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Abstract. The results of analytical approximations and extensive cal-
culations based on a path integral Monte Carlo (PIMC) scheme are pre-
sented. A new (direct) PIMC method allows for a correct determination
of thermodynamic properties such as energy and equation of state of
dense degenerate Coulomb systems. In this paper, we present results
for dense partially ionized hydrogen at intermediate and high temper-
ature. We give a quantitative comparison with the available results of
alternative (restricted) PIMC simulations and with analytical expres-
sions based on iterpolation formulas meeting the exact limits at low and
high densities. Good agreement between the two simulations is found up
to densities of the order of 1024cm−3. The agreement with the analytical
results is satisfactory up to densities in the range 1022 . . . 1023cm−3.

1 Introduction

Correlated Fermi systems are of increasing interest in many fields, including
plasmas, astrophysics, solids and nuclear matter, (see Kraeft et al. 1986) for an
overview. Among the topics of current interest are Fermi liquids, metallic hy-
drogen (see DaSilva et al. 1997), plasma phase transition (see Schlanges et al.
1995), bound states etc. In such many particle quantum systems, the Coulomb
interaction is essential. There has been significant progress in recent years to
study these systems theoretically, and especially numerically, (see e.g. Bonitz
(Ed.) 2000, Zamalin et al. 1977, Filinov, A. V. et al. 2000). A theoretical frame-
work which is particularly well suited to describe thermodynamic properties
in the region of strong coupling and degeneracy is the path integral quantum
Monte Carlo (PIMC) method. There has been remarkable recent progress in
applying these techniques to Fermi systems. However, these simulations are es-
sentially hampered by the fermion sign problem. To overcome this difficulty,
several strategies have been developed to simulate macroscopic Coulomb sys-
tems (see Militzer and Pollock 2000, Militzer and Ceperley 2000, and Militzer
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2000): the first is the restricted PIMC concept where additional assumptions on
the density operator ρ̂ are introduced which reduce the sum over permutations
to even (positive) contributions only. This requires the knowledge of the nodes
of the density matrix which is available only in a few special cases. However,
for interacting macroscopic systems, these nodes are known only approximately,
(see, e.g., Militzer and Pollock 2000 and Militzer and Ceperley 2000), and the
accuracy of the results is difficult to assess from within this scheme.

Recently, we have published a new path integral representation for the N-
particle density operator (see Filinov, V. S., et al. 2000, Bonitz (Ed.) 2000,
Filinov, V. S., et al. 2001), which allows for direct Fermionic path integral Monte
Carlo simulations of dense plasmas in a broad range of densities and tempera-
tures. Using this concept we computed the pressure (equation of state, EOS),
the energy, and the pair distribution functions of a dense partially ionized and
dissociated electron–proten plasma (see Filinov, V. S., et al. 2000). In this re-
gion no reliable data are available from other theories such as density functional
theory or quantum statistics (see, e.g., Kraeft et al. 1986), which would allow
for an unambiguous test. Therefore, it is of high interest to perform quantitative
comparisons of analytical results and independent numerical simulations, such
as restricted and direct fermionic PIMC, which is the aim of this paper.

2 Path Integral Representation of Thermodynamic
Quantities

We now briefly outline the idea of our direct PIMC scheme. All thermodynamic
properties of a two-component plasma are defined by the partition function Z
which, for the case of Ne electrons and Np protons, is given by

Z(Ne, Np, V, β) =
Q(Ne, Np, β)
Ne!Np!

,

with Q(Ne, Np, β) =
∑

σ

∫

V

dq dr ρ(q, r, σ;β), (1)

where β = 1/kBT . The exact density matrix is, for a quantum system, in general,
not known but can be constructed using a path integral representation (see
Feynman and Hibbs 1965),

∫

V

dR(0)
∑

σ

ρ(R(0), σ;β) =
∫

V

dR(0) . . . dR(n) ρ(1) · ρ(2) . . . ρ(n)

×
∑

σ

∑
P

(±1)κP S(σ, P̂σ′) P̂ ρ(n+1), (2)

where ρ(i) ≡ ρ
(
R(i−1), R(i);∆β

) ≡ 〈R(i−1)|e−∆βĤ |R(i)〉, whereas ∆β ≡ β/(n+
1). Ĥ is the Hamilton operator, Ĥ = K̂+Ûc, containing kinetic and potential en-
ergy contributions with Ûc = Ûp

c +Ûe
c +Ûep

c being the sum of the Coulomb poten-
tials between protons (p), electrons (e) and electrons and protons (ep). Further,
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R(i) = (q(i), r(i)) ≡ (R(i)
p , R

(i)
e ), for i = 1, . . . n + 1, R(0) ≡ (q, r) ≡ (R(0)

p , R
(0)
e ).

Also, R(n+1) ≡ R(0) and σ′ = σ, i.e., the particles are represented by closed
Fermionic loops with the coordinates (beads) [R] ≡ [R(0);R(1); . . . ;R(n);R(n+1)],
where r and q denote the electron and proton coordinates, respectively. The spin
gives rise to the spin part of the density matrix S, whereas exchange effects are
accounted for by the permutation operator P̂ , which acts on the electron co-
ordinates and spin, and the sum over the permutations with parity κP . In the
fermionic case (minus sign), the sum contains Ne!/2 positive and negative terms
leading to the notorious sign problem. Due to the large mass difference of elec-
trons and protons, the exchange of the latter is not included.

Recently, we have derived a new representation for the high–temperature
density matrices ρ(i) in eq.(2) (see Filinov, V. S., et al. 2000) which is well
suited for direct PIMC simulations. A crucial point is that the electron–proton
interaction can be described by an (effective) quantum pair potential Φep (Kelbg–
potential, see Kelbg 1964). For details of the derivation see Filinov, V. S., et al.
2000. Here, we present only the final result for the energy and for the EOS.
Consider first the energy:

βE =
3
2
(Ne +Np) +

1
Q

1

λ
3Np
p ∆λ3Ne

e

Ne∑
s=0

∫
dq dr dξ ρs(q, [r], β) ×

{
Np∑
p<t

βe2

|qpt| +
n∑

l=0

[
Ne∑
p<t

∆βe2

|rl
pt|

+
Np∑
p=1

Ne∑
t=1

Ψep
l

]

+
n∑

l=1

[
−

Ne∑
p<t

Cl
pt

∆βe2

|rl
pt|2

+
Np∑
p=1

Ne∑
t=1

Dl
pt

∂∆βΦep

∂|xl
pt|

]

− 1
det|ψn,1

ab |s
∂ det|ψn,1

ab |s
∂β

}
,

with Cl
pt =

〈rl
pt|yl

pt〉
2|rl

pt|
, Dl

pt =
〈xl

pt|yl
p〉

2|xl
pt|

, (3)

and Ψep
l ≡ ∆β∂[β′Φep(|xl

pt|, β′)]/∂β′|β′=∆β contains the electron-proton Kelbg
potential Φep. Here, 〈. . . | . . .〉 denotes the scalar product, and qpt, rpt and xpt are
differences of two coordinate vectors: qpt ≡ qp − qt, rpt ≡ rp − rt, xpt ≡ rp − qt,
rl
pt = rpt + yl

pt, x
l
pt ≡ xpt + yl

p and yl
pt ≡ yl

p − yl
t, with yn

a = ∆λe

∑n
k=1 ξ

(k)
a and

∆λ2
a = 2πh̄2∆β/ma. We introduced dimensionless distances between neighbor-

ing vertices on the loop, ξ(1), . . . ξ(n), thus, explicitly, [r] ≡ [r; y(1)
e ; y(2)

e ; . . .].
The density matrix ρs is given by

ρs(q, [r], β) = Cs
Ne
e−βU(q,[r],β)

n∏
l=1

Ne∏
p=1

φl
ppdet |ψn,1

ab |s, (4)

where U(q, [r], β) = Up
c (q) + {Ue([r], ∆β) + Uep(q, [r], ∆β)}/(n + 1) and φl

pp ≡
exp[−π|ξ(l)p |2]. We underline that the density matrix (4) does not contain an



Path Integral Monte Carlo Simulations and Analytical Approximations 1275

explicit sum over the permutations and thus no sum of terms with alternating
sign. Instead, the whole exchange problem is contained in a single exchange
matrix given by

||ψn,1
ab ||s ≡ ||e

− π

∆λ2
e

|(ra−rb)+yn
a |2 ||s. (5)

As a result of the spin summation, the matrix carries a subscript s denoting
the number of electrons having the same spin projection. For more detail, (see
Filinov, V. S., et al. 2000, Bonitz (Ed.) 2000). In a similar way, we obtain the
result for the equation of state,

βpV

Ne +Np
= 1 +

1
Ne +Np

(3Q)−1

λ
3Np
p ∆λ3Ne

e

Ne∑
s=0

∫
dq dr dξ ρs(q, [r], β)×

{
Np∑
p<t

βe2

|qpt| +
Ne∑
p<t

∆βe2

|rpt| −
Np∑
p=1

Ne∑
t=1

|xpt|∂∆βΦ
ep

∂|xpt|

+
n∑

l=1

⎡
⎣

Ne∑
p<t

Al
pt

∆βe2

|rl
pt|2
−

Np∑
p=1

Ne∑
t=1

Bl
pt

∂∆βΦep

∂|xl
pt|

⎤
⎦

+
α

det|ψn,1
ab |s

∂ det|ψn,1
ab |s

∂α

}
,

with Al
pt =

〈rl
pt|rpt〉
|rl

pt|
, Bl

pt =
〈xl

pt|xpt〉
|xl

pt|
. (6)

3 Analytical Approximations for the Thermodynamic
Functions of Dense Plasmas

To describe dense plasmas, it is necessary to have thermodynamic functions valid
at arbitrary degeneracy. Here, we restrict ourselves to the Hartree–Fock (HF)
and the Montroll–Ward (MW) contributions. This approximation is appropriate
at temperatures high enough such that the Coulomb interaction is weak and the
possibility of the formation of bound states is excluded. HF and MW contribu-
tions have been computed numerically (see Kraeft et al. 1986). The analytical
evaluation of the MW contribution is possible in limiting situations only, namely
in the low and very high density cases. In the intermediate region Padé formulae
can be used to interpolate between the limiting cases. In between, the formulae
are fitted to numerical data; (see Ebeling et al. 1981 , Haronska et al. 1987 and
Ebeling and Richert 1985). We give the excess free energy and the interaction
part of the chemical potential of the electron gas,

fP =
fD − 1

4 (πβ)−1/2n̄+ 8n̄2fGB

1 + 8ln
[
1 + 3

64
√

2
(πβ)1/4n̄1/2

]
+ 8n̄2

, (7)
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and

µP =
µD − 1

2 (πβ)−1/2n̄+ 8n̄2µGB

1 + 8ln
[
1 + 1

16
√

2
(πβ)1/4n̄1/2

]
+ 8n̄2

. (8)

In (7,8) Heaviside units h̄ = e2

2 = 2me = 1 and the dimensionless density
n̄ = nΛ3 were used.
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Fig. 1. Energy and pressure isotherms for 50, 000K (solid line). Solid line with circles–
Hartree Fock (HF) and Montroll–Ward (MW) approximation. Reference data: triangle
– RPIMC (see Militzer et al.), square – DPIMC.

In formulae (7,8), the correct low density behaviour (Debye limiting law) is
guaranteed by choosing fD = −(2/3)(πβ)−1/4n̄1/2 and µD = −(πβ)−1/4n̄1/2 .
The correct high degeneracy limit is recovered by using the (slightly modified)
Gell-Mann Brueckner approximations (including Hartree–Fock) for the free en-
ergy and for the chemical potential

fGB = −0.9163
rs

− 0.08883ln
[
1 +

4.9262
r0.7
s

]
≈ −0.9163

rs
+ 0.0622lnrs , (9)
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µGB = −1.2217
rs

− 0.08883ln
[
1 +

6.2208
r0.7
s

]
≈ −1.2217

rs
+ 0.0622lnrs . (10)

The free energy is now equal to the internal energy at T = 0 and reads, according
to Carr and Maradudin,

U

N
=

2.21
r2s
− 0.916

rs
+ 0.0622lnrs − 0.096 + 0.018rslnrs + · · · .

The Brueckner parameter rs is given by r3s = 3/(4πn). While the Hartree Fock
term, i.e., the 1/rs term in (9,10), was retained unaffected, the additional terms
in these equations and in formulae (7,8) were modified, or fitted, respectively,
such that (7,8) meet the numerical data in between, where the analytical limiting
formulae are not applicable.
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Fig. 2. Energy and pressure isotherms for 100, 000K (solid line with circles). Solid
line with small squares – Hartree Fock (HF) and Montroll–Ward (MW) approximation.
Reference data: triangle – RPIMC (see Militzer et al. 2000), large square – DPIMC.

Consider now the proton contributions. In the low density regime, the proton
formulae are practically the same as for the electrons, whereas in the high density
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limit we adjust the formulae to (classical) Monte–Carlo (MC) data. We have for
the free energy density and for the chemical potential

− fp

kBTnp
=

(−f int
p /kBTnp)D[1− añ2/3

p (f int
p /kBTnp)MC ]

1− añ1/2
p [ñ1/2

p /( f int
p

kBTnP
)D + ñ

1/6
p ( f int

p

kBTnp
)D]

(11)

− µp

kBT
=

(−µint
p /kBT )D[1− 2añ2/3

p (µint
p /kBTnp)MC ]

1− 2añ1/2
p [ñ1/2

p /( µint
p

kBT )D + ñ
1/6
p ( µint

p

kBT )D]
. (12)

We used the abbreviation a which depends only on temperature

a =
√
π3kBT

{1
2

[
1 +

√
kBT

4π
exp
( √

π/2
ln(4/kBT )1/6 − 2

√
kBT

)]
− 0.29931

}
. (13)

For the protons, we introduce the dimensionless density to be used in the plasma

parameter Γ , namely ñp = 8
(kBT )3np, Γ =

(
4
3πñp

)1/3
. The Debye approxima-

tions (i.e., the low density case) for free energy density and chemical potential
read (−f int

p /kBTnp)D = 2.1605ñ1/2
p and (−µint

p /kBT )D = 3
22.1605ñ1/2

p . In the
high density region, we use a fit to (classical OCP) Monte–Carlo data.

For the free energy we write

(f int
p /kBTnp)MC = −0.8946Γ + 3.266Γ 1/4 − 0.5012 lnΓ − 2.809

−rsñ
1/3
p

1 + r2s

[
0.0933 + 1.0941ñ−1/4

p − 0.343ñ−1/3
p

]
, (14)

and for the chemical potential

(µint
p /kBT )MC = −1.1928Γ + 3.5382Γ 1/4 − 0.5012 lnΓ − 2.9761

−rsñ
1/3
p

1 + r2s

[
0.0933 + 0.8206ñ−1/4

p − 0.2287ñ−1/3
p

]
. (15)

The correlation part of the pressure for an H–plasma is then given by

pcorr = pcorr
e + pcorr

p = neµe + npµp − fe − fp . (16)

The contributions are determined by (7,8) and (11,12). The ideal pressure is
given by Fermi integrals Iν(α)

pid = kBT
∑

a

2sa + 1
Λ3

a

I3/2(αa) , αa = µa/(kBT ) .

The internal energy may be constructed from the excess free energy f = F
V given

above in addition to the ideal part according to U = F − T ∂F
∂T

∣∣
V =const , where

the ideal free energy is given by

F id = kBTV
∑

a

2sa + 1
Λ3

a

{
αaI1/2(αa)− I3/2(αa)

}
.

At very high degeneracy, the free energy is equal to the internal energy.
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4 Hydrogen Isotherms

In this section we present results for the thermodynamic functions of dense
hydrogen versus density at constant temperature. The PIMC simulations have
been performed as explained in Filinov, V. S., et al. 2000, and Filinov V. S., et
al. 2001. Figures 1-3 show the simulation results together with the Padé results
for three hydrogen isotherms T = 50, 000; 100, 000; and 125, 000K. In all figures
the agreement between numerical and analytical data is good for temperatures
and densities, where the coupling parameter Γ is smaller than or equal to unity.
Reference points related to RPIMC and DPIMC calculations in Fig. 1 correspond
to data available for the temperature T = 62, 500K.
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Fig. 3. Energy and pressure isotherms for 125, 000K (lower curves, solid line with
larger or without circles). Solid line with smaller circles – Hartree Fock (HF) and
Montroll–Ward (MW) approximation for 125000K. Reference data: triangles – RPIMC
(see Militzer et al. 2000).

At low densities, pressure and energy are close to those of an ideal plasma.
Increasing the density above 1019cm−3, Coulomb interaction becomes impor-
tant leading to a decrease of pressure and energy. Differences between analytical
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and numerical calculations in Fig. 1 are observed for densities above 1022 cm−3

where the coupling parameter Γ exceeds unity. At temperatures of 100, 000 and
125, 000K, differences are observed for n above 5×1022cm−3. The degeneracy pa-
rameter neλ

3 reaches here values of 0.4. At higher densities (around 1024cm−3)
the degeneracy neλ

3 becomes larger than unity, and the interaction parts of
pressure and energy decrease as compared to the respective ideal contributions,
which leads to an increase of pressure and energy. At lower temperatures, this
tendency is accompanied by the vanishing of bound states, i.e., a transition from
a partially ionized plasma to a metal–like state. This tendency is correctly repro-
duced by all methods, however the density values of this increase vary. In Fig.
3 we compare our results with data from RPIMC simulations (see Militzer et al
2000). Obviously, the agreement is very good up to densities below 1024cm−3.

5 Discussion

This work is devoted to a Quantum Monte Carlo study of a correlated proton-
electron system with degenerate electrons. We compared our direct PIMC sim-
ulations with independent restricted PIMC results of Militzer and Ceperley and
analytical formulae for isotherms corresponding to T = 50, 000; 100, 000; and
125, 000K. The values of Γ and neΛ

3
e are varying in a wide range of values. This

region is of particular interest as here pressure and temperature ionization occur
and, therefore, an accurate and consistent treatment of scattering and bound
states is crucial. We found that the results agree sufficiently well for coupling
parameters smaller or equal to unity. This is remarkable because analytical for-
mulae, the DPIMC and RPIMC simulations are completely independent and use
essentially different approximations. We, therefore, expect that these results for
hydrogen are reliable which is the main result of the present paper. We hope
that our simulation results allow us to derive and test improved analytical ap-
proximations in the future.
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