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Abstract. This paper investigates how smoothing the Hamiltonian and
the cusp of the corresponding eigenfunction affects the rate of conver-
gence of the Rayleigh-Ritz method. A simple example from quantum
mechanics is used, with a basis of harmonic oscillator functions.

1 Introduction

This study is motivated by a computational problem in the electronic molecular
structure theory. It has been shown ( [1]) that the variational energy error of
a configuration interaction(CI), or any other orbital-based method is slow (of
order O(L−3) or greater, where L is the maximum angular momentum in the
finite orbital basis). This behavior can be explained by the inability of the ba-
sis functions to describe the ”electron correlation cusps” of the wavefunction
introduced by the singularities of the Coulombic potential.

One possible approach that we are exploring is a perturbational one, in which
the reference problem has a Hamiltonian free of such singularities, and for which
the wavefunctions differ significantly from those of the true Hamiltonian only in
the vicinity of such cusps. Traditional CI methods are used to solve the refer-
ence problem, and geminal-based methods are employed to solve the low-order
Rayleigh-Schrödinger perturbation equations. The success of this approach is de-
pendent upon finding a reference Hamiltonian for which the Rayleigh-Ritz (RR)
method converges far more rapidly than for the true Hamiltonian (see [2]).

This paper illustrates how the convergence of the RR method is accelerating
with the ”smoothing” of the Hamiltonian and of the corresponding ground-
state wavefunction for a simple example from quantum mechanics. The singular
potential v used here is different from the usual potentials used in quantum
chemistry, so we investigate whether the associated operator H is selfadjoint and
the RR method for this operator using a basis of harmonic oscillator functions
is convergent.
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Fig. 1. The wavefunctions ψ and ψa for a = 1

2 The Model

Consider the one-dimensional Schrödinger equation

− 1
2
d2ψ(x)
dx2 + v(x)ψ(x) = Eψ(x), x ∈ R (1)

With the potential v(x) = −δ(x) the equation ( 1) has the ground-state en-
ergy E = −1/2, with the normalized wavefunction ψ(x) = exp(−|x|). With the
smoothed potential

va(x) = −a+ 1/2 + a(a+ 2)|x| + a2x2

(1 + a|x|)4 (2)

the Schrödinger equation has ground-state wavefunction ψa(x) =
Naexp

(
− ax2

1+a|x|
)

with the same energy E = −1/2; Na is the normaliza-
tion constant. The function ψ(x) is continuous, but has a cusp at the origin; the
function ψa(x) has continuous first and second derivatives and a discontinuous
third derivative for any a > 0. Moreover, ψa(x) → ψ(x) pointwise as a → ∞.
va(x) → 0 as a → ∞ for any x 6= 0 and va(0) = −a− 1/2 → −∞ as a → ∞.

3 The Expansion

Consider the expansion of the two wavefunctions, ψ and ψa

ψ(x) =
∞∑

n=0

cnφn(x), ψa(x) =
∞∑

n=0

canφn(x) (3)

in the orthonormal basis of harmonic oscillator functions
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φm(x) = NmHm(λx)exp(−(λx)2/2), (4)

where λ is a positive scaling factor and Nm is a normalization constant.
Since both ψ and ψa are even functions, c2k+1 = ca2k+1 = 0 for all integers k.

For even integers we have c2k = C2k and ca2k = Ca
2k, where

Cn =
2Nn

λ

∫ ∞

0
exp

(
−x

λ
− x2

2

)
Hn(x)dx (5)

Ca
n =

2NnNa

λ

∫ ∞

0
exp

(
−x2

2
− ax2

λ2 + aλx

)
Hn(x)dx (6)

The coefficients Cn can be computed using an exact recurrence formula which can
be obtained integrating ( 5) by parts. To compute Ca

n an approximate quadrature
formula is used for the function f(x) = exp

(
−x2

2 − ax2

λ2+λax

)
Hn(x), where the

roots xj and weights wj are for polynomials orthogonal with respect to the
weight function w(x) = exp(−x2) on the interval (0,∞).

Once the expansion coefficients cn and can are computed, one can define the
projection of the wavefunctions ψ and ψa on the n + 1-dimensional space Wn

spanned by φ0, φ1, . . . , φn:

ψn(x) =
n∑

i=0

ciφi(x), ψa
n(x) =

n∑
i=0

cai φi(x). (7)

H = −1
2
d2

dx2 + v(x), Ha = −1
2
d2

dx2 + va(x). (8)

Next, let us define En and Ea
n as the lowest eigenvalue of the Hamiltonian

matrix (< φi|H|φj >)0≤i,j≤n and of (< φi|Ha|φj >)0≤i,j≤n, respectively. For
each n, the norm of the projection ‖ψn‖ is maximized as a function of λ and
En is computed for this λ. Values of En are reported in Table 1 and Ea

n are
reported in Table 2 for two different values of the smoothing parameter a. Also

Table 1. λ and the energies E1
n and En for ψ(x)

ψ

n λ (ψn, ψn) E1
n En

8 1.300 .997350 -.405894 -.409083
16 1.450 .999183 -.433470 -.435312
24 1.575 .999629 -.447763 -.448960
32 1.675 .999795 -.456453 -.457308
40 1.750 .999873 -.462174 -.462830
64 1.975 .999955 -.472857 -.473204
80 2.125 .999973 -.477236 -.477483
104 2.275 .999986 -.481202 -.481372
120 2.375 .999990 -.483174 -.483311
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Table 2. λ and the energies E1,a
n and E1

n for ψa(x)for a = 4 and a = 1

ψa for a = 4 ψa for a = 1
n λ (ψa

n, ψ
a
n) E1,a

n Ea
n λ (ψa

n, ψ
a
n) E1,a

n Ea
n

8 1.125 .999051 -.485252 -.485353 .875 .999811 -.498480 -.498483
16 1.225 .999824 -.494604 -.494620 .950 .999979 -.499683 -.499684
24 1.300 .999947 -.497446 -.497450 1.00 .999995 -.499891 -.499891
32 1.375 .999979 -.498464 -.498467 1.05 .999998 -.499975 -.499975
40 1.400 .999989 -.498934 -.498938 1.075 .999999 -.499975 -.499997
64 1.550 .999998 -.499752 -.499752
80 1.625 .999999 -.499869 -.499869

reported in these tables are energies E1
n and E1,a

n computed for ψn and ψa
n, the

projections of the true wavefunctions on the subspace.

E1
n =

< ψn|H|ψn >

(ψn, ψn)
, E1,a

n =
< ψa

n|Ha|ψa
n >

(ψa
n, ψ

a
n)

. (9)

Note that En ≤ E1
n and Ea

n ≤ E1,a
n . Figures 2 and 3 illustrate the beneficial

effects of smoothing.
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Fig. 2. The norm errors ln(1 − (ψn, ψn)) (top curve) and ln(1 − (ψa
n, ψ

a
n)) for a = 1

(lowest curve) and a = 4 (middle curve)
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Fig. 3. The energy errors ln(1/2 +En) (top curve) and ln(1/2 +Ea
n) for a = 1 (lowest

curve) and and a = 4 (middle curve).

4 The Convergence of the RR Method

For eq. ( 1) with v(x) = −δ(x) the behavior of the energy error exhibited in
Figure 3 raises a serious question whether the method is just slowly convergent
or not convergent at all. In fact, convergence can be established by rigorous
mathematics outlined below.

A theorem in Michlin [6] (see also [5]) says that for a positive definite and
selfadjoint operator B with the domain DB ⊂ L2 dense in L2 the RR method
converges to the lowest exact eigenvalue E0 of the operator B provided that the
basis used {φm}m=0,1,2,... is complete in the energy space HB . The energy space
HB is the closure of DB in the B-norm:

‖f‖B = (f,Bf)1/2. (10)

Let t be the form defined by

t(u, v) =
1
2

∫
u

′
(t)v′(t)dt+

(
1
2

+ δ0

) ∫
u(t)v(t)dt− u(0)v(0) (11)

for functions u, v ∈ H1,where δ0 > 0. The Sobolev space H1 = {f ∈ L2, f
′ ∈ L2}

(the derivatives are in the generalized sense), is the closure of C∞
0 (R) in the H1-

norm: ‖f‖2
H1 =

∫ |f(t)|2dt+
∫ |f ′

(t)|2dt. For any f ∈ C∞
0 (R) and ε > 0

|f(0)|2 ≤ 1
2ε

∫
|f(t)|2dt+

ε

2

∫
|f ′

(t)|2dt (12)

The inequality ( 12) with ε = 1 makes it possible to define f(0) for any f ∈ H1

and to prove that the symmetric form t is positive definite (t(u, u) ≥ δ0‖u‖2 ∀ u ∈
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Fig. 4. Norm errors for ψ(x) for λ = 2(top curve) and optimized λ(lower curve)
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Fig. 5. Energy errors for ψ(x) for �xed λ = 2 (upper right) and optimized λ (lower
right)

H1, δ0 > 0). In its general form, ( 12) is the main ingredient in proving that the
form t is closed. By a representation theorem ( see [3]) there exists a selfadjoint
operator T : D(T ) ⊂ H1 ⊂ L2 → L2, positive definite (with the same lower
bound δ0 as the form t) defined by the relation (Tu, v) = t(u, v) ∀u ∈ D(T ), ∀v ∈
H1. Moreover, its domain D(T ) is dense in the Hilbert space H1 with the norm
‖ ‖Ht

= t( , )1/2.
This implies that HT -the closure of D(T ) in the norm ‖ ‖Ht

-is H1, since the
norms ‖ ‖Ht

and ‖ ‖H1 are equivalent. The basis {φm(x)}m=0,1,... is complete in
H1 for any λ > 0 (see [4]) so the RR method is convergent for the operator T
and also for T −1/2− δ0, which is the operator from eq. ( 1) with v(x) = −δ(x).
These considerations are for a fixed λ, while the results from Figure 2 and 3
are for a λ varied to optimize (ψn, ψn) for each n. The difference between the
results for a fixed λ and λ optimized in the sense above can be seen in Figures
4 and 5. As shown in Table 2, λ = 2 maximizes the norm of ψn for n ≈ 70, so
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the curves in Figures 4 and 5 coincide at this point. The norm error for optimal
λ is smaller than that for λ = 2 for all n, as expected, while the energy error is
lower for λ = 2 for small values of n (λ was optimized with respect to the norm).
After n ≈ 70 the energy error for fixed λ is greater than that for optimized λ. So
the method is convergent both for fixed and optimized λ, but the convergence is
very slow due to the inability of the basis functions to describe the cusp ψ(x).
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