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1 Introduction

In this paper, we systematically present the high-level architectural synthesis for
general wavelet-based algorithms via a model of I/O data space and the nonlin-
ear transformations of the I/O data space. The parallel architectures synthesized
in this paper are based on the computation model of distributed memory and
distributed control. Several architectural designs have been proposed for the
Discrete Wavelet Transform (DWT) [4]-[11]. None of these architectural designs
for computing the DWT follows a systematic data dependence and localiza-
tion analysis of general wavelet-based algorithms, and thus they only serve as
particular designs and cannot be extended to other complicated wavelet-based
algorithms such as MultiWavelet Transform (MWT)[1,13,14], Wavelet Packet
Transform (WPT)[2,15] or Spacial-Frequential Quantization (SFQ) [12]. Using
the WPT as a representative example of complex wavelet-based algortihms, this
paper fully describes the theory and methodology used in synthesizing parallel
architectures for general wavelet-based algorithms.

2 I/O Data Space Modeling of Wavelet-Based Algorithms

The basic equation for any discrete wavelet-based algorithms is generally repre-
sented by
Xj+1[t] =

∑
k∈L C[k]Xj [Mt − k] (Eq.1)

where C[k] are taps of a wavelet filter, Xj and Xj+1 are the sequence of input
data and output data respectively at the (j + 1)th level transform, L is a set
that corresponds to the size of the wavelet filter, and M is a constant scalar in
the algorithm. Generally, the algorithm is termed as M-ary wavelet transform
for M ≥ 2. There are M wavelet filters for M-ary wavelet transform. If Xj and
Xj+1 are scalar data and C is scalar-valued taps of the wavelet filter, the algo-
rithm is a classical scalar wavelet transform; if Xj and Xj+1 are vector-valued
data and C is matrix-valued taps of the multiwavelet filter, it is an MWT. If t
and k are scalars, the algorithm is a 1-D transform; if t and k are n-D vectors, it
is an n-D transform. Wavelet-based algorithms are multiresolution algorithms,
i.e., the output data at a level of transform can be further transformed at the
next level.
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The following concepts are presented for the analysis in Section 3. Parame-
ter index axis: The parameter index axis of a signal processing algorithm is the
index axis for those data to be broadcasted in the algorithm, i.e., the data used
in most computations but not generated by computations. As parameters of the
computations, the number of them is fixed. Data index: The data index is the
index for the intermediate data, input data, or output data that are generated
and/or used by computations. In signal processing algorithms, the input size
is variable. I/O data space: In an I/O data space the indexed data are only
possibly the input data, output data or intermediate data, and the parameters
of the algorithm are ignored. The intermediate data are viewed as partial inputs
or partial outputs for the intermediate computations. Dependence graph: In
this paper we present the I/O data space based dependence graph, where each
node in the dependence graph corresponds to a data item, and each edge cor-
responds to a calculation or a dependence relation between the data used in
the calculation and that generated in the calculation. Wavelet-adjacent field:
In an I/O data space, a wavelet-adjacent field is a small domain made up of a
group of source data items used by a calculation in Eq. (1). Its size is dependent
on the wavelet filter. Super wavelet-dependence vector: A super wavelet-
dependence vector −−→

dWb starts from a wavelet-adjacent field W and ends at the
resulted data b. Since the source of the “dependence vector” itself is a domain
instead of a single datum, we term such a dependence vector (corresponding to
the calculation in Eq. (1)) a super wavelet-dependence vector. In later analysis
the super wavelet-dependence vectors are generally called dependence vectors
and treated similarly as traditional dependence vectors. The length of a super
wavelet-dependence vector |−−→dWb| is defined as the Euclidean distance between a
and bc, where a and bc are arithmetic centers of W and b respectively. Regular
dependence graphs: in such dependence graphs the length of each dependence
vector d is a constant value independent of either the input size or the data po-
sitions. Pseudo regular dependence graphs: in such dependence graphs the
dependence vectors can be partitioned into a certain number of groups and in
each group the length of dependence vectors is a constant value independent of
either the input size or the data positions.

As examples, a wavelet-adjacent field, a super wavelet-dependence vector and
the dependence graph for the algorithm of separable 2-D MWT[13][14] in I/O
data space are shown in Figure 1 based on these concepts.

3 Nonlinear I/O Data Space Transformations for
Regularizing Dependence Graphs

Theorem 3.1: The dependence graphs of wavelet-packet based algorithms (ar-
bitrary expansion of wavelet trees) modeled in I/O data space can always be
merged and regularized to a pseudo regular dependence graphs via appropriate
nonlinear I/O data space transformations.
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Fig. 1. The wavelet-adjacent �eld, super dependence vector and the dependence graph
for 2-D MWT

Proof:
(1) For algorithms of 1-D transforms: There are M wavelet filters

(f1, f2, · · · , fM ) at each level of 1-D M-ary wavelet transform, and each level
of transform can decompose a certain subband into M components in wavelet-
packet based algorithms. One of the filters (f1) is for generating coarse compo-
nent, others for detailed components. Assume M functions Fi(x) = Mx + i − 1
for i = 1, 2, · · · , M .

Suppose that a subband
∏

is calculated in l levels of wavelet-packet based
transform consecutively with wavelet filters p1, p2, · · · , pl, where pu = fi for
u = 1, 2, · · · , l and i is any integer ∈ [1, M ]. Considering that there are many
subbands generated together by l levels of wavelet-packet based transform, and
their corresponding dependence graphs should be merged as well as regularized
to get a whole dependence graph for the algorithm, the nonlinear I/O data
space transformation Γ1 is presented as follows. Without loosing generality, for
the dependence graph corresponding to subband

∏
, Γ1 is: j 7−→ j; t 7−→ t if

j = 0; t 7−→ P1(P2(· · · (Pj(t)) · · ·)) otherwise, where Pu = Fi if pu = fi for
u = 1, 2, · · · , j, and j ≤ l, i ∈ [1, M ]. Note that here j corresponds to the level
of transform and can be only integers.

Consider another subband
∏

1 different from
∏

generated in the algorithm.
Suppose that

∏
1 is calculated in l levels consecutively with wavelet filters

p′
1, p

′
2, · · · , p′

l, where p′
u = fi for u = 1, 2, · · · , l and i is any integer ∈ [1, M ].

Since there exits at least one p′
u 6= pu where u ∈ [1, l], Γ1 maps the data for∏

and
∏

1 to different positions in the I/O data space. In other words, Γ1 can
combine all dependence graphs of the subbands into a single I/O data space
without conflicts.

Consider a dependence vector in the I/O data space corresponding to a cal-
culation of Eq.(1) at data position t0 at the (u + 1)th level of transform,

Xu+1[t0] =
∑

k∈L pu+1[k]Xu[Mt0 − k],
where pu+1 represents the wavelet filter used at this level. After the mapping of
Γ1, the calculation changes to
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Xu+1[P1(P2(· · · (Pu(Pu+1(t0))) · · ·))] =
∑

k∈L pu+1[k]Xu[P1(P2(· · · (Pu(Mt0
−k)) · · ·))],
where Pv = Fi if pv = fi for v = 1, 2, · · · , u + 1, and i ∈ [1, M ]. The de-
pendence vector, starting from the wavelet-adjacent field which corresponds
to L and is centered at data Xu[P1(P2(· · · (Pu(Mt0)) · · ·))], is targeted to
data Xu+1[P1(P2(· · · (Pu(Pu+1(t0))) · · ·))]. The length of the dependence vec-
tor can be resolved by the difference between their coordinates along in-
dex j and t. The difference along index j is |u + 1 − u| = 1. The differ-
ence along t is |P1(P2(· · · (Pu(Pu+1(t0))) · · ·)) − P1(P2(· · · (Pu(Mt0)) · · ·))| =
|P1(P2(· · · (Pu(Mt0 + w)) · · ·)) − P1(P2(· · · (Pu(Mt0)) · · ·))|= Muw, where w is
an integer ∈ [1, M −1]. Here the length of the dependence vector is independent
of t0’s value, and the number of transform levels and the number of wavelet filters
(M) remain constant in the algorithm. In other words, the lengths of the depen-
dence vectors in the I/O data space after the mapping of Γ1 are bounded and
independent of the data positions and input size. Moreover, the dependence vec-
tors can be partitioned into a finite number of groups (according to the possible
values of w and u), and the lengths of the dependence vectors in each group are
the same. That is, the dependence graphs for 1-D wavelet-packet based algorithm
are combined and regularized to be a pseudo regular dependence paragraph via
the nonlinear I/O data space transformation Γ1.

(2) For nonseparable n-D transforms: There are Q = Mn different wavelet
filters (f1, f2, · · · , fQ) at each level of n-D M-ary wavelet transform. Assume Q
functions Fi(x) = Mx + q, where x and q are n-D vectors. The components of
q are q1, q2, · · · , qn, and qv is an integer ∈ [0, M − 1] for v = 1, 2, · · · , n, and
i =

∑n
u=1 Muqu. So i ∈ [1, Q].

Suppose that a subband
∏

is calculated in l levels of n-D packet-packet based
transform consecutively with wavelet filters p1, p2, · · · , pl, where pu = fi for u =
1, 2, · · · , l and i ∈ [1, Q]. Without loosing generality, for the dependence graph
corresponding to subband

∏
, a nonlinear I/O data space transformation Γ2 is

presented as: j 7−→ j; t 7−→ t if j = 0; t 7−→ P1(P2(· · · (Pj(t)) · · ·)) otherwise,
where Pu = Fi if pu = fi for u = 1, 2, · · · , j, and j ≤ l, i ∈ [1, Q]. Note that here
j corresponds to the level of transform and can be only integers, and t represents
n-D vectors.

For other subbands different from
∏

generated in the algorithm, since there
exits at least one filter used in the calculation of l levels of transform different
from that of

∏
, Γ2 maps the data of them to different positions. In other words,

Γ2 can combine all dependence graphs of the subbands into a single I/O data
space without conflicts.

Similar to the case (1), a calculation corresponding to the dependence vector
changes to

Xu+1[P1(P2(· · · (Pu(Pu+1(t))) · · ·))]= ∑
k∈L pu+1[k]Xu[P1(P2(· · · (Pu(Mt −

k)) · · ·))],
where Pv = Fi if pv = fi for v = 1, 2, · · · , u + 1, and i ∈ [1, Q]. The dif-
ference between the coordinates of the source and the target of the depen-
dence vector along index j is |u + 1 − u| = 1. The difference along t is
P1(P2(· · · (Pu(Pu+1(t))) · · ·)) − P1(P2(· · · (Pu(Mt)) · · ·)) = P1(P2(· · · (Pu(Mt +
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w)) · · ·)) − P1(P2(· · · (Pu(Mt)) · · ·))= Muw, where w is an n-D vector whose
components are integers ∈ [1, M − 1]. Thus the length of the dependence vector
is independent of t’s value. We have the similar conclusion that the lengths of the
dependence vectors in the I/O data space after the mapping of Γ2 are bounded
and independent of the data positions and input size, and the dependence vec-
tors can be partitioned into a finite number of groups (according to the possible
values of w and u), and the lengths of the dependence vectors in each group are
the same.

(3) For separable n-D transforms: The n-D separable transforms are calcu-
lated separately and consecutively in every dimension. The index j is drawn
in fractional numbers to represent the intermediate calculations in each level
of transform. In the (s + 1)th level (where s is an non-negative integer) of a
separable n-D wavelet transforms, we have (n-1) intermediate I/O data planes
j = s + 1/n, j = s + 2/n, · · ·, j = s + (n − 1)/n between the planes j = s and
j = s + 1. In the calculations for every dimension, there are M wavelet filters
f1, f2, · · · , fM , and a subband may be decomposed into M components on each
dimension. So after each level of transform, a subband can be decomposed into
Mn components. In addition, we assume M functions Fv(x) = Mx + v − 1 for
v = 1, 2, · · · , M .

Suppose that a certain subband
∏

is calculated in l levels of n-D separable
wavelet-packet based transform consecutively with wavelet filters p1,1, p1,2, · · · ,
p1,n, p2,1, · · · , p2,n, · · · , pl,n, where pu,i = fv for u = 1, 2, · · · , l and i = 1, 2, · · · , n,
and v ∈ [1, M ]. pu,i represents the wavelet filter used for the calculation of the uth

level transform on the ith dimension in generating
∏

. In order to regularize the
dependence graphs, we present the nonlinear I/O data space transformation Γ3
as follows. Without loosing generality, for the dependence graph corresponding
to subband

∏
, Γ3 is: j 7−→ j, ti 7−→ ti (i = 1, 2, · · · , n) if j = 0; ti 7−→

P1,i(P2,i(· · · (Ps+1,i(ti)) · · ·)) otherwise, with j ∈ [s + i/n, s + 1 + i/n), s being
an integer ∈ [0, l − 1], Pu,i = Fv for pu,i = fv (u = 1, 2, · · · , s + 1; i = 1, 2, · · · , n;
and v ∈ [1, M ]).

For other subbands different from
∏

generated in the algorithm, since there
exits at least one filter used in the calculation of l levels of transform different
from that of

∏
, Γ3 maps the data of them to different positions.

The calculation of wavelet transform for the ith dimension at the (s + 1)th

level of transform for
∏

,∑
ki∈Li

ps+1,i[ki]
∑

ki+1∈Li+1
ps+1,i+1[ki+1] · · ·

∑
kn∈Ln

ps+1,n[kn]Xs+(i−1)/n[t1,
t2, · · · , Mti − ki, Mti+1 − ki+1, · · · , Mtn − kn],
=

∑
ki+1∈Li+1

ps+1,i+1[ki+1] · · ·
∑

kn∈Ln
ps+1,n[kn]Xs+i/n[t1, t2, · · · ,ti, Mti+1 − ki+1,

· · · , Mtn − kn],
changes to calculating∑

ki∈Li
ps+1,i[ki]

∑
ki+1∈Li+1

ps+1,i+1[ki+1] · · ·
∑

kn∈Ln
ps+1,n[kn]Xs+(i−1)/n[P1,1

(P2,1(· · · (Ps+1,1(t1)) · · ·)), P1,2(P2,2(· · · (Ps+1,2(t2)) · · ·)), · · · , P1,i(P2,i(· · · (Ps,i(Mti −
ki)) · · ·)), P1,i+1(P2,i+1(· · · (Ps,i+1(Mti+1 − ki+1)) · · ·)), · · · , P1,n(P2,n(· · · (Ps,n(Mtn −
kn)) · · ·))],
=

∑
ki+1∈Li+1

ps+1,i+1[ki+1]· · ·
∑

kn∈Ln
ps+1,n[kn] Xs+i/n[P1,1(P2,1(· · · (Ps+1,1

(t1))· · ·)),
P1,2(P2,2(· · · (Ps+1,2(t2)) · · ·)), · · · ,P1,i(P2,i(· · · (Ps+1,i(ti))· · ·)), P1,i+1(P2,i+1(· · ·
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(Ps,i+1(Mti+1−ki+1)) · · ·)),· · · , P1,n(P2,n(· · · (Ps,n(Mtn −kn)) · · ·))] after the mapping
of Γ3, where Pu,i = Fv if pu,i = fv for u = 1, 2, · · · , s+1; i = 1, 2, · · · , n; and v ∈ [1, M ].

Thus after the transformation Γ3, the dependence vector, starting from the
wavelet-adjacent field which corresponds to Li and is centered at data
Xs+(i−1)/n[P1,1(P2,1 (· · · (Ps+1,1(t1)) · · ·)), P1,2(P2,2(· · · (Ps+1,2(t2)) · · ·)),
· · · , P1,i(P2,i (· · · (Ps,i(Mti)) · · ·)), P1,i+1(P2,i+1 (· · · (Ps,i+1 (Mti+1− ki+1))
· · ·)),
· · · , P1,n (P2,n(· · · (Ps,n (Mtn − kn)) · · ·))],
is targeted to data
Xs+i/n[P1,1(P2,1(· · · (Ps+1,1(t1)) · · ·)), P1,2(P2,2(· · · (Ps+1,2(t2)) · · ·)), · · · , P1,i

(P2,i (· · · (Ps+1,i(ti)) · · ·)), P1,i+1(P2,i+1(· · · (Ps,i+1(Mti+1 −ki+1)) · · ·)), · · · , P1,n

(P2,n(· · · (Ps,n(Mtn − kn)) · · ·))]. The difference between the coordinates
of the target and the source of the dependence vector along index j is
|(s + i/n) − (s + (i − 1)/n)| = 1/n. The difference along t is
P1,i(P2,i(· · · (Ps,i(Ps+1,i(ti))) · · ·)) − P1,i(P2,i(· · · (Ps,i(Mti)) · · ·))
= P1,i(P2,i(· · · (Ps,i(Mti + w)) · · ·)) − P1,i(P2,i(· · · (Ps,i(Mti)) · · ·))= Msw,
where w is an integer ∈ [1, M − 1]. Thus the length of the dependence vector is
independent of t’s value. We have the similar conclusion that the lengths of the
dependence vectors in the I/O data space after the mapping of Γ3 are bounded
and independent of the data positions and the input size, and the dependence
vectors can be partitioned into a finite number of groups (according to the
possible values of w and s), and the lengths of the dependence vectors in each
group are the same. 2

4 Design Example: Synthesis of 2-D WPT by Exploiting
Inter-iteration Parallelism

INPUT

First Level 
Row-wise
Transform

Frist Level
Column-wise
Transfrom

Second Level
Row-wise
Transform

Second Level
Column-wise
Transform

LHLL

LHLH

LHHL

LHHH

HHLL

HHLH

HHHL

HHHH

HHL

HHH

HH

LHH

LHL

LH

LL

HL
H

L

Fig. 2. An instance of arbitrary wavelet tree expansion in the algorithm of 2-D WPT

The recursive separable 2-D WPT is illustrated in Figure 2 and the equations
are as the followings
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C(j+1,4i)[n1, n2] =
∑

k1
∑

k2 h[k1]h[k2] × Cj,i[2n1 − k1, 2n2 − k2]
C(j+1,4i+1)[n1, n2] =

∑
k1

∑
k2 h[k1]g[k2] × Cj,i[2n1 − k1, 2n2 − k2]

C(j+1,4i+2)[n1, n2] =
∑

k1
∑

k2 g[k1]h[k2] × Cj,i[2n1 − k1, 2n2 − k2]
C(j+1,4i+3)[n1, n2] =

∑
k1

∑
k2 g[k1]g[k2] × Cj,i[2n1 − k1, 2n2 − k2]

where C(j,i)[n1,n2] means the datum at the position of nth
1 row, nth

2 column in
the ith subband in transform level j, h and g are low- and high-pass wavelet
filters. C(0,0) is the input image, L0 is the wavelet filter length, J is the highest
transform level, and N2 is the size of the input image.

In Figure 2, the label for subband C(j,i) generated in the jth (1 ≤ j ≤ J)
level of WPT is given as a combination of H’s and L’s, which represent a bi-
nary number if we refer to H as “1” and L as “0”. This binary number is
equal to i. For example, subband C(2,14) is labeled as HHHL in Figure 2,
or “1110” (14 in decimal). Note that some components in a transform level
may not be recursively decomposed in the next level WPT transform. Accord-
ing to Γ3 in Section 3, the nonlinear I/O index space transformation to merge
all dependence graphs for generated subbands (as in Figure 2) is: (1) for the
p1p2p3......p2m−1p2m subband in Figure 2 (result of the mth level 2-D WPT),
n1 7−→ P2(P4(...(P2m(n1))...)); n2 7−→ P1(P3(...(P2m−1(n2))...)); j = m; (2) for
the p1p2p3......p2mp2m+1 subband in Figure 2 (intermediate result in the (m+1)th

level 2-D WT), n1 7−→ P2(P4(...(P2m(n1))...)); n2 7−→ P1(P3(...(P2m+1(n2))...));
j = m+ 1

2 , where we assume that function Pk(x) is Low(x) = 2x if pk is “L”; or
Pk(x) is High(x) = 2x + 1 if pk is “H” for k = 0, 1, 2, · · · , 2m. Figure 3 shows
the result of the nonlinear transformation in plane j=2 in the I/O data space.

In this section, we propose the parallel computing of 2-D WPT by exploiting
the inter-iteration parallelism based on the regularized and merged dependence
graphs via this nonlinear I/O data space transformation. The input, pixels of
a 2-D image signal are assumed to be fed to multi-processors in parallel. The
following concepts are adopted in the rest of this section.

Processor assignment: In this paper processor assignment is taken equiva-
lently as I/O data space segmentation, where the I/O data space is segmented
into subspaces, and the computations corresponding to the super dependence
vectors in each segmented subspace are assigned to a processor.

Boundary dependence vectors vs. central dependence vectors: After segment-
ing the I/O data space, those dependence vectors lying in more than one sub-
spaces of the I/O index space are called boundary dependence vectors, otherwise
central dependence vectors.

Computation scheduling and permissible scheduling: the processor assignment
is accompanied by a computation scheduling scheme, which specifies the order
of the calculations in all the processors. A permissible schedule must satisfy two
conditions: 1) the inherently sequential computations cannot be scheduled to the
same time, i.e., the schedule cannot contradict the dependence graph; 2) no more
than one computations can be performed in a processor at the same time.

Boundary computation: A processor’s boundary computations are those per-
formed in this processor and necessitating that the result of the computations
be sent out to other processors.
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LL:    (2x,2y)
LHLL: (4x,4y+1)
LHLH: (4x,4y+3)
LHHL: (4x+2,4y+1)
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HL: (2x+1,2y)
where x and y are non-negative integers. 
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Row-column coordinates for data in different subbands after the nonlinear I/O data space transformation:

Fig. 3. The data redistribution based on the I/O data space transformation for the
2-D WPT algorithm shown as in Figure 2

For briefing communication network and concentrating on the computation
scheduling within processors based on the I/O data space transformation, we
assume mesh-like processor (or PE) array to be used to implement the algorithm.
For the purpose of minimizing data communication intensity, the total number
of boundary dependence vectors is made as small as possible after the I/O data
space segmentation. Thus, we segment the I/O data space in the direction of
most dependence vectors, i.e., along the direction parallel with j axis. The shape
of dependence graphs in each segmented subspace has the similarity as that in the
whole I/O data space, but with different boundary dependence vectors generated
in the segmentation. For the purpose of load balance among processors, all the
subspaces are supposed to have the same size after the segmentation. Thus, we
have partitioned the I/O data space into p2 subspaces as in Figure 4, where p2

is the number of parallel processors (or PE’s).
To minimize the data communication intensity or the requirement on the

network bandwidth, the boundary computations in a processor are scheduled
as far away as possible in timing. A simpler explanation for this is that the re-
sult of a boundary computation is sent as soon as calculated and it is alright
if the communication is completed before the result of the next boundary com-
putation is generated and sent in the sense that the communication conflicts
are avoided. In other words, to maximize the intervals between the boundary
computations, each processor takes turns to execute one boundary computation
and R non-boundary computations which involve boundary dependence vectors
and central dependence vectors respectively, where R is the ratio of the number
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the merged I/O index spaces and dependence graphs

j

n1

N

N

n2

u+1

Solid dependence vectors correspnd to  low-pass wavelet filtering
Dotted dependence vectors correspond to high-pass wavelet filtering

Dashed lines correspond to the segmentation of the I/O index space

Bold solid lines represent the wavelet-adjacent field

u

u+0.5

Fig. 4. The segmentation of I/O data space

of central dependence vectors to the number of boundary dependence vectors in
the processor.

5 Conclusions

This paper has demonstrated that data dependence analysis provides the basis
for the synthesis of parallel architectural solutions for general wavelet-based algo-
rithms and serves as a theoretical foundation for exploiting properties. Extract-
ing the common features of computation locality and multirate signal processing
within the wavelet-based algorithms, this paper contributes to data dependence
and localization analysis based on a new concept — I/O data space analysis
which leads to simplified structures of dependence graphs, and nonlinear I/O
data space transformations for generalized high-level architectural synthesis of
wavelet-based algorithms.
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