
Parallel CFD Computing
Using Shared Memory OpenMP

Hong Hu and Edward L. Turner

Department of Mathematics
Hampton University, Hampton, VA 23668, USA

hong.hu@hamptonu.edu

Abstract. The eXtended Full-Potential (FPX) helicopter rotor Computational
Fluid Dynamics (CFD) code in its reduced two-dimensional version is
successfully converted into a parallel version. The FPX code solves the full
potential equation using an approximately factored finite-difference scheme.
The parallel version of the code uses Open Multi-Processing (OpenMP)
directives as parallel programming tool. Open MP based parallel code is
portable and can be compiled with Fortran compiler that supports the OpenMP
Fortran standard. OpenMP based parallel code can also be compiled using non-
parallel Fortran compiler into a serial executable. The performance study of the
parallel code is made. The results show that OpenMP is easy to use and a very
efficient parallel programming tool for the present problem. Keywords: Parallel
Computing, Computational Fluid Dynamics

1 Introduction

Computational Fluid Dynamics is the one of the areas that needs super-fast
computation power. The numerous calculations that are needed to execute CFD
codes may require hours and even days of Central Processing Unit (CPU) time.
Parallel computation using more than one CPU is highly considered in the field of
Computational Fluid Dynamics. Parallel computation allows CFD codes to run fast,
since the computational workload is distributed among computer processors.

 There are two major approaches in multiprocessing parallel computational
architectures: distributed memory where each CPU has a private memory, and shared
memory where all CPUs access common memory. Different parallel processing
architectures give the different parallel performance characteristics, and different
applications perform differently on different architectures. Today’s new
multiprocessing parallel computers are a combination of the best parts of shared- and
distributed- memory architectures, such as distributed shared- memory system of
Silicon Graphics (SGI) Origin 2000. Parallel program can be developed on the SGI
Origin 2000 using either a shared- memory or distributed- memory architecture.

 Open MP shared-memory parallel processing is employed in the present work to
develop a parallel version of a helicopter rotor FPX CFD code in a reduced two-
dimensional form. This paper presents the work on the parallel code development
along with the performance analysis of the resulting parallel code.

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2073, pp. 1137−1146, 2001.
© Springer-Verlag Berlin Heidelberg 2001

2 Methodology of the FPX CFD Code

While in the fixed-wing aerodynamic computational community increasingly
expensive and complex Euler and Navier-Stokes methods have been used recently,
potential methods are still major analysis tools in rotary-wing aerodynamics
computational community. The FPX [1] rotor code is an efficient and accurate
potential method in this field. The code represents an industry standard for rotary-
wing computations. The FPX code is a modified and enhanced version of Full-
Potential Rotor (FPR) code [2]. The code (either FPX or FPR) solves three-
dimensional unsteady full-potential equation. The code has been used in various
helicopter hover and forward flight cases. The application of the code produces
excellent results.

 The unsteady, three-dimensional full-potential equation in strong conservative
form in blade-fixed body-conforming coordinates (, , ,)ξ η ζ τ is written as

0
U V W

J J J J

ρ ρ ρ ρ
τ ξ η ζ
∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(1)

with

1
11

2{1 [2 () () ()]}t t tU V W γλ
τ ξ η ζρ ξ η ζ −−= + − Φ − + Φ − + Φ − + Φ (2)

where Φ is the velocity potential, U, V and W are contravariant velocity
components, ρ is the density, and J is the grid Jacobian.

 The FPX/FPR codes solve Eq. (1) using an implicit finite-difference scheme,
where the time-derivative is replaced by a first-order backward differencing and the
spatial-derivatives are replaced by second-order central differencing. The resulting

difference equation is approximately factored into three operators Lξ , Lη and Lζ in

ξ , η and ζ directions, respectively,

1()n nL L L RHSξ η ζ
+Φ − Φ = (3)

The detail of the scheme is presented in [1,2].
 The FPX is the substantially modified version of the FPR code. Both entropy and

viscosity corrections are included in the FPX code. The entropy correction potential
formulation accounts for shock produced entropy to enhance physical modeling
capabilities for strong shock cases. Either a two-dimensional or three-dimensional
boundary layer model is coupled with the FPX code to account for viscosity effects.

1138 H. Hu and E.L. Turner

In addition, an axial flow capability is added into the FPX code to treat tilt-rotors in
forward flight.

3 Parallel Implementation

3.1 Background

SGI Origin 2000 High Performance Computer (HPC) is chosen as the platform to use
for developing the parallel code. The SGI Origin 2000 is a distributed shared-
memory system, with hardware designed like distributed-memory architecture.
However, the system keeps track of which memory space holds which variable,
therefore parallel programs can be developed using either a shared or distributed-
memory model on the SGI Origin 2000. The programmer can use either Message
Passing Interfaces (MPIs) for distributed memory programming, or OpenMP for
shared-memory programming, or some combinations of both to best suit the
application [3].

 MPI has become accepted as a portable style of distributed-memory parallel
programming, but has several significant weaknesses that limit its effectiveness and
scalability [4]. Message passing in general is difficult to program and doesn’t support
incremental parallelization of an existing sequential program. The MPI is therefore
not chosen for this work.

 Shared-memory parallel programming directives have not been standardized in
the industry before the introduction of OpenMP. An earlier standardization effort was
never formally adopted. Thus, vendors have each provided a different set of
directives, very similar in syntax and semantics, and each used a unique comment or
programming notation for “portability”. OpenMP consolidates these directive sets
into a single syntax and semantics, and finally delivers the long-awaited promise of
single source portability for shared-memory parallelism [5]. OpenMP is a
specification for a set of compiler directives, library routines, and environment
variables for specifying shared memory parallelism. The OpenMP is available for
both Fortran and C/C++ languages. The FPX rotary code was written in Fortran,
therefore OpenMP for Fortran is used as the parallel-programming tool.

 OpenMP directives are portable and can be compiled using non-MIPSpro Fortran
Compiler that supports the OpenMP Fortran standard. The parallel code developed
on SGI Origin 2000 can be executed on the Sun Supercomputer and IBM Power 3
computer, for examples.

 Fig. 1 gives an example of using OpenMP directive, where “C$OMP
PARALLEL DO” directive instructs the parallel Fortran compiler to compile the loop
into parallel executable. It should be mentioned that every OpenMP directive starts
with the word “C$OMP”.

1139Parallel CFD Computing Using Shared Memory OpenMP

Fig. 1. Example of an OpenMP implementation

 It is seen that the OpenMP directives are essentially command line options
specified within the source code. Parallel version of the code can be compiled using
non-parallel Fortran compiler. In non-parallel Fortran compiler, these OpenMP
directives are treated as comment lines. Thus the code is portable between parallel
and non-parallel compilers.

3.2 OpenMP Implementation on the FPX Code

The FPX rotor CFD code is converted to a parallel version by using OpenMP parallel
directives. The code is about 13,000 lines in length, which is a reduced version of the
current FPX release version (which is about 30,000 lines in length). The most of the
developmental work is performed on NASA-LaRC’s Origin 2000 that has a total of 6
processors, while the performance study is made on the U.S. Army’s Origin 2000 that
has a total of 112 processors.

 Parallelization is the process of analyzing sequential codes for parallelism and
restructuring them to run efficiently on multiprocessor computers by distributing the
computational workload among the processors. Parallelization can be done
automatically or manually. Before manual parallelization, Auto-Parallelizing Option
(APO) is used to parallelize the code to determine if APO works for the FPX code.
APO is a compiler extension that invokes the MIPSpro auto-parallelizing compilers,
and automatically generates code that distributes the computational workload among
processors. It is found that APO works fairly well on the FPX code when no more
than 16 processors are used. The APO automatically parallelizes about 83% of the
computational workload. However, when more than 16 processors are used, the APO
produces a totally wrong solution. It is also noticed that Auto-Parallelizing Option
fails to produce a parallel source code. Therefore, it is impossible to debug the code
generated by APO and further hand-code the program for more efficient
parallelization, since the source code in parallel version cannot be generated using
APO.

 As a consequence, manual parallelization through hand-coding become necessary.
Among a total of 42 subroutines in the FPX code, the parallelization is done on those
subroutines that carry non-negligible amount of computation workload, that is, on the
subroutines that carry over 1% of the total CPU time. Manual parallelizing the code
using OpenMP is an easy task, sometimes, by simply inserting the parallel directives.
Fig. 2 is an example of how a DO-loop can be parallelized using PARALLEL DO

1140 H. Hu and E.L. Turner

OpenMP Directive, where parallel directive instructs the compiler to parallelize the
loop allowing the computational workload to be distributed among multiple CPUs.

 C$OMP PARALLEL DO DEFAULT(SHARED),PRIVATE(J,K,HU)
 DO 200 J = 1, 1000
 DO 100 K = 1, 250
 HU = A(J) + B(K)
 HT(J,K) = 0.5 * (X(J+1,K,1) – X(J-1,K,1))+HU

 100 CONTINUE
 200 CONTINUE

 C$OMP END PARALLEL DO

Fig. 2. Example of how a Do-loop is parallelized

 For multiprocessing to work properly, however, the iterations or order of the
execution within the loop must not depend on each other. The variable in the loop
must standalone and produce the same answer regardless of the order of execution.
Loops that dependents on the order cannot be parallelized. If a loop cannot be
parallelized in its original form it may be rewritten to run wholly or partially in
parallel.

 In a Fortran program, memory locations are represented by variable names [5].
To determine whether a particular loop can be parallelized, studying the way variables
are used is made throughout many loops in the FPX code. The essential approach to
parallelize a loop correctly is to make sure that each iteration of the loop is
independent of all other iterations. If a loop meets this condition, then the order in
which the iterations are executed in the loop is not important. The iterations can be
executed backward or even at the same time, and the answer will still be the same.
This property is captured by the notion of data independence [6]. Based on these
principles, some parts of the code are rewritten so that the parallelization is done
either wholly or partially.

 In addition to the PARALLEL DO directive, there are many other OpenMP
parallel directives that can be used to parallelize a code. PARALLEL, SECTIONS,
and DO directives are also used in this parallel version of FPX code, for example.

4 Parallel Performance Analysis

After successfully converting the FPX code into a parallel version using the OpenMP
parallel directives, a series of runs of the code in both serial and parallel versions is
made to study the performance of the parallel computation. For parallel version, a
different number of CPUs is used for executing the FPX code. The performance
analysis is made on varying computational workload by varying the computational
mesh size. The mesh sizes of 80x25, 160x49, and 320x97 grid points are used. These
cases take from 42 seconds to about 1 hour CPU time in both serial and parallel
versions of the code with a single CPU. Both serial and parallel versions of the code

1141Parallel CFD Computing Using Shared Memory OpenMP

produce the same solutions. The parallel version of the code with one CPU runs as
fast as the serial version of the code.

Table 1. Computational performance of the parallel code

Problem Size in terms of Number of Grid Points
80x25 160x49 320x97

No. of
CPUs
(n)

CPU
Time
in
Seconds

SpeedUp
CPU
Time
in
Seconds

SpeedUp
CPU
Time
in
Seconds

SpeedUp

1 42 1.0 448 1.0 3,517 1.0

2 25 1.7 247 1.8 1,866 1.9

4 17 2.5 147 3.0 1,178 3.0

8 13 3.2 108 4.1 691 5.1

16 14 3.0 93 4.8 519 6.8

32 14 3.0 93 4.8 496 7.1

 Table 1 details the performance results. Up to 32 processors are used for parallel
computations. In addition to CPU time, SpeedUp is also given for each run in the

table. ()SpeedUp n is defined as the ratio of CPU time with 1 processor to that of n

processors, or, () (1) / ()SpeedUp n CPUTime CPUTime n= . If all 100%

computational workload were parallelized and there were no communication
overhead among processors, (2) 2SpeedUp = , theoretically. However, there is

always some part of the code’s computational workload (such as I/O statements) that
has to be carried out serially by a single processor. This sets the lower limit on code
CPU run time. The fraction of the computational workload that is parallelized can
never be 100%. Moreover, there is less and less benefit from each added CPU after a
certain point due to hardware constraints.

 The data from Table 1 are presented in Figs. 3-6. Fig. 3 gives CPU time and
SpeedUp for the problem with 80 25x grid points. This case takes 42 CPU

seconds with a single CPU. It is seen that up to 8 CPUs can be used efficiently, and
after this point adding more CPUs has no benefit at all. Maximum SpeedUp is 3.2

when 8 CPUs are used.

1142 H. Hu and E.L. Turner

Fig. 3. CPU time and SpeedUp for the problem with 80x25 grid points

Fig. 4. CPU time and SpeedUp for the problem with 160x49 grid points

 Fig. 4 gives CPU time and SpeedUp for the problem with 160x49 grid points.

This case takes 448 second to execute on one CPU. It is seen that up to 16 CPUs can
be efficiently used to achieve a maximum SpeedUp of 4.8 due to larger

1143Parallel CFD Computing Using Shared Memory OpenMP

computational workload than the previous case with 80x25 grid points. Fig. 5 gives
CPU time and SpeedUp for the problem with 320x97 grid points. With this mesh

size, the code takes about1 hour CPU time to execute on single CPU. It is seen once
again from this figure that when the computational workload increases, increasingly
more CPUs can be efficiently used. It is seen that all 32 CPUs can be efficiently used
for parallel computation to achieve a maximum SpeedUp of 7.1. Using the value

of (2)SpeedUp for this case, the fraction of the computational load that is

parallelized is calculated to be 95%, which is considered to be substantial.
 Finally, Fig. 6 gives a comparison of SpeedUp with varying problem sizes and

number of CPUs. The results are self-explanatory. For small computational problem
(for example, with 80x25 grid points) less number of CPUs can be efficiently used;
with the increase of the computational workload, number of CPUs that can be
efficiently used increases also.

Fig. 5. CPU time and SpeedUp for the problem with 320x97 grid points

5 Conclusion

The eXtended Full-Potential (FPX) helicopter rotor Computational Fluid Dynamics
code in its reduced two-dimensional version is successfully converted into a parallel
version. The parallel version of the code uses OpenMP directives as parallel
programming tool. OpenMP based parallel code is portable and can be compiled with
Fortran compiler that supports the OpenMp Fortran standard. OpenMp based parallel
code can also be compiled using non-parallel Fortran compiler. As a consequence, no

1144 H. Hu and E.L. Turner

separate parallel and serial versions of the code are needed, the maintenance cost of
the code is thus reduced and the portability of the code between parallel and non-
parallel computers increases.

Fig. 6. Comparison of SpeedUp for the problems of all sizes

A performance study of the parallel code is made. From the research presented
here, it is concluded that:
(1) Based on the SpeedUp results presented here, it is believed that no less than

95% of the computational workload is parallelized; unparallelized part of
computational workload may mainly due to I/O statements of the code and the
internal grid generator.

(2) For the smallest computational problem tested here, the one with 80x25 grid
points, no more than 8 CPUs can be used for efficient parallel computation.

(3) When the computational workload increases, the number of CPUs that can be
used efficiently for parallel processing increases also. For example in the case of
320x97 grid points, which is typical for CFD computations, all 32 CPUs can be
used efficiently for parallel computation to achieve a maximum SpeedUp of

7.1. Scalability increases with the increase of the computational workload.
(4) OpenMP is easy to use and a very efficient parallel programming tool for the

present problem. The method is recommended for use in the future work on
developing a parallel version of the full three-dimensional FPX code.

1145Parallel CFD Computing Using Shared Memory OpenMP

Acknowledgement

This work is supported by the NASA Grant NAG-2-1331 from Ames Research Center under
FAR program with Dr. Roger Strawn as the Technical Officer and with Dr. Henry Jones of
Langley Research Center as a local Point Of Contact. Their support and advice made this work
challenging and fulfilling. The computational resources are provided by a grant of HPC time
from the DoD HPC Center, ERDC Major Shared Resource Center, and by NASA Langley
Research Center.

References

1. Bridgeman, J. O., Prichard, D., Caradonna, F. X.: The Development of A CFD Potential
Method for the Analysis of Tilt-Rotors. Presented at the AHS Technical Specialists
Meeting on Rotorcraft Acoustics and Fluid Dynamics, Philadelphia, PA, (1996).

2. Strawn, R. C., Caradonna, F. X..: Conservative Full Potential Model for Unsteady
Transonic Rotor Flows. AIAA Journal, Vol. 25, No. 2, (1987) 193-198.

3. Breshears, C. P.: Four Different Parallel Architectures- Which One Is Best? The Resource,
U.S. Army Engineer Research and Development Center Newsletter, Spring (2000).

4. OpenMP - Frequently Asked Questions. http://www.openmp.org.

5. MIPSpro Fortran 77 Programmer’s Guide - OpenMP Multiprocessing Directives.
http://techpubs.sgi.com/library.

6. Fortran 77 Programmer’s Guide - Fortran Enhancements for Multiprocessors.
http:// techpubs.sgi.com/library.

1146 H. Hu and E.L. Turner

	Introduction
	Methodology of the FPX CFD Code
	Parallel Implementation
	Background
	OpenMP Implementation on the FPX Code

	Parallel Performance Analysis
	Conclusion
	Acknowledgement
	References

