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Abstract. Conventional numerical integration algorithms can not be
used for long term stability studies of complicated nonlinear Hamiltonian
systems since they do not preserve the symplectic structure of the sys-
tem. Further, they can be very slow even if supercomputers are used. In
this paper, we study the symplectic integration algorithm using solvable
maps which is both fast and accurate and extend it to six dimensions.
This extension enables single particle studies using all three degrees of
freedom.

1 Introduction

Consider a complicated Hamiltonian system that is non-integrable. Suppose we
are interested in the long-term stability of this dynamical system. Since the
system is assumed to be non-integrable, it is very difficult to give stability criteria
in an analytic form. A possible solution is to numerically follow the trajectories of
the particles through the system for a large number of iterations, a process which
goes by the name tracking. One could then infer the stability of motion in the
system by analyzing these tracking results. However, in long term integration of
these systems, it is important to preserve the Hamiltonian nature of the system at
every integration step. Otherwise, one can get spurious damping or even chaotic
behaviour which is not present in the original system. Such problems becomes
accentuated when long term integration is performed. This can then obviously
lead to wrong predictions regarding the long-term stability of the Hamiltonian
system being studied.

The most straightforward method that can be used to perform long term
tracking is numerical integration. However, a very short time step has to be
used to reduce the spurious behaviour that occurs because of the non-symplectic
integration. This makes this method so slow that it is impractical to study
the long term behaviour of very complicated systems (like the Large Hadron
Collider) even if supercomputers are used. Therefore, we need a method that is
both fast and accurate.

Several symplectic integration methods have been discussed in literature [1,2,
3,4,5,6,7,8,9,10,11]. Methods using Lie algebraic perturbation theory which give
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maps where the final values of variables are explicit functions of initial ones
offer several advantages. Further, since the whole complicated system can be
represented by a single symplectic map, there can be a substantial saving in
computation time as compared to non-map based methods. In this paper, we
extend an alternate symplectic integration method using solvable maps [12] to
six dimensions. This extension is necessary for single particle studies using all
three degrees of freedom. The above method has been shown to give good results
in lower dimensions [12].

2 Preliminaries

Let z = (q1, q2, . . . , qn, p1, p2, . . . , pn) denote the 2n dimensional phase space
variables. Denoting the initial and final locations of the particle by zi and zf

respectively, the time evolution of a Hamiltonian system H(z) can be described
as a symplectic map M [13]:

zf = Mzi . (1)

The symplectic map is related to the Hamiltonian H(z) by the equation:

dM
dt

= M : −H(z0), (2)

where z0 is z at time t = 0.
Using the Dragt-Finn factorization theorem [13], the symplectic map M can

be factorized as follows.

M = M̂ exp(: f3(z) :) · · · exp(: fm(z) :) · · · . (3)

Here M̂ represents the linear part of the map and fm(z) is a homogeneous
polynomial of degree m in z determined uniquely by the factorization theorem.
Further : f(z) : is the Lie operator corresponding to the function f(z) and is
defined by

: f(z) : g(z) = [f(z), g(z)]. (4)

Here g(z) denotes another phase space function and [f(z), g(z)] denotes the usual
Poisson bracket of the functions f(z) and g(z). The exponential of a Lie operator
is called a Lie transformation and is given as

exp(: f(z) :) =
∞∑

n=0

: f(z) :n

n!
. (5)

The map M involves an infinite number of Lie transformations and hence
for any practical computation, we have to truncate M after a finite number of
Lie transformations.

M = M̂ e:f3: e:f4: · · · e:fm: . (6)

Each one of the Lie transformations in the above equation is a symplectic map
and hence the map can be truncated at any order without losing symplecticity.
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The product e:f3: e:f4: · · · e:fm: in Eq. (6) give the nonlinear part of M. Each
of these Lie transformations gives an infinite number of terms when acting on
phase space variables. Since we can not evaluate an infinite number of terms in
any algorithm, we need to overcome this problem in some manner. The most
straightforward method is to truncate the Taylor series expansion of each Lie
transformation, after a finite number terms. This however violates the symplectic
condition. Though this method is justifiable in short term tracking, it does not
work well in long term tracking as the non-symplecticity can lead to spurious
damping or even chaotic behaviour which is not present in the original system
[10]. Therefore, we refactorize M in terms of simpler symplectic maps that can
be evaluated both exactly and quickly. We achieve this refactorization through
the so-called “solvable maps” [11,12].

3 Solvable Map Method

Solvable maps are generalizations of Cremona maps. The class of Cremona
maps includes only those symplectic maps for which the Taylor series expan-
sion terminates when acting on phase space coordinates. The class of solv-
able maps also includes those symplectic maps for which the Taylor series ex-
pansion can be summed up explicitly. One simple example of such a map is
exp(: aql+2

1 + bql+1
1 p1 :) [12].

The basic idea behind the solvable map method is to represent each nonlinear
factor exp(: fm :) in Eq. (6) as a product of solvable maps, i.e.,

exp(: fm :) = exp(: h1 :) exp(: h2 :) · · · exp(: hn :) , for m ≥ 3 . (7)

We also ensure that the number of solvable maps is a minimum. For simplicity,
we restrict ourselves to a general fourth order symplectic map in six dimensions.

We first set up a notation that will facilitate the indexing of monomials in
six phase space variables. Let Pj denote the following basis monomial of degree
m in six phase-space variables

P
(m)
j = qr1

1 pr2
1 qr3

2 pr4
2 qr5

3 pr6
3 , (8)

where 1 ≤ ri ≤ m, r1 + r2 + . . . + r6 = m. For this six dimensional case,
the number of independent monomials of degree 3 is 56 and the number of
independent monomials of degree 4 is 126.

Consider a nonlinear Hamiltonian system in six phase space dimensions. Per-
forming a Taylor expansion around the origin in the spirit of perturbation theory,
the Hamiltonian H(z) can be written as (up to fourth order in the phase space
variables z)

H(z) = H2(z) + H3(z) + H4(z). (9)

Here Hm(z) is a homogeneous polynomial of degree m in z. Concentrating on the
nonlinear part for the moment, H3 and H4 can be written as a linear combination
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of the basis monomials introduced above:

H3(z) = γ1P1(z) + γ2P2(z) + · · · + γ56P56(z), (10)
H4(z) = γ57P57(z) + γ58P58(z) + · · · + γ182P182(z). (11)

Now we express the time evolution of the Hamiltonian system H(z) as a sym-
plectic map M4 (truncated at order 4) using the Dragt-Finn factorization:

M4 = M̂ exp(: f3 :) exp(: f4 :) , (12)

where M̂ is obtained from the linear part H2(z) of the Hamiltonian H(z). Using
the basis monomials, f3 and f4 can be represented as:

f3(z) = α1P1(z) + α2P2(z) + · · · + α56P56(z), (13)
f4(z) = α57P57(z) + α58P58(z) + · · · + α182P182(z). (14)

It should be noted that there is a specific algorithm for determining the coeffi-
cients αi in terms of the coefficients γi and the linear part H2(z). For a specific
Hamiltonian, many of the coefficients αi could be zero.

We now refactorize the symplectic map M4 representing the original Hamil-
tonian system in terms of solvable maps as follows (for further details see [14]):

M = M̂ e:h1:e:h2: . . . e:h20: , (15)
where

h1 = q4
1 [β57 ] + q3

1 [β1 + β59 q2 + β61 q3 ] +
q2
1

[
β3 q2 + β5 q3 + β68 q2

2 + β70 q2 q3 + β75 q2
3
]
+

q1
[
β12 q2

2 + β14 q2 q3 + β19 q2
3 + β93 q3

2 + β95 q2
2 q3 + β100 q2 q2

3+
β109 q3

3
]
+[

β39 q2
2 q3 + β44 q2 q2

3 + β150 q3
2 q3 + β155 q2

2 q2
3 + β164 q2 q3

3
]
+

p1
[
β27 q2

2 + β29 q2 q3 + β34 q2
3 + β128 q3

2 + β130 q2
2 q3+

β135 q2 q2
3 + β144 q3

3
]
+

q1 p1
[
β8 q2 + β10 q3 + β83 q2

2 + β85q2 q3 + β90 q2
3
]

,

h2 = p4
1 [β113 ] + p3

1 [β22 + β115 p2 + β117 p3 ] +
p2
1

[
β24 p2 + β26 p3 + β122 p2

2 + β124 p2 p3 + β127 p2
3
]
+

p1
[
β31 p2

2 + β33 p2 p3 + β36 p2
3 + β138 p3

2 + β140 p2
2 p3+

β143 p2 p2
3 + β147 p3

3
]
+[

β49 p2
2 p3 + β52 p2 p2

3 + β170 p3
2 p3 + β173 p2

2 p2
3 + β177 p2 p3

3
]
+

q1
[
β16 p2

2 + β18 p2 p3 + β21 p2
3 + β103 p3

2 + β105 p2
2 p3+

β108 p2 p2
3 + β112 p3

3
]
+

q1 p1
[
β9 p2 + β11 p3 + β87 p2

2 + β89 p2 p3 + β92 p2
3
]

,

h3 = q4
2 [β148 ] + q3

2 [β37 + β151 p3 ] +
q2
2

[
β40 p3 + β118 p2

1 + β131 p1 p3 + β157 p2
3
]
+
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q2
[
β23 p2

1 + β30 p1 p3 + β46 p2
3 + β114 p3

1 + β121 p2
1 p3+

β137 p1 p2
3 + β167 p3

3
]
+

q2 p2
[
β28 p1 + β43 p3 + β119 p2

1 + β134 p1 p3 + β163 p2
3
]

,

h4 = p4
2 [β168 ] + p3

2 [β47 + β169 q3 ] +
p2
2
[
β48 q3 + β72 q2

1 + β104 q1 q3 + β171 q2
3
]
+

p2
[
β4 q2

1 + β17 q1 q3 + β50 q2
3 + β60 q3

1 + β73 q2
1 q3 + β106 q1 q2

3 + β174 q3
3
]
+

q2 p2
[
β13 q1 + β42 q3 + β69 q2

1 + β98 q1 q3 + β161 q2
3
]

,

h5 = q4
3 [β178 ] + q3

3 [β53 ] + q2
3
[
β125 p2

1 + β141 p1 p2
]
+

q3
[
β25 p2

1 + β32 p1 p2 + β116 p3
1 + β123 p2

1 p2 + β139 p1 p2
2
]
+

q3 p3
[
β35 p1 + β51 p2 + β126 p2

1 + β142 p1 p2 + β172 p2
2
]

,

h6 = p4
3 [β182 ] + p3

3 [β56 ] + p2
3
[
β77 q2

1 + β102 q1 q2
]
+

p3
[
β6 q2

1 + β15 q1 q2 + β62 q3
1 + β71 q2

1 q2 + β96 q1 q2
2
]
+

q3 p3
[
β20 q1 + β45 q2 + β76 q2

1 + β101 q1 q2 + β156 q2
2
]

,

h7 = β74 q2
1 p2 p3 ,

h8 = β120 p2
1 q2 q3 ,

h9 = q2
1 p1 [β2 + β64 q2 + β65 p2 + β66 q3 + β67 p3 ] ,

h10 = q1 p2
1 [β7 + β79 q2 + β80 p2 + β81 q3 + β82 p3 ] ,

h11 = q2
2 p2 [β38 + β94 q1 + β129 p1 + β153 q3 + β154 p3 ] ,

h12 = q2 p2
2 [β41 + β97 q1 + β132 p1 + β159 q3 + β160 p3 ] ,

h13 = q2
3 p3 [β54 + β110 q1 + β145 p1 + β165 q2 + β175 p2 ] ,

h14 = q3 p2
3 [β55 + β111 q1 + β146 p1 + β166 q2 + β176 p2 ] ,

h15 = β58 q3
1 p1 + β149 q3

2 p2 + β179 q3
3 p3 ,

h16 = β78 q1 p3
1 + β158 q2 p3

2 + β181 q3 p3
3 ,

h17 = β86 q1 p1 q2 p3 + β88 q1 p1 p2 q3 ,
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h18 = β99 q2 p2 q1 p3 + β133 q2 p2 p1 q3 ,

h19 = β107 q3 p3 q1 p2 + β136 q3 p3 q2 p1 ,

h20 = β63 q2
1 p2

1 + β84 q1 p1 q2 p2 + β91 q1 p1 q3 p3 + β152 q2
2 p2

2+
β162 q2 p2 q3 p3 + β180 q2

3 p2
3 .

Here βi’s are functions of αi’s. They can be easily determined by comparing the
original factorization for M4 in terms of fi with the solvable map refactorization
in terms of hi order by order and using the Campbell-Baker-Hausdorff theorem
[15]. Thus given γi’s parameterizing the original Hamiltonian system H(z), βi’s
can be readily determined [14].

We will now explicitly obtain the action of some of the above maps e:hi: on
the phase space variables in a closed form. This will also prove that these maps
are solvable maps. A similar analysis can be done for the remaining maps [14].
Consider the action of e:hi: on z:

z′ = e:hi:z. (16)

From Eq. (2) we see that this action is equivalent to first integrating the equations
of motion for the Hamiltonian hi(z) from time t = 0 to time t = −1 and then
identifying the initial values z0 (at t = 0) with z and the final values (at t = −1)
for z with z′.

First, we consider the action of e:h7: on the phase space variables. Using the
above procedure, this action can be easily obtained and is given as follows:

q′
1 = q1 , p′

1 = p1 + 2 β74 q1 p2 p3 ,

q′
2 = q2 − β74 q2

1 p3 , p′
2 = p2 ,

q′
3 = q3 − β74 q2

1 p2 , p′
3 = p3 .

Thus, e:h7: is a solvable map. The action of the solvable map e:h8: is similar to
e:h7:.

The action of e:h9: on the phase space variables is obtained as follows. The
appropriate Hamiltonian is

h9 = q2
1 p1 [β2 + β64 q2 + β65 p2 + β66 q3 + β67 p3] = E9 . (17)

Here E9 denotes the conserved numerical value of h9 and is obtained by evalu-
ating h9 at t = 0. We note that

d

dt
(q2

1p1) = 2q1p1q̇1 + q2
1 ṗ1 = 0.

Therefore, q2
1 p1 = q2

10
p10 = constant . Consequently,

β2 + β64 q2 + β65 p2 + β66 q3 + β67 p3 =
E9

q2
10

p10

= constant .
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Hamilton’s equations of motion, give

q̇1 =
∂h9

∂p1
= q2

1 (β2 + β64 q2 + β65 p2 + β66 q3 + β67 p3) .

Integrating the above equation, we have

q1 =
q2
10

p10

q10 p10 − E9 t
,

where we have denoted the values of qi and pi at time t = 0 by qi0 and pi0 . Also,
we will sometimes collectively denote q1, q2, q3 by q and p1, p2, p3 by p. Further,
if q10 , p10 6= 0, we have q1 6= 0 and from Eq. (17)

p1 =
E9

q2
1 (β2 + β64 q2 + β65 p2 + β66 q3 + β67 p3)

,

= p10

(
q10

q1

)2

.

If q10 = 0, then q1 = q10 and p1 = p10 .
The equation for q2 is given by

q̇2 =
∂h9

∂p2
= β65 q2

10
p10 .

Once again integrating the above equation, we have

q2 = q20 + β65 q2
10

p10t .

Similarly, integrating the equations of motion for the other variables and letting
(q, p) → (q′, p′) , (q0, p0) → (q, p) , t → −1, we get the action of e:h9: on the
phase space variables. Thus,

q′
1 =




q2
1 p1

q1 p1 + E9
if q1, p1 6= 0

q1 otherwise ,

p′
1 =




p1

(
q1

q′
1

)2

if q1, p1 6= 0

p1 otherwise ,

q′
2 = q2 − β65 q2

1 p1 ,
p′
2 = p2 + β64 q2

1 p1 ,
q′
3 = q3 − β67 q2

1 p1 ,
p′
3 = p3 + β66 q2

1 p1 .

This shows that e:h9: is a solvable map. Similarly, e:h10:, e:h11:, ... , e:h14: can be
shown to be solvable maps and their action on phase space variables can be got
by appropriately changing q and p in the above equations.
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The action of the map e:h15: on the phase space variables can be obtained in
the following way. The corresponding Hamiltonian is

h15 = β58 q3
1 p1 + β149 q3

2 p2 + β179 q3
3 p3 . (18)

From the equations of motion,

q̇1 =
∂h15

∂p1
= β58 q3

1 .

Integrating, we have

q1 =
q10√

1 − 2 β58 q2
10

t
. (19)

Substituting (19) in the equation of motion for p1 and integrating, we see that

ṗ1 = −3 β58 q2
1 p1 , ⇒ p1 = p10

(
1 − 2 β58 q2

10
t
)3/2

. (20)

Similarly integrating the remaining equations
of motion and letting (q, p) → (q′, p′),
(q0, p0) → (q, p), t → −1, we get the action of e:h15: on the phase space
variables:

q′
1 =

q1√
1 + 2 β58 q2

1

, p′
1 = p1

(
1 + 2 β58 q2

1
)3/2

.

q′
2 =

q2√
1 + 2 β149 q2

2

, p′
2 = p2

(
1 + 2 β149 q2

2
)3/2

.

q′
3 =

q3√
1 + 2 β179 q2

3

, p′
3 = p3

(
1 + 2 β179 q2

3
)3/2

.

Thus, e:h15: is a solvable map. The action of the map e:h16: is similar to that of
e:h15: and can be got by interchanging q and p and by letting t → −t.

Finally, the action of the solvable map e:h20: is as follows:

q′
1 = q1 exp [− (2 β63 q1 p1 + β84 q2 p2 + β91 q3 p3)] ,

p′
1 = p1 exp [(2β63 q1 p1 + β84 q2 p2 + β91 q3 p3)] ,

q′
2 = q2 exp [− (β84 q1 p1 + 2 β152 q2 p2 + β162 q3 p3)] ,

p′
2 = p2 exp [(β84 q1 p1 + 2 β152 q2 p2 + β162 q3 p3)] ,

q′
3 = q3 exp [− (β91 q1 p1 + β162 q2 p2 + 2 β182 q3 p3)] ,

p′
3 = p3 exp [(β91 q1 p1 + β162 q2 p2 + 2 β182 q3 p3)] .

Therefore e:h20: is also a solvable map.
Using the above solvable map method, different nonlinear Hamiltonian sys-

tems were studied and good results were obtained. Since the results obtained
are very similar to those already demonstrated in Ref. [12] for lower dimensions,
the details are omitted here.
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4 Conclusions

We have studied a symplectic integration algorithm using solvable maps. The
solvable map factorization for three degrees of freedom (up to order 4) was
carried out and it involves 20 solvable maps. It has been shown [12] that this
algorithm gives good results for various examples. It also provides a fast and
accurate symplectic integration method for complicated Hamiltonian systems.
Another advantage of this method is that it can be easily extended to higher
dimensions since the computations involved are not that difficult when symbolic
manipulation programs are used.
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