
Relaxed Monte Carlo Linear Solver

Chih Jeng Kenneth Tan1 and Vassil Alexandrov2

1 School of Computer Science
The Queen’s University of Belfast

Belfast BT7 1NN
Northern Ireland
United Kingdom
cjtan@acm.org

2 Department of Computer Science
The University of Reading

Reading RG6 6AY
United Kingdom

v.n.alexandrov@rdg.ac.uk

Abstract. The problem of solving systems of linear algebraic equations
by parallel Monte Carlo numerical methods is considered. A parallel
Monte Carlo method with relaxation is presented. This is a report of a
research in progress, showing the effectiveness of this algorithm. Theo-
retical justification of this algorithm and numerical experiments are pre-
sented. The algorithms were implemented on a cluster of workstations
using MPI.
Keyword: Monte Carlo method, Linear solver, Systems of linear alge-
braic equations, Parallel algorithms.

1 Introduction

One of the more common numerical computation task is that of solving large
systems of linear algebraic equations

Ax = b (1)

where A ∈ IRn×n and x, b ∈ IRn. A great multitude of algorithms exist for
solving Equation 1. They typically fall under one of the following classes: di-
rect methods, iterative methods, and Monte Carlo methods. Direct methods are
particularly favorable for dense A with relatively small n. When A is sparse,
iterative methods are preferred when the desired precision is high and n is rela-
tively small. When n is large and the required precision is relatively low, Monte
Carlo methods have been proven to be very useful [6,4,15,1].

As a rule, Monte Carlo methods are not competitive with classical numer-
ical methods for solving systems of linear algebraic equations, if the required
precision is high [13].

In Monte Carlo methods, statistical estimates for the components of the solu-
tion vector x are obtained by performing random sampling of a certain random

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2073, pp. 1289–1297, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

1290 C.J.K. Tan and V. Alexandrov

variable whose mathematical expectation is the desired solution [14,18]. These
techniques are based on that proposed by von Neumann and Ulam, extended by
Forsythe and Liebler [13,9].

Classical methods such as non-pivoting Gaussian Elimination or Gauss-
Jordan methods require O(

n3
)

steps for a n × n square matrix [2]. In contrast,
to compute the full solution vector using Monte Carlo the total number of steps
required is O(nNT), where N is the number of chains and T is the chain length,
both quantities independent of n and bounded [1]. Also, if only a few compo-
nents of x are required, they can be computed without having to compute the
full solution vector. This is a clear advantage of Monte Carlo methods, compared
to their direct or iterative counterpart.

In addition, even though Monte Carlo methods do not yield better solutions
than direct or iterative numerical methods for solving systems of linear algebraic
equations as in Equation 1, they are more efficient for large n. Also, Monte Carlo
methods have been known for their embarrassingly parallel nature. Parallelizing
Monte Carlo methods in a coarse grained manner is very often straightforward.
This characteristic of Monte Carlo methods has been noted even in 1949, by
Metropolis and Ulam [12].

2 Stochastic Methods for Solving Systems of Linear
Algebraic Equations

Consider a matrix A ∈ IRn×n and a vector x ∈ IRn×1. Further, A can be consid-
ered as a linear operator A

[
IRn×1 → IRn×1], so that the linear transformation

Ax ∈ IRn×1 (2)

defines a new vector in IRn×1.
The linear transformation in Equation 2 is used in iterative Monte Carlo

algorithms, and the linear transformation in Equation 2 is also known as the
iteration. This algebraic transform plays a fundamental role in iterative Monte
Carlo algorithms.

In the problem of solving systems of linear algebraic equations, the linear
transformation in Equation 2 defines a new vector b ∈ IRn×1:

Ax = b, (3)

where A and b are known, and the unknown solution vector x is to be solved for.
This is a problem often encountered as subproblems on in various applications
such as solution of differential equations, least squares solutions, amongst others.

It is known that system of linear algebraic equation given by Equation 3, can
be rewritten in the following iterative form [2,18,4]:

x = Lx + b, (4)

where
(I − L) = A. (5)

Relaxed Monte Carlo Linear Solver 1291

Assuming that ‖L‖ < 1, and x0 ≡ 0, the von Neumann series converges and
the equation

lim
k→∞

x(k) = lim
k→∞

∑
Lmb = (I − L)−1

b = A−1b = x (6)

holds.
Suppose now {s1, s2, . . . , sn} is a finite discrete Markov chains with n states.

At each discrete time t = 0, 1, . . . , N , a chain S of length T is generated:

k0 → k1 → . . . → kj → . . . → kT

with kj ∈ {s1, s2, . . . , sn} for j = 1, . . . , T .
Define the probability that the chain starts in state sα,

P [k0 = sα] = pα (7)

and the transition probability to state sβ from state sα

P [kj = sβ |kj−1 = sα] = pαβ (8)

for α = 1, . . . , n and β = 1, . . . , n.
The probabilities pαβ thus define the transition matrix P . The distribution

(p1, . . . , pn)T is said to be acceptable to vector h, and similarly that the distri-
bution pαβ is acceptable to L, if [14]{

pα > 0 when hα 6= 0
pα ≥ 0 when hα = 0 and

{
pαβ > 0 when lαβ 6= 0
pαβ ≥ 0 when lαβ = 0 (9)

Define the random variables Wj according to the recursion

Wj = Wj−1
lkj−1kj

pkj−1kj

, W0 ≡ 1 (10)

The random variables Wj can also be considered as weights on the Markov chain.
Also, define the random variable

ηT (h) =
hk0

pk0

T−1∑
j=0

Wjbkj . (11)

From Equation 6, the limit of M [ηT (h)], the mathematical expectation of
ηT (h) is

M [ηT (h)] =

〈
h,

T−1∑
m=0

Lmb

〉
=

〈
h, x(T)

〉
⇒ lim

T→∞
M [ηT (h)] = 〈h, x〉 (12)

Knowing this, one can find an unbiased estimator of M [η∞ (h)] in the form

θN =
1
N

N−1∑
m=0

η∞ (h) (13)

1292 C.J.K. Tan and V. Alexandrov

Consider functions h ≡ hj = (0, 0, . . . , 1, . . . , 0), where hj
i = δj

i is the Kro-
necker delta. Then

〈h, x〉 =
n−1∑
i=0

hj
ixi = xj . (14)

It follows that an approximation to x can be obtained by calculating the average
for each component of every Markov chain

xj ≈ 1
N

N−1∑
m=0

θm
T

[
hj

]
. (15)

In summary, N independent Markov chains of length T is generated and
ηT (h) is calculated for each path. Finally, the j-th component of x is estimated
as the average of every j-th component of each chain.

3 Minimal Probable Error

Let I be any functional to be estimated by Monte Carlo method, θ be the
estimator, and n be the number of trials. The probable error for the usual Monte
Carlo method is defined as [14]:

P [|I − θ| ≥ r] =
1
2

= P [|I − θ| ≤ r] . (16)

Equation (16) does not take into consideration any additional a priori informa-
tion regarding the regularity of the solution.

If the standard deviation (D [θ])
1
2 is bounded, then the Central Limit The-

orem holds, and

P

[
|I − θ| ≤ x

(
D [θ]

n

) 1
2
]

≈ Φ (x) . (17)

Since Φ (0.6745) ≈ 1
2 , it is obvious that the probable error is

r ≈ 0.6745 (D [θ])
1
2 . (18)

Therefore, if the number of Markov chains N increases the error bound decreases.
Also the error bound decreases if the variance of the random variable θ decreases.

This leads to the definition of almost optimal transition frequency for Monte
Carlo methods. The idea is to find a transition matrix P that minimize the
second moment of the estimator. This is achieved by choosing the probability
proportional to the |lαβ | [6]. The corresponding almost optimal initial density
vector, and similarly the transition density matrix P = {pαβ}n

α,β=1 is then called
the almost optimal density matrix.

Relaxed Monte Carlo Linear Solver 1293

4 Parameter Estimation

The transition matrix P is chosen with elements pαβ = |lαβ |∑
β

|lαβ | for α, β =

1, 2, ..., n. In practice the length of the Markov chain must be finite, and is
terminated when |Wjbkj

| < δ, for some small value δ [14]. Since

|Wjbkj | =

∣∣∣∣∣∣
lα0α1 · · · lαj−1αj

|lα0α1 |
‖L‖ · · · |lαj−1αj

|
‖L‖

∣∣∣∣∣∣ |bkj | = ‖L‖i‖b‖ < δ , (19)

it follows that

T = j ≤
log

(
δ

‖b‖
)

log ‖L‖ (20)

and

D [ηT (h)] ≤ M
[
η2

T

]
=

‖b‖2

(1 − ‖L‖)2
≤ 1

(1 − ‖L‖)2
. (21)

According to the Central Limit Theorem,

N ≥
(

0.6745
ε

)2 1
(1 − ‖L‖)2

(22)

is a lower bound on N.

5 Relaxed Monte Carlo Method

Here, the Relaxed Monte Carlo method is defined. Consider a matrix E ∈ IRn×n.
Multiply matrix E to both left and right sides of Equation 3, so that

EAx = Eb. (23)

It is then possible to define an iteration matrix Lr,

Lr = I − EA, (24)

similar to the iteration matrix L Equation 5. It then follows that

x = Lrx + f, (25)

where

f = Eb. (26)

The corresponding von Neumann series converges and

x(k+1) =
(
I + Lr + L2

r + · · · + Lk
r

)
f =

k∑
m=0

Lm
r f where L0

r ≡ I, (27)

1294 C.J.K. Tan and V. Alexandrov

where

lim
k→∞

x(k) = lim
k→∞

∑
Lm

r f = (I − Lr)
−1

f = (EA)−1
f = x. (28)

Define E as a (diagonal) matrix such that

eij =
{ γ

aij
, γ ∈ (0, 1] , if i = j

0, if i 6= j
. (29)

The parameter γ is chosen such that it minimizes the norm of L in order to
accelerate the convergence. This is similar to the relaxed successive approxima-
tion iterative method with the relaxation parameter γ [5]. Similar approach was
presented and discussed by Dimov et al. [5] for iterative Monte Carlo method
for solving inverse matrix problems, where the matrices were diagonally domi-
nant. The parameter γ was then changed dynamically during the computation.
In contrast, the parameter γ chosen in this case is based on a priori information,
so that matrix norm is reduced, preferably to less than 0.5.

Furthermore, a set of parameters, {γi}n
i=0 can be used in place of a single γ

value, to give a desirable norm in each row of Lr. Such a choice will also result
in a matrix Lr which is more balanced, in terms of its row norms, ‖Lri‖.

Following the arguments of Faddeev and Faddeeva [7,8], this Relaxed Monte
Carlo method will converge if

γi <
2

‖Ai‖ , (30)

where ‖Ai‖ is the row norm of the given matrix A. This approach is equally
effective for both diagonally dominant and non-diagonally dominant matrices.
This is also corroborated by the numerical experiments conducted.

It is obvious that the Relaxed Monte Carlo method can be used in conjunction
with either the almost optimal Monte Carlo method or the Monte Carlo method
with chain reduction and optimization [16,17,3]. In any case, since the Relaxed
Monte Carlo method can be used to reduce the norm of a matrix to a specified
value, it can always be used to the effect of accelerating the convergence of the
Monte Carlo method in general.

6 Numerical Experiments

A parallel version of the Relaxed Monte Carlo algorithm was developed using
Message Passing Interface (MPI) [11,10]. Version 1.2.0 of the MPICH implemen-
tation of the Message Passing Interface was used. As the programs were written
in C, the C interface of MPI was the natural choice interface.

Tables 1 and 2, show the results for experiments with the Relaxed Monte
Carlo method. The matrices used in these experiments were dense (general)
randomly populated matrices, with a specified norm. The stochastic error, ε,
and the deterministic error parameters were both set to 0.01. The PLFG parallel
pseudo-random number generator [17] was used as the source of randomness for
the experiments conducted.

Relaxed Monte Carlo Linear Solver 1295

Table 1. Relaxed Monte Carlo method with PLFG, using 10 processors, on a DEC
Alpha XP1000 cluster.

Data set Norm Solution time (sec.) RMS error No. chains
100-A1 0.5 0.139 4.76872e-02 454900
100-A2 0.6 0.122 4.77279e-02 454900
100-A3 0.7 0.124 4.78072e-02 454900
100-A4 0.8 0.127 4.77361e-02 454900
100-A5 0.5 0.137 3.17641e-02 454900
100-A6 0.6 0.124 3.17909e-02 454900
100-A7 0.7 0.124 3.17811e-02 454900
100-A8 0.8 0.119 3.17819e-02 454900
100-B1 0.5 0.123 3.87367e-02 454900
100-B2 0.6 0.126 3.87241e-02 454900
100-B3 0.7 0.134 3.88647e-02 454900
100-B4 0.8 0.125 3.88836e-02 454900
100-B5 0.5 0.121 2.57130e-02 454900
100-B6 0.6 0.119 2.57748e-02 454900
100-B7 0.7 0.120 2.57847e-02 454900
100-B8 0.8 0.126 2.57323e-02 454900

The time to solution given in the tables is the actual computation time, in
seconds. The time taken to load the data is not taken into account, since for
many computational science problems, the data are created on the nodes [1].

7 Acknowledgment

We would like to thank M. Isabel Casas Villalba from Norkom Technologies, Ire-
land for the fruitful discussions and the MACI project at the University of Cal-
gary, Canada, for their support, providing part of the computational resources
used.

References

[1] Alexandrov, V. N. Efficient Parallel Monte Carlo Methods for Matrix Com-
putations. Mathematics and Computers in Simulation 47, 2 – 5 (1998), 113 –
122.

[2] Bertsekas, D. P., and Tsitsiklis, J. N. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, 1997.

[3] Casas Villalba, M. I., and Tan, C. J. K. Efficient Monte Carlo Linear Solver
with Chain Reduction and Optimization Using PLFG. (To be published.), 2000.

[4] Dimov, I. Monte Carlo Algorithms for Linear Problems. In Lecture Notes of
the 9th. International Summer School on Probability Theory and Mathematical
Statistics (1998), N. M. Yanev, Ed., SCT Publishing, pp. 51 – 71.

1296 C.J.K. Tan and V. Alexandrov

Table 2. Relaxed Monte Carlo method with PLFG, using 10 processors, on a DEC
Alpha XP1000 cluster.

Data set Norm Solution time (sec.) RMS error No. chains
1000-A1 0.5 7.764 1.91422e-02 2274000
1000-A2 0.6 7.973 1.92253e-02 2274000
1000-A3 0.7 7.996 1.93224e-02 2274000
1000-A4 0.8 7.865 1.91973e-02 2274000
1000-A5 0.5 7.743 1.27150e-02 2274000
1000-A6 0.6 7.691 1.27490e-02 2274000
1000-A7 0.7 7.809 1.27353e-02 2274000
1000-A8 0.8 7.701 1.27458e-02 2274000
1000-B1 0.5 7.591 1.96256e-02 2274000
1000-B2 0.6 7.587 1.97056e-02 2274000
1000-B3 0.7 7.563 1.96414e-02 2274000
1000-B4 0.8 7.602 1.96158e-02 2274000
1000-B5 0.5 7.147 1.29432e-02 2274000
1000-B6 0.6 7.545 1.30017e-02 2274000
1000-B7 0.7 7.541 1.31470e-02 2274000
1000-B8 0.8 7.114 1.28813e-02 2274000

[5] Dimov, I., Dimov, T., and Gurov, T. A new iterative monte carlo approach
for inverse matrix problem. Journal of Computational and Applied Mathematics
4, 1 (1998), 33 – 52.

[6] Dimov, I. T. Minimization of the Probable Error for some Monte Carlo Methods.
In Mathematical Modelling and Scientific Computations (1991), I. T. Dimov, A. S.
Andreev, S. M. Markov, and S. Ullrich, Eds., Publication House of the Bulgarian
Academy of Science, pp. 159 – 170.

[7] Faddeev, D. K., and Faddeeva, V. N. Computational Methods of Linear Al-
gebra. Nauka, Moscow, 1960. (In Russian.).

[8] Faddeeva, V. N. Computational Methods of Linear Algebra. Nauka, Moscow,
1950. (In Russian.).

[9] Forsythe, S. E., and Liebler, R. A. Matrix Inversion by a Monte Carlo
Method. Mathematical Tables and Other Aids to Computation 4 (1950), 127 –
129.

[10] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-
dard, 1.1 ed., June 1995.

[11] Message Passing Interface Forum. MPI-2: Extensions to the Message-
Passing Interface, 2.0 ed., 1997.

[12] Metropolis, N., and Ulam, S. The monte carlo method. Journal of the Amer-
ican Statistical Association 44, 247 (1949), 335 – 341.

[13] Rubinstein, R. Y. Simulation and the Monte Carlo Method. John Wiley and
Sons, 1981.

[14] Sobol’, I. M. Monte Carlo Numerical Methods. Nauka, Moscow, 1973. (In
Russian.).

Relaxed Monte Carlo Linear Solver 1297

[15] Tan, C. J. K., and Blais, J. A. R. PLFG: A Highly Scalable Parallel Pseudo-
random Number Generator for Monte Carlo Simulations. In High Performance
Computing and Networking, Proceedings of the 8th. International Conference on
High Performance Computing and Networking Europe (2000), M. Bubak, H. Af-
sarmanesh, R. Williams, and B. Hertzberger, Eds., vol. 1823 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 127 – 135.

[16] Tan, C. J. K., Casas Villalba, M. I., and Alexandrov, V. An Improved
Monte Carlo Linear Solver Algorithm. (To be published.), 2001.

[17] Tan, C. J. K., Casas Villalba, M. I., and Alexandrov, V. N. Monte Carlo
Method for Solution of Linear Algebraic Equations with Chain Reduction and
Optimization Using PLFG. In Proceedings of the 2000 SGI Users’ Conference
(2000), M. Bubak, J. Mościński, and M. Noga, Eds., Academic Computing Center,
CYFRONET, AGH, Poland, pp. 400 – 408.

[18] Westlake, J. R. A Handbook of Numerical Matrix Inversion and Solution of
Linear Equations. John Wiley and Sons, 1968.

	Introduction
	Stochastic Methods for Solving Systems of Linear Algebraic Equations
	Minimal Probable Error
	Parameter Estimation
	Relaxed Monte Carlo Method
	Numerical Experiments
	Acknowledgment

