea w and show that
supp is the natural homomorphism w.r.t. the greatest closed congruence = on

(21, {-I—}, dom{Jr}, U).

Lemma 2. The relation = C 27 x2! defined by A = B <= supp(A) = supp(B)
is a closed congruence on (21, {+},domy, V).

Proof. Straightforward observation.

Lemma 3. The closed congruence = C 27 x 27 is the greatest closed congruence

on (21, {-I—}, dOm{_i_}, U).

I

Proof. We show that any congruence = such that 2 is a proper subset of ~ is
not closed. Assume there are A, A’ € 2! such that A ~ A’ but A 2 A’. Then
supp(A) # supp(A’).

We define a set C' € 27 such that (4,C) € domyy but (A',C) ¢ domyy
or vice versa (which implies that ~ is not closed). Denoting supp(A) = w and
supp(A’) = w’ we have that w # w'.

Without loss of generality we assume w'\w # (). Set C = {c¢} with ¢ = W'\ w.
Then cN@ =0, but cN@' # 0, ie. (A,C) € domyyy, but (A',C) ¢ domgyy. O

Taking pre, post, inf defined above, we have supp({inf(t)}) = *tUt* = (°tU
t*)U tut® = supp({inf(t), inf(pre(t)), inf(post(t))}), and therefore the property
(b) from Definition 1 is satisfied. Thus, we can formulate the following theorem.

Theorem 1. Given an elementary net N = (P, T, F') with M, T, pre, post,inf as
defined in this section, the quadruple Ax = (27, T, pre,post) together with the
mapping inf is an algebraic (M, T)-net. Moreover, it is a corresponding algebraic
(M, I)-net to the net N.

Remark 1. In our definition of elementary nets we use an occurrence rule which
slightly differs from the standard occurrence rule as given in [23]. Our main mo-
tivation of using the presented occurrence rule is to have a definition which is
compatible with [19]. The only difference is that the occurrence of a transition
with non-disjoint pre- and post-set is allowed in our definition, while using the
standard occurrence rule for elementary nets such transitions are never enabled
to occur and therefore, according to Definition 3, are irrelevant for a correspond-
ing (M, Z)-net. In other words, the corresponding (M, Z)-net for the standard
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occurrence rule of an elementary net would differ from the one we presented in
Theorem 1 only in the absence of transitions with non-disjoint pre- and post-set.
In general, there is a more substantial difference between both occurrence rules.
Namely, the occurrence rule used for elementary nets in this section corresponds
in general to the occurrence rule of place/transition nets with weak capacity re-
strictions, while the standard occurrence rule for elementary nets corresponds in
general to the occurrence rule of place/transition nets with the strong capacity
restrictions. For more details on this difference we refer to the Section 9.2 and
to [10,9,15].

5 Elementary Nets with Positive Context

In this section we represent elementary nets with positive context as algebraic
(M, I)-nets.

Definition 5 (Elementary nets with positive context). An elementary
net with positive context is a quadruple N = (P,T,F,Cy), where (P,T,F) is
an elementary net and C. C P x T is a positive context relation satisfying
(FUFY)YNnC, = 0. For a transition t, Tt = {p € P | (p,t) € C.} is the
positive context of t.

A transition t is enabled to occur in a marking m iff (*tU Tt) Cm A (m\
*t)ynt* =10. Its occurrence leads to the marking m' = (m\ *t) Ut*.

The positive context of a transition is the set of places which are tested
on presence of a token as a neccessary condition for the possible occurrence of
the transition. As usual, elements of the positive context relation are graphically
expressed by arcs ending with a black bullet (so called read arcs). An elementary
net with positive context is shown in Figure 8.

In comparison to elementary nets without context, an information element
consists of two disjoint components: the set of write places and the set of positive
context places. Information elements are independent, if each component of the
first element is disjoint with each component of the second element except pos-
itive contexts, which may be overlapping. This reflects the fact that concurrent
testing on presence of a token is allowed.

For the rest of this section, let N = (P, T, F,C.) be an elementary net with
positive context.

Formally, we have M = (M, +) = (27,U). The set of information elements
is given by I = {(w,p) € 27 x 2P | wNp = 0}. The independence relation is
defined by domyi = {((w,p), (w',p')) | wNw =wnNp =w Np =0}, and the
operation 4+ by (w,p) + (w',p') = (wUw',pUP’).

Z = (I,domj,+) satisfies the properties defined in Section 2.

To define a (M, Z)-net corresponding to the elementary net with positive
context N = (P, T, F,Cy), we need to define the mappings pre,post : T — M
which attach an initial and final marking to every transition, and the mapping
inf: M UT — I which assigns an information element to every marking m € M
and every transition ¢t € T":
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P2 P4

Fig. 8. An example of an elementary net with positive context. Observe that *a = {p1},
a® = {p2} and Ta = {ps}. Therefore, transition a is enabled to occur if the places p;
and pe are marked and the place p2 is unmarked. Its occurrence removes a token from
p1 and adds a token to pa.

— A transition ¢ has the initial marking pre(t) = *tU "¢ and the final marking
post(t) =t* U Tt.

— A marking m carries the information mf(m) = (), m).

— A transition ¢ carries the information about the places which are contained
in the pre- or post-set and about its positive context places, i.e. mf(t) =
(*tuUt*, ).

For example, transition a from the net in Figure 8 has attached pre(a) =
{p1,p6}, post(a) = {p2,ps} and the information element infla) = (w,p) =
({p1,p2},{pe}). Transition ¢ has attached the information element nf(c) =
(w',p") = ({p3,pa},{ps}). These information elements are independent. They
have the common positive context place pg, but concurrent testing on presence
of a token is allowed. On the other hand, transition e with information element
mf(e) = (w”,p") = ({ps,ps},?) is independent neither with a nor with ¢, be-
cause the write place pg of e is the positive context place of both a and ¢, i.e.
w’ Np# D as well as w” Np’ # 0.

Property (a) from Definition 1 is valid for (M, +), Z = (I,dom,+) and inf
defined above.

The following lemma shows that taking such mappings pre, post, inf, the par-
tial groupoid Z encodes the occurrence rule.

Lemma 4. Given an elementary net with positive context, a transition t is en-
abled to occur in a marking m and its occurrence leads to the marking m' iff
there exists a marking x such that (inf(x),nf(t)) € domyi, x + pre(t) = m and
x + post(t) = m’.

Proof. =: Choosing z = m \ (*tU Tt) we have that (nf(z), nf(t)) € dom; and
m =z +pre(t) = xU(*tU *t). We have to show that x + post(t) equals m/, i.c.
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zU(* U Tt = ((zU(*tU Tt))\ *t) Ut®. This follows from the fact that by
definition of elementary nets with positive context *t N Tt = 0.

«: Taking any x such that zN(*tUt* ) = ), we have (*tU Tt) C zU(*tU Tt).
Furthermore (because of TtN*t = TtNt® = 0) we have zU Tt = (zU TtU *t)\ *¢
and (zU T¢)Nt* = ). Therefore ¢ is enabled to occur in xU( *tU Tt) = z+pre(t)
and its occurence leads to x U (t* U *t) = x + post(t). O

Finally, we construct the greatest closed congruence 22 of (27, {1}, dom gy, U).
Again we define a mapping supp which turns out to be the natural homomor-

phism of this greatest closed congruence. Define two mappings si, s : 2/ — 2F
by

s1(A) = U w and s9(A) = U D,

(w,p)EA (w,p)EA

and supp : 21 — I by supp (A) = (s1(A4),52(A) \ 51(4)).
Lemma 5. Let o be the binary operation on I defined by (w,p) o (w',p') =
(wUw, (puUp)\ (wUw)). Then the mapping supp : (2", {+}, domyy,U) —

(I,4,domy,0) is a surjective closed homomorphism.

Proof. The operation o is well-defined because for any x,y € I, we have zoy € I.
(a) supp is a homomorphism for the operations {+} and U on 2!, because both
equations supp (A{+ A’) = supp (A) + supp (A’) (whenever both sides are
defined) and supp (AU A") = supp (A) o supp (A’) follow directly from the

properties of U.
(b) We show the closedness of supp, that is

(A, A") € domyy <= (supp (A), supp (A")) € dom

for any two A, A" C I. Denote s1(A4) = w, s2(A) = p, s1(A") = w and
s2(A") =7'. Then

V(w,p) € A, V(w',p)e A: wnuw =@wUw)N(pup) =10
—uwnw =0A(wuw)n((p\w)u @ \w)) =0.

(¢) The mapping supp is surjective, because, for any (w,p) € I, we have
supp ({(w,p)}) = (w, p).

Lemma 6. The closed congruence = C 27 x 21 defined by
A= B < supp(A) = supp(B)

is the greatest closed congruence on (2", {+}, domgyy, U).
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Proof. We will show that any congruence ~ such that = is a proper subset of ~
is not closed. Assume there are A, A’ € 27 such that A ~ A’ but A 2 A’. Then
supp(A) # supp(A’).

We define a set C' € 27 such that (4,C) € domyyy but (A',C) ¢ domyy
or vice versa (which implies that &~ is not closed). If supp(A4) = (w,p) and
supp(A') = (W',p’), then wNp = w' NP = O (by definition of I) and p #
P Vw #w (since supp(A) # supp(A’)).

Let w # w'. Without loss of generality we assume w’' \ w # (). Set C' =
{(cw,cp)} with ¢, =0 and ¢, =W \ w. Then ¢, "W = ¢, NP = ¢, NW = 0, but
cpNW # 0, ie. (A, C) € domyyy, but (A',C) ¢ domyyy.

Now let w = w" and p # p’. Without loss of generality we assume p' \ p # 0.
Set C' = {(cw, ¢p)} with ¢, = (p'\P) and ¢, = (0. Then ¢, # 0, ¢,y "W = ¢,y NP =
wNe, =0 and ¢, NP # (), and we are finished. O

Easy computation, using (*tUt®* )N Tt = (), proves condition (b) from Defi-
nition 1, i.e. supp({inf(t)}) = supp({inf(2), inf(pre(t)), inf(post(t))}).

Now we are able to represent an elementary net with positive context as an
algebraic (M, Z)-net.

Theorem 2. Let N = (P,T,F,C.) be an elementary net with positive con-
text, together with M, L, pre,post,inf defined throughout this section. Then the
quadruple An = (2F,T, pre, post) together with the mapping inf is an algebraic
(M, T)-net. Moreover, it is a corresponding algebraic (M,ZI)-net to N.

Remark 2. Taking an elementary net with empty positive context, Theorem 1
and Theorem 2 define algebraic nets 4; and A, generating different sets of
process terms: the set of the process terms P(A;) obtained using Theorem 1 is a
subset of the set of process terms P(A3) obtained using Theorem 2. By Theorem
2 terms of the form id, || id, are allowed for any marking a. However, because
we have id, || id, ~ id,, and id, belongs to P(A;), the partial algebra P(A1)/~
according to Theorem 1 and the partial algebra P(A3)/~. according to Theorem
2 are isomorphic.

A possible process term of the net from Figure 8 is a = (e || {p1,p3}); (a |
c:@ | f | d : {p1.ps;ps} — {p1,ps.ps} with the information Infla) =
({p1, p2, D3, P4, 05,06}, D). Observe, that the place pg, which is a write place of e
and f but the positive context place of a and ¢ appears as a write place of a.

In the case of elementary nets without context we have

{wf(t)} = {inf(pre(t)), inf(post(t)) }-

That means that the information of a transition can be derived from the informa-
tion of its initial and final marking. However, as it is illustrated by elementary
nets with positive context, this is not the general case. For elementary nets
with positive context nf(t) contains more detailed information. This informa-
tion about the nature of places distinguishes places whose state is changed by
the occurrence of a transition and those places which are only tested.
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P p2
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P3 P4

Fig. 9. An example of an elementary net with negative context. Observe that *d =
{pa}, d* = {p2} and ~d = {ps}. Therefore, transition d is enabled to occur if ps is
marked and both p2 and ps are unmarked. Its occurrence removes a token from p4 and
adds a token to pa.

6 Elementary Nets with Negative Context

In this section we represent elementary nets with negative context as algebraic

(M, T)-nets.

Definition 6 (Elementary net with negative context). An elementary net
with negative context is a quadruple N = (P, T, F,C_), where (P,T,F) is an
elementary net and C_ C P x T is a negative context relation satisfying (F U
F~YYNnC_ = 0. For a transitiont, “t = {p € P | (p,t) € C_} is the negative
context of t.

A transition t is enabled in a marking m iff *t € mA(m\ *t)N( ~tUt*) = ().
Its occurrence leads to the marking m’ = (m'\ *t) Ut®.

The negative context of a transition ¢ is the set of places which are tested
on absence of a token for the possible occurrence of a transition. Elements of
the negative context relation are graphically expressed by arcs ending with a
circle (so called inhibitor arcs). Figure 9 shows an elementary net with negative
context.

Similarly to elementary nets with positive context, we need information ele-
ments which consist of two disjoint components: the set of write places, and the
set of negative context places. Concurrent composition of information elements
is allowed if each component of the first element is disjoint with each component
of the second element except negative contexts, which may be overlapping. This
reflects the fact that concurrent testing on absence of a token is allowed.

Formally, we have the same algebra M for markings and the same partial
algebra Z for information elements as for elementary nets with positive context,
and therefore requirements from Section 2 are fulfilled.

We define pre, post by pre(t) = °t, post(t) = t®* for each t € T and inf by
nf(m) = (m, ) for each m € 2F and inf(t) = (*tUt*, ~t) for each t € T

2 Remember that “tN *t = "tNt* =@ but *¢tNt* can be nonempty.
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For example, transition d from the net in Figure 9 has attached pre(d) =
{ps}, post(d) = {p2} and the information element nf(d) = (w,p) = ({p2,ps},
{ps})-

Property (a) from Definition 1 is fulfilled and Z encodes the occurrence rule
of the net with negative context. Moreover, property (b) from Definition 1 is
preserved. So, we can formulate the following theorem.

Theorem 3. Given an elementary net with negative context N = (P,T, F,C_)
together with M, Z, pre, post,inf defined in this section, the quadruple Axy =
(2F. T, pre, post) together with the mapping inf is a (M, TI)-net. Moreover, it is
a corresponding (M, T)-net to N.

Remark 3. For nets with positive context, idle tokens generated by an elemen-
tary process term m can be concurrently composed with each other. Hence the
respective places belong to the second component representing the context. How-
ever, for nets with negative context, an additional token can spoil the enabledness
of a transition. So, for this class places carrying tokens generated by elementary
process terms m belong to the first component representing write places. This
way, a concurrent composition of a process term using a place for inhibition with
a process term using the same place for an (idle or moving) token is prevented.

A possible process term of the net from Figure 9 is

(d || {p1,ps}); (a || {p2}); (b || ¢) : {P1,Pas 5} = {P1, P4, 5}

with information ({p1,p2,p3,ps,p5},0).

7 Elementary Nets with Mixed Context

In this section we associate to an elementary net with (mixed) context an alge-

braic (M, Z)-net.

Definition 7 (Elementary net with (mixed) context). An elementary net
with (mized) context is a five-tuple N = (P, T, F,Cy,C_), where (P,T, F) is an
elementary net, and C,.,C_ C P x T are positive and negative context relations
satisfying (FUF~ )N (CLUuC_)=C.NC_ =0. For a transition t, *t,t*, Tt
and ~t are defined as in the previous sections.

A transition t is enabled to occur in a marking m iff (*tU tt)
‘)N (~tUt*) = 0. Its occurrence leads to the marking m' = (m '\

t /
symbols m — m'.

¢ m)

) °

Figure 10 shows an elementary net with (mixed) context.

Again we have M = (M,+) = (27,U). An information element consists of
three disjoint components: the set of write places, the set of positive context
places and the set of negative context places. Information elements are inde-
pendent if each component of the first element is disjoint from each component
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Fig. 10. An elementary net with (mixed) context.

of the second element, except positive contexts (the second components) and
negative contexts (the third components). This reflects the fact that concurrent
testing on presence of a token as well as concurrent testing on absence of a token
is allowed.

Formally, we define the set of information elements

I ={(w,p.n) €2 x2" x 2P Jwnp=wnn=pnn =10},
together with the independence relation

domi = {((w,p,n), (w',p',n")) |[wNw =wn(p Un’)
=w' N{pUn)=pnn =p Nn=>0}

and the operation
(w,p,n) + (', p',n) = (wU W', pUP, nUR).

For Z = (I,dom,+) the requirements from Section 2 are fulfilled.

To define a (M, Z)-net corresponding to an elementary net with context
N = (P, T,F,C,,C_), we need to define the mappings pre,post : T — M
attaching an initial and final marking to every transition ¢, and the function
inf: MUT — I assigning an information to every marking m and every transition
t:

— A transition ¢ has the initial marking pre(t) = *tU Tt and the final marking
post(t) =t* U Tt

— A marking m carries the information nf(m) = (0, m, ).

— A transition ¢ carries information about write places and extra information
about positive and negative context places, i.e. mf(t) = (*tUt*, Tt, ~t).
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For example, transition b from the net in Figure 10 has attached pre(b) =
{p2}, post(b) = {p1} and the information element inf(b) = (w,p,n) = ({p1,p2},
0,{ps}), while transition g has attached the information element inf(g) = (w', p’,
n') = ({ps,p7},{p5},0). These information elements are not independent, be-
cause the negative context place ps of b is the positive context place of g, i.e.
nNp 0.

The mapping nf satisfies property (a) from Definition 1.

Similarly to Lemma 4 one can show for the functions pre, post, inf that the
partial algebra Z encodes the occurrence rule of the net with mixed context.

Again, we have to find the greatest closed congruence 2 of (27, {+}, domy,
U). We define a mapping supp which turns out to be the natural homomorphism
of this greatest closed congruence.

Define three mappings s, s2, s3 : 2/ — 27 by

s1(A) = U w, s(A) = U p and s3(A) = U n.

(w,p,n)eA (w,p,n)€A (w,p,n)€A
Define s : 21 — 27 by s(A) = s1(A4) U (s2(A) N s3(A)).
Finally, define supp : 27 — I by supp (A) = (s(A), s2(A4)\s(A), s3(A)\s(A)).
Lemma 7. Let o be the binary operation on I defined by
(w,p.n) o (w',p',n) = supp ({(w,p, n), (w',p’,n)}).

Then the mapping supp : (21,d0m{+}, {H,U) = (I,domy,+,0) is a surjective
closed homomorphism.

Proof. First we show the closedness of supp, i.e.
(A, A") € domyyy <= (supp(A), supp (A)) € dom .
We write shortly s, s2, s3 and s to denote s1(A), s2(A), s3(A) and s(A)
resp. s, 5, s5 and s’ to denote s1(A’), s2(A’), s3(A’) and s(A’).

=: Suppose that (A4, A’) € domyyy but (supp (A), supp (A’)) ¢ dom .

Case 1: sNs’ # 0, i.e. (51U (s2Ns3)) N (s U(shNsh)) #0D.

— 51 N s| # 0 contradicts V(w,p,n) € A, (w',p',n') e A :wnuw' =0,
— s1N(shNss) # 0 contradicts V(w, p,n) € A, (w',p',n’) € A’ :wnN(pUn)
— (s2Ns3)N(shNss) # B contradicts V(w, p,n) € A, (w',p',n’) € A" : pnn/

Case 2: (so\ s)Ns" #0, ie. (s2\ (51U (s2MNs3))) N (s U(shNsh)) #D0D.

— (s2\ (51U (s2Ns3))) Nsi # 0 contradicts V(w,p,n) € A, (w',p/,n') € A" :
pNw = (.

— (s2\ (51U (s2Ns3))) N(shNss) #D contradicts V(w, p,n) € A, (w',p',n') €
A :pnn’ =0.

= (),
=0
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All remaining cases are similar.

<: Suppose that (A4, A") ¢ domyyy but (supp (A), supp (A")) € dom.
Case 1: F(w,p,n) € A, (w',p',n') € A’ :wnNw' # () contradicts s N s’ = .
Case 2: F(w,p,n) € A, (w',p',n') e A :pnuw #:

—(pnw)n(( U z) U ( U z)) # 0 contradicts s N's" = {),

(z,y,2)€EA (z,y,2)€A
—(pnw")n(( U x)U( U z)) = 0 contradicts (s2 \ s) Ns" = 0.

All remaining cases are similar.

Now we show that supp (A{HA") = supp(A) + supp(A’), whenever defined.
Let supp (A{HA") = (w.p,n), where w = s1 U s) U ((s2 U sh) N (s3U s5)),
p=(s2Us5H) \wand n = (s3Ush)\ w. Since ( supp (A), supp (A")) € domy, we
have

S’=(’z\ )ﬂ( \s) =0, (1)
’ )

Equations (1) and (2) imply (s2 Ns5) = (sh N s3) = 0. This gives w = s1 U (s3N
s3)UsiU(shNsh) = sUs’. Together with equation (2) this gives soNs’ = shNs =)
Then p = (s2 \ s) U (s5 \ §'). Similarly, n = (s3 \ s) U (s \ &').

Finally, we have to show that

(s2\s)N(s5\ ") =50
(

so\s)Ns' =snNs =
(521\ 5)

VA
~—
:)
'SL
—~
[\

supp (AU A’) = supp (A) o supp (A") = supp ({ supp (A), supp (A")}).
We have s = s1 U (s2 N s3) and s' = s} U (s5 N s5), and therefore
s1Us] CsUs CspUs]U((s2Usy)N(s3Usy)) =s(AUA).

Since s({ supp (A), supp (A')}) = sUs"U(((s2\5)U(s5\"))N((s3\s)U(s5\5))),
we have s(AU A’) = s({ supp (A), supp (A’)}). Similarly

s2(AUA") \ s(AU A') = sz({ supp (A), supp (A")}) \ s({ supp (A), supp (A")})
and
s3(AU AN\ s(AUA") = s3({supp(A), supp (A")}) \ s({ supp (A), supp(A')}).

To show surjectivity, let (w,p,n) € I. Then supp ({(w,p,n)}) = (w,p,n). O

Lemma 8. The closed congruence = C 21 x 2 defined by
A B <= supp(A) = supp(B)

is the greatest closed congruence on the partial algebra X = (27, domiy, {H}.U).
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Proof. Assume there is a closed congruence ~ on X with = C ~. Let A4, A’ € 2/
with A ~ A" but A % A’. This means supp (A) # supp(A’). We will define
a set C € 2! with (A,C) € domyjy and (A',C) & domgjy or vice versa, what
contradicts the closedness of ~.

Let supp (A) = (w,p,n) and supp (A’) = (w',p’,7’). Then w # w' or p # p’
orm#mn’.

Assume first that w '\ w # 0. Set C = {(0,w '\ (w Un),n)}. Clearly,
(A,C) e domyy. If w'\w C 7 then W' N7 # () and therefore (A", C) ¢ domy.
fw'\wZnthenw'N(w'\ (wUn)) # 0 and therefore (A’,C) ¢ dom ;.

Now assume w = w' and p' \p # 0. Set C = {(0,0,p" \ p)}. Assume
finally w=w’ and n’ \m # 0. Set C = {(0,7n' \ 7,0)}. In both previous cases
(A,C) € domyyy but (A',C) & domgy. O

The partial algebra (27, domiy, {+},U)/~ is isomorphic to the partial alge-
bra (I,domy,+,0). For elementary nets with context we only have to use one
element of the set I as the information of a process term. This element consists
of three sets of places - the set of write places, the set of positive context places
which are not write places, and the set of negative context places which are not
write places.

For example, the process term o = a; (b || {ps}) : {p1,p4} — {p1,pa} of
the net in Figure 10 has the information Infla) = ({p1,p2},{ps},{ps}) and
the process term 8 = f : {ps,ps} — {p4,pr} has the information Inf(3) =
({ps, p7}, {pa}, D). Observe that they can be concurrently composed yielding the
process term v = a || 3 = (a; (b || {pa})) | f : {p1,pa.ps} = {p1,pa,p7} with

Inf(v) = ({p1,p2,P6: D7}, {Pats {ps})-
Property (b) from Definition 1 is valid, and therefore we can give the theorem:

Theorem 4. Given an elementary net with (mized) context N = (P, T, F,Cy,
C_) together with M, T, pre, post, inf defined in this section, the quadruple An =
(27,7, pre, post) together with the mapping nf is an algebraic (M, T)-net. More-
over, it is a corresponding algebraic (M,Z)-net to the net N.

Remark 4. Similarly to Remark 2, given an elementary net with negative con-
text, the equivalence classes of process terms obtained using Theorems 3 and 4
are isomorphic.

8 Relationship between Process Terms and Processes
of Elementary Nets with Context

In this section we prove for elementary nets with mixed context a one-to-one
correspondence between the obtained non-sequential semantics and the partial-
order based semantics obtained in the usual way using process nets. Analogous
results hold for elementary nets without context, for elementary nets with (only)
positive context, and for elementary nets with (only) negative context.
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8.1 Process Semantics of Elementary Nets with Context

In this subsection we give the definition of partial-order based process semantics
of elementary nets with context as introduced in [19].

We say that a marking m’ is reachable from a marking m, if m = m/ or if
there is a finite sequence of transitions tq,...,t, such that

11 tn /
m—mi... Mp_1 —> M.

An elementary net with positive context is said to be contact-free w.r.t. an
initial marking my, if for each marking m reachable from m( and each transition
t:(tu Tt CTm=1t*Nm=0.

As it is shown in [19], an elementary net with mixed context can be trans-
formed via complementation into a contact-free elementary net with positive con-
text exhibiting the same behaviour. For technical reasons we assign complement-
places (co-places) to every place. The complementation is defined as follows:

Definition 8 (Complementation). Given an elementary net with context
N=(P,T,F,Cy,C_), let P" be a set satisfying |P'| = |P| and P'0(PUT) =0,
and let ¢ : P — P’ be a bijection.

The complementation N = (P,T,F,C) of N is defined by

=FU{(t.c(p)) | (p,t) € FA(t,p) ¢ F}
U{(e(p),t) | (t.p) € F A (p,t) € F'},
Cy = CLU{(c(p),t) | (p,t) € C_}.

Giwen an initial marking mqo of N, its complementation mq is defined by
mg =moU{c(p) |p€ P, pe& mp}.

Given an elementary net with context N, the construction of N is unique up
to isomorphism.

Proposition 2 ([19]). Given an elementary net with context N and an initial
marking mg of N, its complementation N is contact-free w.r.t. my.

Figure 11 shows a complementation of the net from Figure 10 w.r.t. the initial
marking {p1, ps, ps}. We only draw the co-places, which are necessary to express
negative context places using positive context places and to obtain a contact-
free net according to the given initial marking. In Figure 11 the only co-place
we need to draw is ps.

Definition 9 (The causality relation < of an elementary net with pos-
itive context). Let N = (P, T, F,C.) be a net with positive context. Then <y
denotes the minimal transitive and reflexive binary relation on P U'T satisfying
the following conditions:



152

P4
a () f
C
P4 p2 p7 Pe
d Ps Ps
[ J
e
b g
ps

Fig.11. The complementation of the net from Figure 10 w.r.t. the initial marking
{plap3ap6}'

(a) (z,y) € F implies © <y y.
(b) (t,p) € F and (p,s) € C implies t <y s.
(¢c) (p,t) € Cy and (p,s) € F implies t <y s.

Furthermore we define <y=<ny \{(z,z) | x € PUT?}. Whenever the net N is
clear from the context we simply write < instead of <y and < instead of <.

The intuition behind the definition of the causality relation is that the flow
relation defines causality between transitions in the usual way, i.e.:

— If a place of the post-set of a transition ¢ belongs to the pre-set of a transition
s than t causally precedes s,

while the positive context relation defines causality in the following two ways:

— If an occurrence of a transition ¢ produces a token in a place p and a transition
s tests the place p on presence of a token, then transition t causally precedes
transition s.

— If a transition ¢ tests a place p on the presence of a token and an occurrence
of a transition s removes a token from the place p then transition ¢ causally
precedes transition s.

Definition 10 (Contextual occurrence net). A contextual occurrence net is
an elementary net with positive context K = (B, Ex, Fi,Ck) such that

(a) <k is a partial order,
(b) |*b],|b°| < 1 for all b € Bg? (places are unbranched).

® where *b = {e € Ex | (e,b) € Fk} is the pre-set of b and b* = {e € Ex | (b,e) €
Fk} is the post-set of b
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a > b
c/ \\‘:d .o
NN

Fig. 12. An example of a contextual occurrence net and the underlying partial order.
The contextual occurrence net together with the identity function is a process of the
elementary net with context from Figure 10.

Graphically, a contextual occurrence net might have read arcs (arcs for pos-
itive context), but each place has at most one ingoing and one outgoing proper
arc. T'wo ordered transitions are connected by a sequence of directed proper arcs
(at least one) and undirected read arcs.

An example of a contextual occurrence net and the underlying partial order
is shown in Figure 12.

Definition 11 (Co-set, slice). A co-set of a contextual occurrence net K is a
subset S C Bg such that for no a,b € S: a <k b. A slice is a maximal co-set.

Denote *K = {be€ Bk | |*b| =0} and K* = {b€ Bk | [b*| = 0}.

Definition 12 (Process of a contact-free elementary net with positive
context). Let N = (P,T, F,C,) be an elementary net with positive context and
let mg C P be an initial marking of N, such that N is contact-free w.r.t. myg.
A process K of N w.r.t. mg is a five-tuple K = (Bg, Fi, Fx,Ck, pr), where
(Bk., Fk,Fr.Ck) is a contextual occurrence net and pr : Bk U Ex — PUT
1s a mapping satisfying

(a) pr(*K) =mo,
(b) pk|p is injective for every slice D of K,
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(c) px (D) is reachable from mg for every slice D of K,
(d) For each e € Exc: p(*e) = *(p(e)), p(e*) = (p(€))* and p(Te) = T(p(e)).

Given a process K = (Bg, Fx, Fi,Ck, pi) of a contact-free elementary net
with positive context N (w.r.t. an initial marking mg) and a set A of isolated
places of K (i.e. Vb € Aje € Ex : b ¢ ®eUe® U Te) we have that (Bg \
A, Ex, Fi,Ck, pr|(Bi\A)uEy ) is a process of N (w.r.t. the initial marking mg =
m \ pr(A)). In other words, after removing isolated places from a process of N
we still have a process of N.

For technical reason, we assume that processes contain no isolated places
which are mapped to co-places.

Definition 13 (Process of an elementary net with (mixed) context).
Let N = (P, T,F,C.,C_) be an elementary net with context, mgy be an ini-
tial marking of N, N = (P,T,F,C) be the complementation of N and K =
(Bk.Ex. Fr,Ck,pr) be a process of N w.r.t. the initial marking mg. De-
note by BE., = {b € Bi | px(b) ¢ PN (Ve € Exg : b ¢ ®*eUe® U Te)}
the set of all isolated places of K which are mapped to co-places of N. Then
(Br \ BII%OvEIOFKvCKvpK|(BK\BfCO)UEK) is called a process of N w.r.t. an
wnatial marking my.

Let P(N,m) be the set of all processes of N w.r.t. an initial marking m. By
P(N)=U,,cp P(IN,m) we denote the set of all processes of N.

The contextual occurrence net in Figure 12 together with the identity func-
tion is a process of the elementary net with context from Figure 10.

Processes Kl — (Bl, El, Fl, Cl, pl) and K2 = (BQ, EQ, FQ, CQ, ,02) are isomor-
phic (in symbols K7 ~ Kj) iff there exist bijections v : By — Bs,d : £1 — Fs
such that Vb € By,e € Ey :

(bye) € Fy <= (v(b),d(e)) € F
(e,b) € F1 <= (d(e), (b)) € F»
(bye) € C1 <= (v(b),d(e)) € C2

p1(b) = pa((b)), p1(e) = p2(d(e)).

8.2 Compositionality of Processes

In this section we show how processes of elementary nets with context can be
concurrently and sequentially composed. The results are similar to those given
for elementary nets without context in [25,26] (sequential composition is due to
19)). B

Let N = (P, T,F,C.,C_) be an elementary net with context, let N =
(]_3, T.F, C'_+) be its complementation, and let ¢ denote the bijection associating
co-places to places from P.

For a process K = (B, Fx, Fx,Ck, px) of N, we define:
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— °K as the set of write places of K mapped by p to places of N, formally
°K={be Bk |pk(b)e PN(Fe€ Ex: be *eUe®)},

— TK as the set of positive context places of K, which do not correspond to
negative context places of N and are not write places of K, formally

TK={bc By |px(b) c PAN(Vec Ex: b¢ ®eUe®)},

— and ~K as the set of places, which correspond to negative context places of
N and are not write places of K, formally

TK={be Bk |pk(b) ¢ P\NVee Ex: bd& *eUe®)}.
We now define elementary processes w.r.t. markings and transitions of N.

Definition 14 (Elementary process associated to a marking). Letm C P
be a marking of N. Then the process

K(m) = (m,0,0,0,id,,)
of N s called elementary process associated to m.

Definition 15 (Elementary process associated to a transition). Lett € T
be a transition of N. Then the process K(t) of net N defined by

K(t) = (*tut® U Tt {eh (< {th U({t} x t*), Tt x {th id e u+iog),

where *t, t* and Tt are defined w.r.t. N, is called elementary process associated
to t.

Processes can be composed concurrently and sequentially:

Proposition 3. Let ¢ be the bijection associating co-places to places of N and

L its inverse. Let Ky = (By, By, Fy,C1,p1) and Ky = (Bg, By, F3,Cy, p2) be
two processes of N w.r.t. initial markings my and mo with disjoint sets of tran-
sitions such that ¥by € B1,by € By :

b1 = by <— (bl € +K1 U KiAby € +K2 U Ko A Pl(bl) = pz(bg)), (3)

and
0= p1(°Ky) Np2(°Ks), (4)
0 =p1(°K1) N (p2( T K2) UcHpa( T K2))), (5)
0= pa(°K2) N (pr(T K1) Ue Hpi( T K1), (6)
0D=pi(TK)N 1( 2( " K2)), (7)
0 = pa( TKa) NeHpi( T K1)). (8)

Then K = (Bk,Ex,Fk,Ck,pk), where B = By U By, E = Fy U FEoy, F =
FyUF,, C=C1UCy, p=p1Ups, is a process of N.
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Definition 16 (Concurrent composition of processes). With notions of
Proposition 3, the process K is called the concurrent composition of the processes
K1 and K. It is denoted by K1 || K.

Proof of Proposition 3. No element of F; (i = 1,2) contains glued places, i.e.
places in By N By. Therefore, (B, E, F,C) is an occurrence net.
Since by = by = p1(b1) = pa(be) for any by € By, by € By, p is well defined.
Every slice D of K || K3 can be written in the form

D = Dy U Dy

with slices Dy of K3 and Dy of K5. We show that p|D is injective. Suppose that
this is not true, i.e. that there exists by € Dy and by € D, satisfying by # by and
p(b1) = p(b2). It is enough to consider the following four situations:

a) p(b1) ¢ P,by € °K;,by € °Ks: by construction of complement places, there
exists b] € °K; and b, € °K5 such that pi (b)) = p2(b}) € P, contradicting
(1),

b) p(b1) € P,by € °K;,by € °Ks, contradicting (4),

c) p(by) ¢ P,by € °Ky1,bs € ~Ks: from properties of complementation there
exists by € °Kj such that p1(b}) = ¢ (p2(b2)), contradicting (5),

d) p(by) € P,by € °K1,by € TK», contradicting (5).

Take a marking m reachable from mo = p(*K;) and let
tq tn
mo —> M1...My_1 —> My = M.

Since we replaced negative context by positive context, for any marking m’ with
m' N Upcicn ™i = 0, the marking m Um’ is reachable from mo Um/, firing the
same sequence of transitions. Using the fact that

p1(*K1) N p2(*K2) = p1(D1) N pa(Da),

it is easy to see that p(D) is reachable from p(*(K; || K3)) = p1(*K1)Up2( *Ka).

Since F; contains no glued places (i = 1,2), p preserves pre- and post-sets
of transitions. The preservation of the positive contexts of transitions follows
directly from the construction of C.

Thus, K = K, || K5 is a process of N w.r.t. the initial marking p( *K).

It remains to show that K is also a process of N w.r.t. the initial marking
p(*K) N P, ic. there is a process K = (B, E,F,C,p) of N w.r.t. the initial
marking p(*K) N P such that K = (B \ BE,,, E, F’G’ME\B

Without loss of generality, suppose that B N P = (). Set

?COUE)'

K = (BU({c(p) [p ¢ p(*K)NP}\p(B)), E, F,C,p),

where p = p on BUFE and p = id on {c(p) | p ¢ p(*K) N P} \ p(B). Clearly K
is a process of N with respect to the initial marking

p(*K)U ({c(p) [ p ¢ p(*K) N P\ p(B)).
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Because K; and K5 have no isolated places which are copies of co-places,
also K || Ky contains no isolated places which are mapped to co-places, i.e.
B =B\ BE,,.

To prove that K is a process of N w.r.t. the initial marking

p(*K)N P = (p(*K)nP)U{c(p) |p¢p(*K)N P}

it suffices to show that

(p(*K)NP)U{c(p) | p & p(*K)NP} = p(*K)U({c(p) [ p & p(*K)NP}\p(B)).

To see that the first set is a subset of the second set, observe that all co-places
removed from the set {c¢(p) | p ¢ p(*K) N P} belong to the set p(*K): Because
K has no isolated places which are mapped to co-places, for every place b € B
with p(b) € P' and ¢ (p(b)) & p(*K)N P, either b € ~K or b € °K. In the first
case, b € *K. In the second case, either b € *K or there exists e; € E such that
b € e} . By construction of the complementation, there exists by € ®e; such that
p(b1) = ¢ 1(p(b)). By the assumption c=1(p(b)) ¢ p(*K)N P there exists e; € £
such that by € e3. By induction, there exists b, € *K such that p(b,) = p(b).

To prove that the second set is a subset of the first set, it is enough to show
that

pep(*K) = cp) ¢ p(*K). (9)

Assume that this is not true. Ky and K» are processes of N and therefore (9)
holds for K7 and Ks. Without loss of generality, let by € *K; and by, € ®* K5 such
that c(p(b1)) = p(by). We have either by € °K; or by € TK;. Because K, has
no isolated placed which are mapped to co-places, there exists e; € E5 such that
either by € ®ey or by € Tey. If by € ®esy, by definition of the complementation,
there exists b, € e$ such that ¢(p2(b))) = p2(b2) which contradicts ) = p1(°K7)N
p2(°Ky) if by € °Ky, and contradicts ) = p( TK1) N pa(°Ky) if by € TKy. If
by € teg, then by € °K; contradicts ) = p1(°K1)Nc 1 (p2( " K3)),and by € TK;
contradicts ) = p1( T K1) Ne 1 (pa( ~K3)). 0

Given processes K1, Ko, K3, K4 such that K; || Ko, K3 || K4 are defined
and K1 ~ K3, Ky ~ K4, we have K; || Ko ~ K3 || K4, i.e. we have that
isomorphism between processes is a congruence w.r.t. the partial operation of
concurrent composition defined in the previous proposition.

Proposition 4. Let K1 = (B, E1, F1,Cq1,p1) and Ko = (Bg, Es, F5,Co, p2) be
two processes of N with disjoint sets of transitions such that Vby € By,by € By :

b1 = by <— (bl S KI A by e *Ky A /91(51) = pg(bg)), and (10)
P (K3 NP = oK) (1 P (1)

Then K = (B,E,F,C,p), where B= By UBy, E = FE{UFy, F =F,UF,C =
C1UCy, p=p1Ups, is a process of N.

Proof. See [19].
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Definition 17 (Sequential composition of processes). With notions of

Proposition 4, K is called the sequential composition of the processes Ky and
Ks. It is denoted by Kq; Ks.

Isomorphism between processes is a congruence also w.r.t. the partial oper-
ation of sequential composition defined in the previous proposition.
Furthermore, given two isomorphic processes K1 ~ K5, we have:

p1(*K1) = p2(*Ka), p1(K7T) = p2(K3),
and

p1(°K1) = p2(°Ka), pi(TKy) = pa(TK), pi( K1) = pa( T Ky).

8.3 Relationship between Process Terms and Processes
of Elementary Nets with Context

For the most general case of an elementary net with mixed context we prove
a one-to-one correspondence between isomorphism classes of its processes and
equivalence classes of process terms of the corresponding (M, Z)-net from Sec-
tion 7 with respect to ~. As a consequence, the partial order constructed in a
canonical way from an equivalence class of process terms by considering the or-
dering of transitions of all process terms in the equivalence class coincides with
the partial order derived from the corresponding process net.

In the sequel, let Ay together with nf be the (M, Z)-net corresponding to
an elementary net with context N = (P, T, F,C.,C_), as defined in Section
7. With the help of the above definitions and propositions we will inductively
construct isomorphism classes A, of processes of N associated to process terms
a:a—be P(Ay) with information Inf(a) according to the four construction
rules of process terms. We will also show that processes K, € A, enjoy the
following properties:

Pa(*Ky) NP =aand p(KS)NP =0, (12)
(Pa(°Ka), pa(TKa). ¢ Hpa( " Ka))) = Inflav). (13)

Proposition 5. Let m : m — m be the reflexive process term of a marking m
of N with associated information Inf(m) = (0, m, (). According to Definition 14,
K(m) is a process of N. Clearly the properties (12) and (13) hold for K(m).

Definition 18 (Isomorphism class of processes associated to markings).
With notions of Proposition 5 define A, = [K(m)]~ to be the isomorphism class
of processes associated with the elementary term m.

Proposition 6. Let t : pre(t) — post(t) be the process term generated by a
transition t with associated information Inf(t) = (*tUt*, T¢, ~t). The process
K(t) of N satisfies properties (12) and (13).
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Definition 19 (Isomorphism class of processes associated to transi-
tions). With notions of Proposition 6 define Ay = [K(t)]~ to be the isomorphism
class associated with the elementary term t.

Proof of Proposition 6. According to Definition 15, K(t) is a process of N. Prop-
erty (12) follows from ®t U Tt = pre(t) and t* U *t = post(t), where °t,
t* and Tt are taken w.r.t. N, and *K(t) = *tU TtU{c(p) | p € ~t},
K(t)* =t* U *ttU{c(p) | p€ ~t}. Property (13) follows from:

“t=c Y (TK(®)).

O

Proposition 7. Let a1, be process terms of Ay, such that « = 1 || ag is a
defined process term. Then there exist processes K1 = (By, F1, F1,C1,p1) € Aq,
and Ky = (Ba, Eo, F5,C5, p2) € A,,, such that the precondilions for concurrent
composition of K1 and Ko are fulfilled. Moreover, the process

K, =K ” Ky = (BoqunFonCoupa)v
satisfies the properties (12) and (13).
Definition 20 (Isomorphism class of processes associated to concur-

rent composed process terms). With notions of Proposition 7 define A, =
[Kq|~ to be the isomorphism class associated with the term c.

Proof of Proposilion 7. Take processes K; € A,,, K2 € A,,, such that the sets
B1\ (TK U ~K}),B;\ (TKy U ~K3), P are disjoint, and TK; U “K; C P A
pil +k,u-k, = idfori = 1,2 (what can be achieved by an appropriate renaming).
Then the precondition (3) formulated in Proposition 3 is fulfilled.

Denoting Inf(a;) = (w1, p1,n1) and Inflas) = (wq, p2,ny) we have by the
definition of dom i :

w1 Nwz = wi N (p2Ung) = w2 N (p1Uni) =p1Nng =p2Nng = 0.
From property (13) of K1 and Ky we have for i = 1,2:
wi = pi(°Ky), pi=pi( TKi), ni=c (pi( T K;)).

Therefore the remaining preconditions for concurrent composition of K1 and Ko

formulated in Proposition 3 are fulfilled.
We have that

*(Kq || K2) = K1 U *Ko, (K || K2)* = K7 UKJ,
and, because joined places are neither in ®K7 nor in °Ko,

(K, || K2) = °K1 U °Ko,
Ky || K2) = TK1 U TKs,
(K || Kp) = KLU T Ky,

which easily implies properties (12) and (13). O
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Proposition 8. Let a; and as be two process terms such that a = aq;ao s
a defined process term. Then there exist Ky = (By, E1, F1,C1,p1) € Aa, and
Ko = (B, E2, F5,Ca,p2) € Aq, such that K, = Ki; Ky is a defined process,
which fulfills properties (12) and (13).

Definition 21 (Isomorphism class of processes associated to sequential
composed process terms). With notions of Proposition 8 define A, = [Ka|~
to be the isomorphism class associated with the term c.

Proof of Proposition 8. Take processes K1 € A,,, K2 € A,, such that the sets
B1\ K}, B\ *Ks, P are disjoint, K¢ C F/\p1|K1- =idand *Ky C PAps|ek, =
id (what can be achieved by an appropriate renaming). Then the precondition
(10) formulated in Proposition 4 is fulfilled.

From property (12) of processes K7, Ko and from post(a;) = pre(as) we
have p1(K? )N P = pa(*Ks) N P and therefore precondition (11) formulated in
Proposition 4 is fulfilled.

The new process K, = K = (B, E, F,C, p) obviously satisfies property (12).

We have °K = °K; U °K>, and therefore

p(°K) = p1( K1) Upa( °K>)

Moreover, TK = (TK;U TK3)\ °K. Since p is injective on TK; U T Ky, we
have
p(TE) = (p1(TK1) U pa(TK2)) \ p(°K).

Let °K'={be B|pb)¢ P\N(Jec E: be ®eUe®)}.

Then “K = (K, U ~K») \ °K’.

By injectivity of p on K3 U ~Ky we have p( "K) = (p1( K1) U p2( “K2)) \
p(°K’). By construction of complementation we have ¢ 1(p(°K’) C p(°K).
Since p € p(*K) = ¢(p) ¢ p(*K), by induction we have

p € p(D) = c(p) & p(D) (14)

for each slice D of K. Since each slice of K contains ~K = (~“K;U ~K»y)\ °K’,
we have (p(°K) \ ¢ Hp(°K"))) N p(~K) = 0. Thus, we have

¢ Hp(TK)) = (cHp(TK)) U pa(TE))\ p(°K).
Since each slice of K contains TK U ~K, by (14) we have
p(“K) e (p(“K)) = I

Thus, process K, enjoys property (13). O

Definition 22. Given an elementary net with mized context N, let 7 : P(An)
— (P(N))/~ be the mapping defined by T(a) = A, .



161

Lemma 9. Let K = (Bk, Ex, Fx,Ck.pi) be a process of N and ey, es € Fi
with e1 % ea Nea % e1. Then pi(er) || px(e2) is a defined process term.

Proof. It suffices to show that:

(a) (pr(*erUet)NP)N (px(®e2Ues) N P) =0,
(b) ((px(Ter)NP)Uc (p(Ter) N P')) N (px(*e2Ues) N P) =0, and
(¢) (px(Fer) NP) e Hpx(Tex) N P) = 0.

(a) follows from: e; £ ez A ea £ e1 implies that the sets ®e; U ®ea U TK
and e} Uey U TK are subsets of slices of K. Since pg is injective on slices,
pr(%e1) N pr(®e2) = pi(e}) N pk(es) = 0. Assume there is a place p €
pr(®e1) Npr(es) or p € pr(®e2) N pr(e}). Without loss of generality let
p € px(®e1) N pk(es). There are places by € ®e; and by € e$ such that
pr (b1) = pi(b2). Then either by £ by Aby £ by (which would be a contradiction
to the injectivity of px on slices) or by < by (which would be a contradiction to
ea & e1 A ep & ez by the transitivity of <) or finally by < by, which would imply
e1 < e because places are unbranching, what is again a contradiction.

To show (b), assume there is a place p € (pr(Fe1) N P)Uc Hpr(Ter) N
P))N(p(®eaUes )N P). Then there are places by € Tey and by € (®eaU® e2) NP
such that ¢(pr(b1)) = pr(b2) or px(b1) = px(b2). In the first case we observe:

— Assume by € ®ey. By construction of the complementation N of N there is
a place b, € e3 such that px(by) = px (by). We can distinguish 4 situations:
by £ bh A b, £ by leads to a contradiction similar as in case (a).
by = bl implies e3 < €.
b1 < bl implies the existence of a transition e’ € E such that by € ®e’ Aey <
e’. Because places are unbranched, this implies €/ < eo and therefore e; < es.
b, < by implies the existence of a transition e’ such that by < €’ and by €
(e')® . It follows e’ < e; and therefore ey < e;.

— The proof for by € €3 is similar.

The second case obviously reduces to the situations considered in the first case.

Finally we obtain (¢) by assuming that there is a place p € (px(Ter) N
P)Nc YHpr(Tey) N P'). Then there are places by € te; and by € Tey with
c(pr(b1)) = pr(b2). Since p € pr(*K) = c(p) ¢ px(*K), by induction we have
p € px(D) = ¢(p) ¢ px (D) for each slice D of K. This implies either by < by
or by < by which again gives a contradiction to e; £ e2 Aea £ €. O

Remark 5. (a) Given process terms «y, i = 1,...,4 of Ay such that the terms
a= ((aq || a2);(as || as)) and B8 = ((a1;a3) || (a2;ayq)) are defined. Then
Inf(a) = Inf(5).

(b) For any two process terms «p and as such that «y || ag is defined, we have
ay || ax ~ (ag;post(ar)) || (pre(az); az) ~ (aq || pre(az)); (az || post(ai))
and analogously a1 || az ~ (az || pre(ar)); (oa || post(az))
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(¢) If (a1; a2) || m, m being a marking, is defined, then we have (ay;as) || m ~
(a1 | m); (a2 [| m).
Theorem 5. The mapping 7 : P(An) — (P(N))/~ is surjective.

Proof. Let K = (B, E,F,C,p) be a process of N. We inductively construct a
process term « with K, = K by the method of maximal steps analogously to
the proof of the similar theorem in [6, Theorem 1]: Beginning with the slice
D = °K, we take all transitions {e1,...,e,,} € F with ®e; C D such that
there is no transition e € F with e < ¢; (1 < ¢ < m). Then the transitions
ple1),...,p(en) can be composed by || as process terms. The resulting process
term then is sequentially composed with the next one, which we derive by the
same procedure now starting with the follower slice of D after firing eq, ..., e,,.
This is repeated until the follower slice equals K*° . O

Theorem 6. For two process terms «, 3 € P(An), a ~ (3 implies 7(a) = 7(3).

Proof. 1t is sufficient to show the proposition for every (of the seven) construction
rules of ~ (Definition 2).

(1) The proof for the rule (1) is obvious.

(2) Given ag, g, ag such that terms (o || as2) || @3 and oy || (g || a3) are
defined, take processes

Ky e Ay, KaeA,, KzeA,,,
such that sets
Bi\ (TKiU "Ky), Bo\ (TKoU "Ky), B3\ (TK3U “K3), P
are disjoint and
TK;U “K; CPApiligu-x, =id, i€{1,2,3}

(what can be achieved by an appropriate renaming). Then processes
(K; || K2) || K3, K7 || (K2 || K3) are defined and equal.

(3) Given ay,as,as such that terms (ay;az);as and ai; (ag; as) are defined,
let G be a set satisfying |G| = |P| and GNP =0, and let g : G — P be a
bijection. Take processes

Kl E A(Dtl? K2 E AOLQ? K3 E AOLg?
such that sets

B\ K}, Bo\ (*KoUKS), B3\ °Ks, G, P
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are disjoint and
Kl. g?/\pﬂ}(lo :Zd7 'KQ g?/\pﬂo[(z :Z'd7

K3 \ (TKaU “K2) C G A pal s \(+Kou-Kz) = 9lks \(+KoU—Ka2)»
*K3 CGApslex, =9|ok,
(what can be achieved by an appropriate renaming).
Set @ = *K3nNg '(TKyU ~K,). Now, take the process K € A,, ob-
tained from the process K3 by renaming every place b € ) by the place
g(b) € TKyU ™ Ks. Then processes (K1; K»); Ki, Kq; (Ko; K3) are defined
and equal.

(4) Given ay, s, a3, aq such that terms (ag || ag); (as || o) and (ag;as) |
(ag; aq) are defined, take processes

K, e Aap K, e Aa27 K5 e Aa3, K, € Aa4,

such that sets

Bi\ K7, B\ K3, B3\ °K3, By\ *Ky, P
are disjoint and
KI g?/\pﬂ]{l’ = id, KQ. QI_D/\p2|K5 = 1d,

*K3 C PApsler, =id, *Ky CPApsle, =id

(what can be achieved by an appropriate renaming).
Then processes (K || K2); (K3 || K1), (K1: K3) || (K2; K4) are defined and
equal.

(5-7) The proof for rules (5-7) is similar.
(W

Theorem 7. For two process terms «, 8 € P(An), 7(a) = 7(8) implies a ~ .

Proof. Without loss of generality let o and 8 be process terms with K(«a) =
K(B)=K = (B,E,F,C,p)and v = 71;...;7vm be the process term constructed
from the process K in the proof of Theorem 5 by considering maximal steps.
Then ~; is of the form

i = pler) |- I pleg,) Il pla),

el ... 7621, € Fanda' C B,i=1,...,m. We show that o is equivalent to . By
syminetry, the same holds for £, and we are done.

According to Remark 5, we assume without loss of generality that « is of the
form

a = p(er) || (p(ar) N P);...; pler) || (plar) N P)
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with transitions eq,...,er € E and subsets ai,...,ar C B. We will use short-
hands a = eq;...; ek, and ignore the sets aq, ..., ar, because they are determined
by the definition of the sequential composition of process terms. Clearly, a and
~ ’contain’ the same transitions, i.c.

o 1 1 m m
{er, . .,ex} ={er, . e, el e T
Assume e; = el for an i > 2. It suffices to prove
€15...3€; ~E1;...€€C_1 ~ ...V EHCLy ... €61,

because firstly the same procedure applied to el, ..., 6311 provides eq;...;e, ~
v1;0 (where ¢ is the rest of the term « after removing transitions of ~;), and
secondly this procedure applied to 7,...,7,, finishes the proof. In fact, it is
enough to show that we can exchange e; and e;_1 in a. A sufficient condition is
that p(e;) || p(e;—1) is a defined process term.

We have to distinguish two cases: If e;_1 = e} for some 57 € {2,...,n1},
plei) || p(ei—1) is defined according to the process term «y. The other possibility
is ej_1 = €} for an I € {2,...,m} and j € {1,...,k}. By construction of the
process K, from «a follows e; % ei—1. On the other hand, by construction of ~
follows e;,_1 & e;. By Lemma 9, p(e;) || p(ei—1) is defined. O

Remark 6. The set of all processes of an elementary net with mixed context
w.r.t. an initial marking mg corresponds to the set of all equivalence classes of
process terms containing process terms of the form o = myg; 3 (i.e. process terms
starting with my).

Finally, looking at the definition of 7, we can state the main result for el-
ementary nets with mixed context, which now follows easily from the previous
theorems.

Theorem 8. Given any elementary net N, there exists a one-to-one corre-
spondence between the isomorphism classes of processes P(N) of N and the
~-congruence classes of the process terms P(An) of the corresponding algebraic
(M, T)-net defined in Section 7. This correspondence preserves the initial mark-
ing, final marking and the information about write places, positive context places
and negative context places of processes and process terms, as well as concurrent
composition and sequential composition of processes (resp. congruence classes of
process terms).

Remark 7. Clearly, according to Remarks 2 and 4 the previous theorem holds
also for elementary nets without context and elementary nets with negative
context, although in these examples we considered a slightly different process
term semantics.

Using terminology from partial algebra [4] we can rephrase Theorem 8 as
follows: Given an elementary net with context N and a process term a €
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P(An) of the corresponding net over partial algebra, the congruence class [a].. €
(P(An))/~ corresponds to the isomorphism class 7(a) = [K]~ of a process
K € P(N) such that the initial and final marking are preserved, i.e. p(*K)NP =
pre(a), p(IKK*) N P = post(«), and information for concurrent composition
is preserved, i.e. (p(°K),p(TK),c  p(~K))) = Infla). The factor algebra
(P(An))/~ is isomorphic to the factor algebra (P(N))/~, (i.e. T is a surjec-
tive closed homomorphism between P(Ay) and (P(N))/~).

9 Place/Transition Nets

In this section we give algebraic definitions of place/transition Petri nets with
inhibitor arcs and place/transition Petri nets with capacities.

Here we provide semantics corresponding to collective token philosophy [5].
In this case an equivalence class of process terms corresponds to an equivalence
class of partial orders, according to collective token semantics of place/transition
nets without capacity restriction (see [1] and [5]). In the case of individual token
philosophy, where the single partial orders are of interest, one can use more
sophisticated algebras, such as for example concatenated processes [24].

Let us brielfy mention another possibility how to deal with individual token
semantics without using different algebra from those used for the collective token
semantics. As it was discussed in Introduction, any process term defines naturally
a partial order of events labeled by transitions. Thus, an equivalence class of
process terms defines a set of partial orders. As we have illustrated in the example
from Introduction, one can modify these partial orders comparing each other and
removing causalities which are not defined by the net itself. The idea for further
research is to generalize this modification procedure in order to obtain the set of
partial orders containing only those causalities which are given by the net itself.
Such set of partial orders would correspond to collective token semantics, while
obtained single partial orders would correspond to individual process semantics.

Clearly, one can also combine restrictions given by inhibitor arcs and capac-
ities and extend them further, or combine them with other approaches such as
positive context to get a more complicated enabling rule. In such cases one could
use more complicated algebras, see e.g. [11,3].

Definition 23 (Place/transition nets). A place/tlransition Petri net (shortly
a p/t net) is a quadruple N = (P, T, F,W), where P,T and F are defined as for
elementary nets, and W : F' — N7T is the weight function. Given a transition t,
define *t.t* € N as follows:

Wm;?www>#@weﬂ

0 otherwise,

twm_{wamm if (t.p) € F.

0 otherwise.
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9.1 Place/Transition Nets with Inhibitor Arcs

Definition 24 (Place/transition nets with inhibitor arcs). 4 p/t net with
inhibitor arcs is a five-tuple N = (P,T,F,W,C_), where (P,T,F,W) is a p/t
net, and C_ C P x T is an inhibitor relation (set of inhibitor arcs) satisfying
(FUFYHNC. =0. As usual, ~t = {p | (p,t) € C_} for each t € T. A
marking of N is a multi-set m € N*. A transition t is enabled to occur at m iff
Vp e P:m(p) = *t(p) A ((p,t) € C— = m(p) = 0). Its occurrence leads to the
marking m' =m — *t +t°.

For p/t nets with inhibitor arcs the cardinality of the information set I is
smaller than the cardinality of the marking set of the net:

M = (M, +) = (NP, 4), where + is multi-set addition. For concurrent com-
position it is obviously enough to check that one process does not use negative
context places of the other process as write places. Therefore, the necessary in-
formation for concurrent composition consists of the set of those places which
appear in a marking of the process term and the set of negative context places.
For a marking m over the set P of places we denote ms = {p | m(p) # 0}. It
follows Z = (I, 4+, domy) with I =27 x 2P domy = {((w,n), (w',n"))|wNn' =
w' Nn =0} and V((w,n)(w',n')) € domy : (w,n) + (w',n') = (wUw' ,nuUn’).

The partial groupoid Z satisfies the requirements given in Section 2.

For a transition ¢ and a marking m define

pre(t) = °t, post(t) = t*,
nf(m) = (ms, D), nf(t) = ((pre(t))s Upost(t))s, ~t).

The function inf preserves property (a) from Definition 1. One can also easily
prove that the independence relation of Z encodes the restriction of the occur-
rence rule by restriction of concurrent occurrences of a transition and a marking.

Lemma 10. Let supp : 21 — I be defined by

sum() = w. U

(w,n)eA (w,n)EA

Then relation = defined by © = y < supp(x) = supp(y) is the greatest closed
congruence on the partial algebra (2!, dom gy, {4}, V).

Proof. 1t is a straightforward observation that supp is a surjective closed homo-
morphism from (27, domgy, {+,U) to (I,domy,+,0), where V(w,n), (w',n’) €
I:(w,n)o(w,n)=(wUw,nUn’'). Hence = is a closed congruence.

To prove that = is the greatest closed congruence it suffices to show that any
congruence = satisfying =2C~ is not closed. The proof is similar to the proof of
Lemma 6. Assume there are A, A’ € 27 such that A ~ A’ but A 2 A’. Then

supp(A) # supp(A’).
We construct a set C' € 2! such that (4,C) € domgy but (A, C) ¢ domy

or vice versa (which implies that = is not closed). If supp(A) = (w,n) and
supp(A’) =(w',n’) thenm A 7' Vw #w’ (since supp(A) # supp(A’)).
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P1 p2

Ps

P3 P4

Fig. 13. An example of a p/t net with inhibitor arcs. A possible process term is (a ||
bl p1); (el (pr+pa+ps);dll (2p1 + ps).

Let w # w'. Without loss of generality we can assume w' \ w # (). Set
C = {(cw,cn)} with ¢, = 0 and ¢,, = w’ \ w. Therefore ¢, N7 = ¢, "W = 0,
but ¢, Nw' # 0, i.e. (A,C) € domyyy, but (A'.C) ¢ domyy,.

Now let m # m’. Without loss of generality we have m’ \ 7 # (. Set C =
{(cw,cn)} with ¢,, = (7' \7) and ¢, = 0. Then ¢, # 0, c,y "T=wWNe, =0 and
cw N7’ # (), and we are finished. 0

Because also property (b) from Definition 1 is preserved, we can formulate
the following theorem.

Theorem 9. Given a p/t nel with inhibitor arcs N = (P, T, F,W,C_) with
M, T, pre, post,inf as defined in this subsection, the quadruple Ay = (28, T, pre,
post) together with the mapping inf is an algebraic (M, T)-net. Moreover, it is a
corresponding algebraic (M, I)-net to the net N.

Figure 13 shows an example of a p/t net with inhibitor arcs.

9.2 Nets with Capacities

There are two different interpretations of consuming and producing tokens for
Petri nets with capacities (for more details see e.g. [9,10,15]). According to the
order of consuming and producing tokens one can distinguish the following sit-
uations:

— A transition t first consumes the tokens given by pre(t) yielding an inter-
mediate marking 0 (empty multiset) and then produces tokens post(t). This
interpretation corresponds to classical rewriting and such capacities are said
to be weak [9].

— A transition ¢ first produces tokens (given by post(t)), yielding an interme-
diate marking pre(t) + post(t) and then consumes tokens (given by pre(t))
yielding the marking post(t). Such capacities are said to be strong [9].
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Definition 25 (Place/transition nets with capacities). A place/transition
net with capacities is a p/t net together with a partial function K : P — N1 with
a domain Pk C P.

A marking of a net with capacities is a multi-set m € N¥ such that Vp € Py :
m(p) < K(p).

A transilion t is said to be weakly enabled alt a marking m iff Vp € P : m(p) >
*t(p) and Vp € Pk : K(p) = m(p) — *t(p) +t* (p).

A transition tis said to be strongly enabled at a marking m iff Vp € P : m(p) >
*t(p) and Vp € Pk : K(p) = m(p) +t* (p).

The occurrence of an enabled transition t at a marking m leads to the marking
m' ' =m— *t+t°.

The concurrent occurrence of transitions, and more general concurrent com-
position of processes, have to respect capacities. In the case of strong capacities
the information about the intermediate marking pre(t) + post(t) is attached to
transition t.

Thus, as the set of markings we set M = ({a € N' | Vp € Py : a(p) <
K(p)},+), where the operation + is defined by a(p)+b(p) = min(a(p) + b(p),
K(p)) for all p € Pk and a(p)+b(p) = a(p) + b(p) for all p € P\ Pk.

The partial groupoid of information Z = (I, +, dom ) is defined by

I =({weN"$Vpe Px: wip) < K(p)},
dom; = {(w,w'") € I x I |Vp € Pk : w(p) +w'(p) < K(p)}
‘I’:+’dom+-

This partial groupoid satisfies the requirements from Section 2.
Define pre(t) = °t,post(t) = t* for every transition ¢. Moreover, for weak
capacities define a mapping inf,, : M UT — I by:

— For a marking m, inf,(m) = m|p,.
— For a transition ¢ and a place p € Pk, infy,(t)(p) = max(pre(t)(p), post(t)(p)).

For strong capacities define a mapping infs : M UT — I by:

— For a marking m, infs(m) = m|p .
— For a transition ¢ and a place p € Py, infs(t)(p) = (pre(t)(p) + post(t)(p)).*

Again, property (a) from Definition 1 is satisfied. The considered independence
relation encodes the restriction of the occurrence rule.
In the sequel, we define a mapping supp : 2! — I and prove that supp is

the natural homomorphism of the greatest closed congruence = of the partial
algebra (2, dom gy, {+}, V).

4 In the case of strong capacities we implicitly suppose for each transition ¢ and each
place p € Px that pre(t)(p) + post(t)(p) < K(p). Otherwise transition ¢ is never
enabled to occur and therefore according to the Definition 3 it is irrelevant for the
corresponding net
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b
P4 p2 P3
@—» a [ ) [ )
K(p2)=2
c

Fig. 14. An example of a p/t net with capacity

Lemma 11. Given I as above, let supp : 2! — I be defined for all p € Px by

supp(A)(p) = maz,caa(p).

Then the relation = defined by A =2 A’ <= supp(A) = supp(A’) is the greatest
closed congruence on the partial algebra (2!, dom gy, {+,U).

Proof. By the properties of maximum and the definition of the mapping supp,
supp is a surjective closed homomorphism from (27, domgyy, {+},U) to (I, dom .,
+,0), where Va,a’ € I : aod = supp({a,d’'}), and therefore = is a closed
congruence. To prove that = is the greatest closed congruence we show that any
congruence =~ satisfying 2C= is not closed. We construct a set C' € 2! such
that (A,C) € domgyy but (A',C) ¢ domyjy or vice versa. Assume there are
A, A" € 27 such that A ~ A’ but A% A’. Then there is a place p € P such that
mazqcaa(p) # mazqcaa' (p). Without loss of generality let maxy cara’(p) >
maz.caa(p). It suffices to take, for example, C = {a} for the multi-set a(p) =

K(p) — maz,caa(p) and a(p’) = 0 for all p’ € Pk such that p’ # p. 0

The property (b) from Definition 1 is satisfied both for inf,, and inf;. Thus,
we have the following theorem for place/transition nets with capacities.

Theorem 10. Given a p/t net with capacity N = (P, T, F, W, K) with M, T, pre,
post, infy,, nfs as defined in this subsection, the quadruple Ax = (M, T, pre, post)
together with inf,, for weak capacities and infs for strong capacities is a corre-
sponding (M, I)-net to the net N.

Notice that in the case that there are no self-loops in the net, as it is in
Figure 14, weak and strong capacities coincide. Nets with capacities represent
a class of (M, Z)-nets where information can violate the distributive law (see
Definition 2, (4)). For example, we have the following process terms of the net
from Figure 14: o« = (b || p1); (ps || @) with Inflar) = p2 and B = (b;p3) || (p1;a)
with Inf(3) = 2ps. The information of the term « corresponds to the fact that
during the execution of a there is at most one token in place p,, while the
information of 8 expresses the fact that during the execution of § place ps can
obtain two tokens. Because terms « and 3 have different information, they are
not equivalent. As a consequence of the difference of information, o can run
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concurrently with ¢, but 8 cannot. If the place po had no capacity restriction,
then a and B would be equivalent according to the distributive law and « and
6 would represent the same run.

10 Conclusion

There are several approaches to unifying Petri nets (see e.g. [22,20,21,16]). They
enable to unify different classes of Petri nets which use different underlying alge-
bras and different treatment of data-type part, defining them as formal parame-
ters which can be actualized by choosing an appropriate structure. However, in
these approaches enabling condition of the occurrence rule is not a parameter,
but it is fixed. Both definitions in [20,16] capture elementary nets but they let
open more complicated restrictions of enabling condition in occurrence rule, such
as inhibitor arcs or even capacities.

In our paper we have focused on unified description of Petri nets with mod-
ified occurrence rule. Namely, we have described a unifying approach to non-
sequential semantics of Petri nets with modified occurrence rule. We have demon-
strated that methods of partial algebra, such as greatest closed congruence,
represent a suitable mathematical tool for such an approach. By restricted do-
mains of operations we were able to generate precisely just those runs of the net
which are allowed. In comparison with methods based on partial order where
concurrency is defined implicitly if there is no causal connection between runs,
we define explicitly when runs can be composed concurrently. Thus, in our ap-
proach causality is defined using two partial operations to generate runs, namely
concurrent and sequential composition.

On the other hand, we did not discuss unifying of data type part. So, we did
not discuss high-level Petri nets in this paper. There are also other restrictions
of the occurrence rules in various high-level nets (e.g. transition guards, time
intervals, roles etc.) which are of different characters and were not discussed in
the paper. It would be interesting to discuss those kinds of restrictions in order
to see the implication of the unifying approach for high-level nets. Namely, it
would be interesting to combine the approach presented in [22] and the approach
presented in this paper.

The presented approach opens many interesting questions. We can further
distinguish between synchronous and concurrent occurrences of transitions. In
such an extension of our approach one first needs to generate steps from tran-
sitions using a partial operation of synchronous composition and then to use
this steps to generate process terms using partial operations of concurrent and
sequential composition. In terms of causal relationships, such an extension cor-
responds to the approach described in [13,17], where two kinds of causalities
are defined, first saying (as usual) which transitions cannot occur earlier than
others, while the second indicating which transitions cannot occur later than
others. In [13,17] the principle is illustrated for a variant of nets with inhibitor
arcs, where testing for zero precedes the execution of a transition. Thus, if a
transition t tests a place for zero, which is in a post-set of another transition
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t’, this means that ¢ cannot occur later than ¢’ and therefore they cannot occur
concurrently - but still can occur synchronously. There are also other net exten-
sions employing steps of transitions (distinguishing between synchronous and
concurrent composition), such as nets with asymmetric synchronization [12]. We
are currently working on the extension of our approach using a partial operation
for synchronous composition to cover such cases.

Another area of further research is to investigate whether the presented
framework would lead to a unifying and mathematically elegant way of pro-
ducing the causal semantics for nets with restricted occurrence rule. Namely, as
it was discussed in Introduction, any process term defines naturally a partial or-
der of events labeled by transitions. Thus, an equivalence class of process terms
defines a set of partial orders. As we have illustrated in the example from Intro-
duction, one can modify these partial orders comparing each other and removing
causalities which are not defined by the net itself. The idea for further research
is to generalize this modification procedure in order to obtain the set of partial
orders containing only those causalities which are given by the net itself.
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