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Abstract
We have entered a new phase in the growth process of computational science. The
first phase (1990-2000), which coincides with the federal high performance
computing and communication program, can be named as the recognition phase, at
the end of which there was a general agreement to accept computation and
computational science as a distinct methodology and discipline. The recognition
started at the doctorate level and moved down to at least the baccalaureate level and
even to a few high schools. This first decade of growth period saw at least one stand-
alone computational department, one stand-alone school at the dean level, and a
program to train high school teachers. The second phase (2001-2010), which
coincides with the federal information technology program, will witness curriculum
standardization at all levels, perhaps accompanied with an accreditation mechanism
for future programs. It is important to assess student success in the new programs. In
this paper, we will address learning outcomes and assessment techniques, followed by
a brief account of research-curriculum integration at our institution. We will also give
a brief overview of computational science and engineering.

1.  Overview
Professional societies such as SIAM (www.siam.org), IEEE Computer Society
(www.ieee.org/computer), ACM (www.acm.org), AMS (www.ams.org) and Society
of Computer Simulation (www.scs.org) have all undertaken major initiatives to
organize annual conferences on computational science and engineering (CSE). There
are also new professional societies putting computational science at the center of their
activities. These include Society of Computational Biology and Society of
Computational Economics, among others. The number of web sites for CSE
programs, research centers, government labs, and industrial settings has grown by an
order of a magnitude. A search for “computational science” over the Internet gets
several hundreds to thousands of hits and links. A recent resulted in the following
number of hits: GoTo (240), LookSmart (130), Lycos (46,045), HotBed (466,500),
and AltaVista (65,447). At least the first 500 of such links were reviewed and found
to be very relevant to the search topic.

Computational science and engineering has emerged as a new discipline in the past
decade. At the core of this development is a dramatic increase in the power and use of
computers. Capitalizing on advances in computing technology, new methods and
programming tools were developed to solve problems that were not in our reach
before. As much of an interdisciplinary program as computational science is, it is also
a discipline of its own due to: 1) the amount of knowledge involved in its presentation
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to colleagues and students, 2) the amount of scientific literature (journals and
conferences) devoted to this topic, and 3) the work and service involved for further
recognition, establishment, and success of computational culture in educating new
generations.

Computational science has two intermingled contexts attached to it: 1) science of
computing, and 2) science that is done computationally. The CSE field investigates
computational techniques that are common to many applications; therefore it focuses
on the art/science/engineering of computing. The applications that use computing are
many, ranging from basic sciences to engineering and industrial problems. All these
compute-bound scientific and industrial problems form a bond together with many
exchanges and commonalities among each other. Under the umbrella of
computational science, one can find computational biology, computational physics,
computational chemistry, computational finance, and computational mechanics, and
so on. However, the discipline of computational science does not necessarily cover
core knowledge and experience of all these sciences; it only covers their
computational aspects. Therefore, computational science serves not a replacement to
any of the science disciplines, but as a bridge between sciences, engineering,
computing, and mathematics [1].
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Fig. 1. Evolution of Computational Science and Engineering

There is a natural overlap of CSE with other sciences, however CSE has a core
knowledge base of its own. Computational science and computer science have
common concerns when it comes to performance of computer hardware/software and
anything related to optimizing one’s application on computers. Computational science
and mathematics have common concerns when it comes to applied math techniques to
numerically solve partial differential equations. Finally, computational science shares
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concerns of application areas (such as physics, engineering, chemistry, biology, earth
sciences, business, art) in terms of finding a computational solution to complement
both theoretical and experimental efforts. In some cases, what can be accomplished
by computation cannot be done otherwise. Physical systems that are too small, too
big, too expensive, too scarce, and not accessible (experimentally) are being modeled
on computers with a great deal of success. Examples of probing atomic systems (too
small), studying earth and universe (too big), weighing impact of an asteroid on earth
and studying internals of an engine piston (not accessible) are just a few. Computer
visualization of such systems has also created a new way of gaining insight that
otherwise would not have been discovered.

A field that involves so much information and draws upon knowledge in other areas
also needs time and attention to identify and study techniques common to many
applications. It also needs full-devotion to the study of performance of computer
hardware/software as well as of computational methods and tools that otherwise
might not have been studied.  When one considers all these non-overlapping and
overlapping components, the field basically becomes a discipline of its own. At the
heart of the field is the study of common computational techniques, and unless there
is a full devotion to this study, the field cannot advance very quickly. The transition of
CSE from a mere overlap of computer science, math, and applications to a field with
its own identity and knowledge base is now taking place, as illustrated in Fig. 1.
Although we did not encounter a consensus on this latest development earlier, we
now note similar views published recently by our colleagues [3]. Scientists and
students in this area have a unique identity as computational scientists and engineers
who have gathered a combination of practical knowledge in computing, mathematics
and applications.

2.  Student Learning Outcomes
At SUNY Brockport, we offer both undergraduate (B.S.) and graduate (M.S.) degrees
in computational science. Our program started in the Fall of 1998 and was
transformed into a department after two successful years of operation. We have about
50 students enrolled in the program and our first graduates have actually hit the job
market. To our knowledge, we were the first undergraduate program in computational
science, and now perhaps the only department in this field. Having no precedence
before us, we have struggled with many issues including curriculum development,
faculty career development, tenure guidelines, recruitment, placement, and
documentation. Our curriculum was revised recently and we expect minor revisions in
the future. We are still developing new courses, particularly in the area of
computational applications.

In an effort to encourage standardization, we published our assessment of the
elements of a typical computational science education [1,2]. As mandated by our
college policies at SUNY Brockport, we now have identified, in a more concise way,
the students learning outcomes (SLO) as listed below. The task before us will enable
us to document in detail all measurable aspects of a computational science education,
including the seven SLOs we have identified below:
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(a) Learning the use of computers and computational tools,
(b) Learning high-level languages and the use of high performance computers,
(c) Obtain a knowledge of applied math and computational science methods,
(d) Learn basics of simulation and modeling,
(e) Learn how to visually interpret and analyze data after a simulation is completed,
(f) Learn about at least one application area to apply acquired computing skills to,
(g) Learn to communicate solution methods and results.

The challenge, of course, is to find ways to measure whether these outcomes have
been achieved. In Table 1, we list the first SLO and relevant course objectives used to
measure its outcome. Course titles and descriptions in our program can be found at
http://www.cps.brockport.edu. The courses referenced in this table, however, are
listed here again as:
CPS 101 Introduction to Computational Science
CSC 120 Introduction to Computer Science
CPS 201 Computational Science Tools I
CPS 202 Computational Science Tools II
CSC 203 Fundamentals of Computer Science
CPS 303 High Performance Computing
CPS 433 Scientific Visualization
CPS 602 Advanced Software Tools

Table 1. SLO # 1: Learning the use of computers and computational tools

Course Course objective

CPS101 (1) To learn about functions, their uses and representations.
(2) To learn about behaviors of functions and the rate of change
(3) To find a functional relation based on behavioral relation using numerical

integration
(4) To learn the fundamentals of FORTRAN 77
(5) To learn the UNIX operating system and become comfortable in a UNIX

working environment.
(6) To solve simple real world problems, using numerical solutions, programming,

and:       (a) differentiation (rate of change problems), (b) integration (area and
volume problems), (c) linear regression.

(7) To identify a few industrial and scientific problems and their computational
solutions

CSC120 1) To learn the internal workings of computers: (a) hardware components such as
CPU, memory, disk storage, peripheral devices, etc., and measures of
performance, (b) gates and simple circuits such as flip-flop, (c) data types and
their internal representations, (d) operating systems and their components, (e)
the need for hardware and software standards, and (f) networks and the
Internet.

2) To learn high-level and low-level language concepts
3) To learn program execution in terms of machine instructions
4) To learn elementary concepts and syntax of C/C++ programming languages
5) To learn algorithms: (a) examples of some simple algorithms, (b) designing

and testing algorithms, (c) translation from the problem domain to the
programming domain.
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CPS201 (1) To review programming languages: C++ & F77
(2) To learn about abstract data structures in C++ & F77
(3) To learn how to use a symbolic manipulation tool (MATHEMATICA) to

model simple problems.
(4) Use the graphic capabilities of MATHEMATICA to assist in the analysis of

simple models
(5) To learn the use of LaTeX and the concise, clear presentation of results from

simulations.
(6) To learn how to use the UNIX operating system (directories, file editing,

program compilation).

CPS202 (1) To learn basic principles of programming in Fortran 90.
(2) To learn the use of the MATHLAB software tool including a) language

constructs, b) 2d graphics routines (x-y plots, scatter plots, contour plots) c)
3d graphics (surface and mesh plots, line graphs).

(3) To learn the use of the Advanced Visualization System (AVS) software tool.
This includes a) generating simple plotting interfaces, b) generating a GUI
that can interface with external C and Fortran routines, c) working with 2 and
3d graphics as outlined above.

(4) To learn about mathematical algorithms: a) random numbers, b) Gaussian
elimination,  c) Fast Fourier

(5) To learn how to use industry standard computational libraries (LAPACK,
ATLAS).

CSC203 (1) To learn fundamental computer science concepts and programming in C++
(2) To learn about sorting and searching techniques
(3) To learn about files, trees, recursion, graphs, pointers, and classes

CPS303 (1) Become proficient in the basic use of the MPI message passing library for
solving simple problems in parallel.

(2) Become familiar with programming in a batch processing environment
(compiling, submitting jobs, checking job status, queues).

(3) To learn how to decompose a problem in a manner suitable for efficient
parallel implementation including communication structuring.

(4) To learn how to evaluate the performance of a parallel algorithm (in terms of
speedup, efficiency and scalability) and how to modify a given algorithm for
improved performance

CPS433
CPS533

(1) To learn the value of graphic visualization in the context of large or highly
complex data sets.

(2) To learn the use of the graphical capabilities of various graphical software
packages (MATHLAB, MATHEMATICA, XMGR).

(3) Learn to develop graphic applications specific to a given discipline using the
Advanced Visualization System (AVS) tool.

(4) Learn how to interpret simulation results and detect possible errors in data
for model simulations arising from the physical sciences.

(5) Develop GUI tools using AVS and MATHLAB.

CPS602 (4) To learn the use of standard parallel programming libraries (ScaLAPACK,
PETSc,MPI).

(5) To learn the use of various problem solving environments (Netsolve) and
parallel tools.

(6) To learn how to use grid generation. Algorithms (including automatic mesh
generation) to solve models of partial differential equations.
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The course objectives listed above need to be measured in each category and
subcategory. The method of measurement is homework assignments and tests. The
standard for success has been set to 80 % of the assignments and tests in our program.
Further details of assessment techniques is available via the author.

For more information on the remaining SLOs, the reader can contact our department
directly at cps@brockport.edu, or visit http://www.cps.brockport.edu.

The field of computational science is very dynamic. It is new and still being defined.
Since it is a technology (computer hardware and software) oriented field, the content
and the curriculum is often being updated. Our program started only 2 years ago, yet
we have already done a major revision to our curriculum. Further, but less radical,
revisions are expected in the next 3-5 years. In the next 2 years we will still be in a
course development mode at both the graduate and undergraduate levels. The content
of these courses and the success of our curriculum will greatly depend on our faculty
members’ updated knowledge about the computer hardware/software, latest
mathematical methods and the computational tools in the market place and the
literature. Since the computer technology changes radically every 12-18 months, we
must quickly adapt to new technology so that our graduates can adjust more easily to
the job market. In one respect, we are more technology dependent than the field of
computer science where the basics of computing are taught. In computational science,
the computing must be put in the context of applications that are driving the market.
This dynamic aspect of computational science requires faculty members to be well
connected to the research and the industrial community so they can teach updated
material and provide timely advice.

3. Research-Curriculum Integration
The research interests in our department cover engineering and scientific aspects of
different areas such as engine combustion, fluid dynamics, molecular dynamics, and
weather modeling, yet they all use a set of common tools, namely computation,
simulation and visualization. The expertise of faculty members in different industrial
and scientific areas is brought into the classroom to introduce students to these topics
in a hands-on way where they can learn more effectively by simulating systems of
their choice. The collective experience by our team on common tools such as
computing, numerical methods, parallel programming, and visualization is also
brought to the classroom to advance knowledge of students in engineering and
computing sciences.
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Fig. 2. Two examples of computational science applications at SUNY Brockport

3.1. Engine Combustion
Combustion has been identified as a major study area under the 1999 Presidential
Initiative IT-2 (Information Technology Initiative II). Strict regulations on air quality
require cleaner engines. Development of full-scale and full-physics (flow,
combustion, plasma, spray, radiation) combustion codes is critical for the success of
these new programs. Although high-fidelity simulations of internal combustion
engines and industrial burners require computers 10,000 times faster than current
personal computers, the ability to simulate reasonably representative systems has
gone well beyond the circle of a few national labs. For example, a publicly available
engine code, KIVA [4], from Los Alamos National Lab can now be run on personal
computers. The graphical software to display results in a visual way has also
enhanced our ability to understand results and shortened the time to model and
analyze engineering systems.

Our combustion team has demonstrated research expertise in engine combustion
simulations as well as computational aspects of computer science and mathematics [5-
9]. Our version of the engine code KIVA has been referenced by many as the only
scalable version that can do multiple engine cycle simulations due to its capacity to
simulate multi-million level mesh computations in a reasonable amount of time. This
code has been used for joint collaborations with industry. Another aspect of our
engine work is the marriage of plasma hydrodynamics [5-6] with engine combustion.
We have taken a dramatic approach to fully simulate the interaction between
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combustion dynamics and spark ignition. This work resulted in two major CRADAs
with industry. Previous approaches to spark ignition dynamics and its effect on
combustion dynamics had been limited to crude approximations, yet the amount of
spark energy into the combustion chamber is the most critical element of engine
operation (for spark-ignited engines). An accurate computation of spark energy
deposition into the combustion chamber requires a time-dependent feedback between
sparking event and gas dynamics, though this requires solution of both
electromagnetic and fluid flow governing equations at a much finer time-scale
(nanoseconds) than typical flow simulations.

Integration of scalable engine combustion simulations with advanced visualization
techniques has brought our combustion research to a level to be integrated into both
engineering and computer science classrooms. Use of AVS (commercial product for
visualization) and EIGEN/VR (from Sandia National Labs and Oak Ridge National
Lab) to visualize engine simulations have proven a valuable tool for engine designers
and future computational scientists and engineers.

The experience gained by our team in computational engine simulations is used in
several courses, including Simulation and Modeling, Supercomputing  Applications,
Deterministic Dynamical Systems, and Scientific Visualization. The engine
combustion code to be experimented with in these classes is called KIVA [4]. It has
been modified and enhanced by many research groups and these modifications have
been presented and examined at the KIVA International Users Group meetings during
the Society of Automotive Engineers Convention. Versions of KIVA have been
around for years since 1985, but its full potential to teach students about engines has
never been utilized due to limited computer resources. Yet, such tools are very
common in industry and students both at engineering departments and at
computational science programs should be given the opportunity to learn industrial
engine design through combustion simulations and engine visualization techniques.

The parallelization of KIVA [7] is also subject of a course within our computational
science and engineering curriculum as it teaches about domain decomposition,
computation/communication overlap, and effective programming. The availability of
the scalable KIVA-3 presents great potential for a computational scientist and
engineer to learn about industrial requirements of engines in a class environment by
doing different engine simulations for sensitivity analysis. Post-processing is also
directly applicable to a course in scientific visualization.

Computational Chemistry
Molecular simulation is an active area of research and scientific application that
requires computational techniques used in many areas of study.  Since chemical
reactions (dynamical processes such as phase separation, crack propagation in brittle
materials, and so on; fluid flow; and other phenomena) cannot be directly observed at
the experimental level, molecular simulations of these processes and visualization of
the results can provide a wealth of valuable information.  In addition to dynamical
processes, many materials properties can be calculated from molecular simulation
data.  All of these methods have found uses in basic research in chemistry, biology,
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and other fields and in important applications such as rational drug design.  In order to
increase the range of applicability of molecular modeling techniques, advances in
both computational power and algorithms are required and remain an active area of
research.  Classical and quantum mechanical molecular simulation techniques provide
ample opportunity for illustrating computational methods such as 1) numerical
solution of deterministic partial differential equations, predictor-correctors,
symplectic integrators, 2) ensemble methods, thermodynamic averages, fluctuations,
correlation functions, transport coefficients, 3) constraint dynamics, 4) optimization,
conjugate gradient and other commonly used methods for molecular mechanics, 5)
random number generation and Monte Carlo techniques: random walks, importance
sampling, solution of differential equations with diffusion terms, 6) specialized load
balancing and domain decomposition strategies.

Our computational chemistry group has extensive background in chemical physics,
numerical methods, and molecular simulation methods.  In the past five years, they
have developed several generalizable, robust, specially portable algorithms for
molecular dynamics, molecular mechanics, and quantum Monte Carlo simulations
[10-15].   Applications of these new methods include polymer science;
nanotechnology; molecular fluid flow; and classical-quantum correspondence in
many-body systems.  The computational chemistry research interests in our program
also include few-body quantum mechanical calculations and the quantum theory of
angular momentum.

Molecular simulation is eminently suited for classroom presentation, both at the
graduate and undergraduate levels, and it forms an important part of the
computational science curriculum.  In Simulation and Modeling course students gain
the basic knowledge for writing complete simulation programs and for analyzing the
results.  In  Deterministic Dynamical Systems, in Stochastic Dynamical Systems, and
in Supercomputing and Applications courses, students learn in more detail topics such
as optimization, numerical solution of partial differential equations, Monte Carlo
methods, random number generation, use of physical principles for code validation,
parallel programming strategies, benchmarking, and specialized load balancing and
domain decomposition techniques.  These skills are commonly used in climate
research, automobile design, environmental research, and a host of other important
scientific and engineering applications.

Weather Modeling
Today, the science of weather forecasting relies heavily on numerical weather
predictions. Every day, supercomputers at the National Centers for Environmental
Prediction (NCEP) run at least five different NWP models; each model with its own
unique set of equations representing atmospheric dynamics. In tandem with the
increase in computational power, the level of detail and the sophistication of the
parameterization of physical processes in these NWP models have increased.
However, the translation of these advances into improved weather forecasts has been
slow. Weather forecasters, trained professionals who interpret NWP model output,
generate public forecasts after comparing an increasingly complex set of models and
reconciling discrepancies between them. Without the benefit of a fully integrated
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visualization tool, these forecasters cannot realize the full potential of the NWP
system.

Virtually all software tools used by weather forecasters to display NWP model
outputs generate two- dimensional maps, with some capacity to overlay more than
one field. These tools do not fully utilize the wealth of information provided by NWP
models; there is tremendous room for improvement. In fact, few, if any, operational
forecast offices use three- or four-dimensional visualization tools. The general public
find forecast maps difficult to comprehend or of limited use. In both forecasting and
public presentation, present day electronic media provide limitless opportunities.

To learn weather forecasting, students majoring in Meteorology at SUNY Brockport
use outputs from the NWP models generated at NCEP. A critical step in the forecast
process is the ability of forecasters to interpret NWP model outputs in an accurate and
timely manner. Roebber and Bosart [16-17] have demonstrated that experience is an
essential element in the forecast process, and that human judgement allows skilled
forecasters to issue forecasts that are superior to raw NWP model outputs. After
proper training, students in two of the Earth Science courses (ESC 312 Weather
Forecasting and ESC 490 Weather Briefing) are placed on a rotation to forecast
different scenarios with and without the benefit of the four-dimensional data
visualization. The overall and individual student forecasting performance is tracked,
and the degree to which forecast skills benefited from this new technology is
assessed. Every semester, anywhere from 150 to 200 students, mostly college
freshmen, register for three of the introductory level courses in the Earth Science
department (ESC 102 Elements of Geography, ESC 210 Weather I, and ESC 211
Weather II).
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