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Abstract. Multigrid is widely used as an efficient solver for sparse linear sys-
tems arising from the discretization of elliptic boundary value problems. Linear
relaxation methods like Gauss-Seidel and Red-Black Gauss-Seidel form the prin-
cipal computational component of multigrid, and thus affect its efficiency. In the
context of multigrid, these iterative solvers are executed for a small number of iter-
ations (2—-8). We exploit this property of the algorithm to develop a cache-efficient
multigrid, by focusing on improving the memory behavior of the linear relax-
ation methods. The efficiency in our cache-efficient linear relaxation algorithm
comes from two sources: reducing the number of data cache and TLB misses, and
reducing the number of memory references by keeping values register-resident.
Experiments on five modern computing platforms show a performance improve-
ment of 1.15-2.7 times over a standard implementation of Full Multigrid V-Cycle.

1 Introduction

The growing speed gap between processor and memory has led to the development of
memory hierarchies and to the widespread use of caches in modern processors. However,
caches by themselves are not a panacea. Their success at reducing the average memory
access time observed by a program depends on statistical properties of its dynamic
memory access sequence. These properties generally go under the name of “locality of
reference” and can by no means be assumed to exist in all codes. Compiler optimizations
such as iteration space tiling [13J12] attempt to improve the locality of the memory
reference stream by altering the schedule of program operations while preserving the
dependences in the original program. While the theory of such loop transformations is
well-developed, the choice of parameters remains a difficult optimization problem.
The importance of locality of reference is even more critical for hierarchical com-
putations based on techniques such as multigrid, fast multipole, and wavelets, which
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typically perform ©(1) operations on each data element. This is markedly different
from dense matrix computations, which perform O(n®) operations per data element
(with € > 0) and can profit from data copying [7]]. The lack of “algorithmic slack” in hi-
erarchical codes makes it important to reduce both the number of memory references and
the number of cache misses when optimizing them. Such optimizations can indeed be
expressed as the combination of a number of standard compiler optimizations, but even
the best current optimizing compilers are unable to synthesize such long chains of op-
timizations automatically. In this paper, we apply these ideas to develop cache-efficient
multigrid.

The remainder of the paper is organized as follows. Section 2l introduces the prob-
lem domain. Section Bldiscusses cache-efficient algorithms for this problem. Section ]
presents experimental results. Section Bldiscusses related work. Section @l summarizes.

2 Background

Many engineering applications involve boundary value problems that require solving el-
liptic differential equations. The discretization of such boundary value problems results
in structured but sparse linear systems Av = f, where v is the set of unknowns corre-
sponding to the unknown variables in the differential equation and f is the set of discrete
values of the known function in the differential equation. A is a sparse matrix, whose
structure and values depend on the parameters of discretization and the coefficients in the
differential equation. Since A has few distinct terms, it is generally represented implicitly
as a stencil kernel.

Such systems are often solved using iterative solvers such as linear relaxation meth-
ods, which naturally exploit the sparsity in the system. Each iteration of a linear relaxation
method involves refining the current approximation to the solution by updating each ele-
ment based on the approximation values at its neighbors. Figure[l| shows three common
relaxation schemes: Jacobi, Gauss-Seidel, and Red-Black Gauss-Seidel. We consider a
two-dimensional five-point kernel that arises, for example, from the discretization of
Poisson’s equation on the unit square. Of these, the Jacobi method is generally not used
as a component of multigrid because of its slow convergence and its additional memory
requirements. We therefore do not consider it further.

The error in the approximate solution can be decomposed into oscillatory and smooth
components. Linear relaxation methods can rapidly eliminate the oscillatory compo-
nents, but not the smooth components. For this reason, they are generally not used by
themselves to solve linear systems, butt are used as building blocks for multigrid [3].
Multigrid improves convergence by using a hierarchy of successively coarser grids. In
the multigrid context, linear relaxation methods are called smoothers and are run for a
small number of iterations (2-8). We call this quantity NITER.

In addition to the smoother, multigrid employs projection and interpolation routines
for transferring quantities between fine and coarse grids. Figure[2] shows the Full Multi-
grid V-cycle algorithm that we consider in this paper. Of these three components, the
smoother dominates in terms of the number of computations and memory references.
(For NITER =4, we have found it to take about 80% of total time.)
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(a) Five-point Jacobi
for (m = 0; m < NITER; m++) {
for (i i< (N-1); i++)
for (j j < (N-1); j++)
Uli,3] = wixV[i,j-1] + w2#V[i-1,3] + w3*V[i,j] +
wakV[i+1,j]1 + wE*V[i,j+1] + wxf[i,jl;
Swap(U,V);

(b) Five-point Gauss-Seidel

for (m = 0; m < NITER; m++)
for (i = 1; i < (N-1); i++)
for (j = 1; j < (N-1); j++)
VIi,j] = wisV[i,j-1] + w2sV[i-1,j] + w3V[i,jl +
waxV[i+1,j] + wb*V[i,j+1] + w6*£[i,jl;

(c) Five-point Red-Black Gauss-Seidel

for (m = 0; m < NITER; m++) {

offset = 1;
for (i =1; i < (N-1); i++) {
offset = 1-offset;
for (j = l+offset; j < (N-1); j += 2) {
VIi,j] = wisV[i,j-1] + w2sV[i-1,3j] + w3V[i,j] +
wakV[i+1,j] + wh*V[i,j+1] + we*f[i,jl;
}
}
offset = 0;
for (i = 1; i < (N-1); i++) {
offset = 1-offset;
for (j = 1+offset; (j) < (N-1); j +=2) {

VIi,j] = wisV[i,j-1] + w2sV[i-1,3] + w3+V[i,j] +
WAV [i+1,3] + whsV[i,j+1] + we*£[i,j];

¥
¥
¥
Fig. 1. Code for three common linear relaxation methods.
MVh (Uh fh) {Initialize v 0% to zero}
Y
h(,h fh
1. Relax v timeson A"u" = f" with initial EMV (U ’ f )
h
) ;gfu;s}sl v d th 1. If 2" # coarsest grid then
. o _icoa‘rsezzﬁ}l;ldit:;l " 72 = Project(f" — Ato™)
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th _ MV2h(y2h | f2hy vt = FMV?M(v?", f2)
v o I v . oh oM = o" + Interpolate(v?").
3 fll){ l_ v + nteri(iaieg) h) th initial 2. v = MVh(vh,fh) Vo times.
- Relax Vfl times on Au™ = f* with initia /* Invoke V-cycle vy times to refine the
guess v h solution */
4. Return v". 3. Return v".
(a) V-cycle Multigrid (b) Full Multigrid V-cycle

Fig. 2. Multigrid algorithms. £2" is a grid with grid spacing h. A superscript h on a quantity
indicates that it is defined on £2".
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We now consider the memory system behavior of smoothers in terms of the 3C
model [6] of cache misses.

— The classical Gauss-Seidel algorithm makes NITER sweeps over the whole array
(2*NITER sweeps in the case of Red-Black Gauss-Seidel), accessing each element
NITER times. Accesses to any individual element are temporally distant; since the
array size is larger than the capacity of the cache, the element is likely to have been
evicted from the cache before its access in the next iteration. The multiple sweeps
of the array thus result in capacity misses in the data cache.

— The computation at an element in the array involves the values at the adjacent
elements. So there is some spatial locality in the data. But the data dependences
make it difficult for compilers to exploit this spatial locality.

— There could be conflict misses between the V and £ arrays in Figure [T}

— The repetitive sweeps across the array cause address translation information to cycle
through the (highly associative) TLB, which is deleterious to its performance. As
the matrix dimension n grows, a virtual memory page will hold only @(1) rows or
columns, requiring ©(n) TLB entries to map the entire array. The resulting capaciry
misses in the TLB can be quite expensive given the high miss penalty.

The above observations motivate the algorithmic changes described in Section[B]that
lead to cache-efficient multigrid algorithms.

3 Cache-Efficient Multigrid Algorithms

Our improvements to the efficiency of FMV stem exclusively from improvements to the
memory behavior of the underlying smoothers. Two characteristics of these schemes
are critical in developing their cache-efficient versions. First, we exploit the fact that the
relaxation is run for a small number of iterations (2—-8) by employing a form of iteration-
space tiling [13] to eliminate the capacity misses incurred by the standard algorithm.
Second, we exploit the spatial locality in the relaxation by retaining as many values in
the registers as possible, using stencil optimization [4] to reduce the number of memory
references. We describe our cache-efficient algorithms for two-dimensional, 5-pt Gauss-
Seidel and Red-Black Gauss-Seidel schemes. We call these cache-efficient algorithms
temporal blocking algorithms [2], because they partition the array into blocks and pro-
cess blocks lexicographically to enhance temporal proximity among memory references.
Note that these techniques preserve all data dependences of the standard (cache-unaware)
algorithm. Hence our cache-efficient algorithm is numerically identical to the stan-
dard algorithm.

3.1 Cache-Efficient Gauss-Seidel Algorithm

The key idea in temporal blocking is to smoothen a subgrid of the solution matrix
NITER times before moving on to the next subgrid; this clusters the NITER accesses
to a particular element in time. We choose the subgrid size to fit in L1 cache; hence
there are no capacity misses, as long as we touch only the elements within that subgrid,
while working on that subgrid. Subgrids are square, of size K * K; boundary subgrids
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are possibly rectangular. Gauss-Seidel requires elements to be updated in lexicographic
order, requiring subgrids to also be visited the same way.

Consider the lowermost leftmost subgrid. All the elements of the subgrid can be
updated once, except the elements at the right and top boundaries (to update them we
need their neighbors, some of which lie outside the subgrid). Similarly, among the
elements that were updated once, all the elements—except those on the right and top
boundaries—can be updated again. Thus, for each additional iteration, the boundary of
the elements with updated values shrinks by one along both dimensions. As a result,
we have a wavefront of elements of width NITER that were updated from 1 to NITER-1
times. This wavefront propagates from the leftmost subgrid to the rightmost subgrid and
is absorbed at the boundary of the matrix, through overlap between adjacent subgrids.
FigureBlb) shows the layout of overlapping subgrids, with NITER +1 rows and columns
of overlap. The effect of NITER relaxation steps is illustrated for a subgrid in Figure Bla)
and for the entire matrix in Figure @

(K-LK-1) (K-1.K-1) L
I RO 3
RO - - -
00 ©.0) Y
Boundary
(a) b)

Fig. 3. (a) Transformation of the lowermost-leftmost subgrid by the temporal blocking algorithm
for NITER =2. RO is the set of elements that have not been updated, R1 is the set of elements that
have been updated once, and R2 is the set of elements that have been updated twice. (b) The layout
of the overlapping subgrids in the matrix.

The temporal blocked algorithm and the standard algorithm are numerically identical.
The important performance difference between them comes from their usage of the
memory system. Each subgrid is brought into the L1 cache once, so working within a
subgrid does not result in capacity misses. There is some overlap among subgrids, and
the overlapping regions along one dimension are fetched twice. Since NITER is 2-8,
the overlapping region is small compared to the subgrid size, and the temporal blocking
algorithm effectively makes a single pass over the array, independent of NITER . In
contrast, the standard algorithm makes NITER passes over the array even if a compiler
tiles the two innermost loops of Figure [[Ib).
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Fig. 4. Operation of the temporal blocking algorithm for Gauss-Seidel for NITER = 2. The initial
matrix is the lowermost-leftmost matrix, and the final matrix is the rightmost-topmost matrix.
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3.2 Stencil Optimization

Temporal blocking propagates the wavefront in a subgrid and pushes it to the beginning
of the next subgrid. This shifting of the wavefront by one column at a time is a stencil
operation where each element is updated using its neighbors and the elements are updated
in lexicographic order. Each element of the subgrid is referenced five times in a single
iteration of the m-loop in Figure [I(b): once for updating each of its four neighbors
and once for updating itself. Note that, except for debugging situations, the intermediate
values of the V array are not of interest; we care only about the final values of the elements
after performing NITER steps of relaxation. This suggests that we might be able to read
in each element value once, have it participate in multiple updates (to itself and to its
neighbors) while remaining register-resident, and write out only the final updated value
at the end of this process. If the value of NITER is small and the machine has enough
floating-point registers, then this optimization is in fact feasible. What we have to do is
to explicitly manage the registers as a small cache of intermediate results.

Performing stencil optimization at the source level requires care in programming
(using explicit data transfers among several scalar variables) and availability of registers.
Given the small value of NITER, the live variables fit within the register files available
on most modern machines, and hence stencil optimization is very effective.

3.3 Cache-Efficient Red-Black Gauss-Seidel

Temporal blocking for Red-Black Gauss-Seidel is similar to that for Gauss-Seidel. The
only difference is that the edges of the wavefront in this algorithm are sawtooth lines
rather than straight lines, for the following reason. As we need the updated red elements
to update the black elements, the boundary of the maximum number of elements that
can be updated once is determined by the red elements in the subgrid, and the line
joining the red elements has a sawtooth pattern. As a result, the width of the wavefront
is 2*NITER. Other details of temporal blocking, like the propagation of the wavefront,
remain unchanged. Stencil optimizations discussed above also apply in this case.

4 Experimental Results

In this section we compare the performance of the standard and cache-efficient imple-
mentations of Full Multigrid V-cycle (FMV) with experimental results on a number of
machines. We experimented on five commonly used modern computing platforms—
UltraSPARC 60, SGI Origin 2000, AlphaPC 164LX, AlphaServer DS10, and Dell
workstation—with both Gauss-Seidel and Red-Black Gauss-Seidel smoothers. Our test
case is a two-dimensional Poisson’s problem of size 1025 x 1025, with vy =4 and v1 = v;
= NITER in Figure 2l The temporal blocking algorithm has one other parameter: K, the
height of the subgrid. We are primarily interested in execution times of the algorithms.
We use L1 cache misses, L2 cache misses, and TLB misses to explain the trends in exe-
cution time. Table[Ilsummarizes the overall performance improvement across platforms.
For lack of space, we analyze the experimental data only for FMV with Gauss-Seidel
relaxation on the Sparc.
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Table 1. Ratio of running time of the standard version of FMV to the running time of the cache-
efficient version, for Gauss-Seidel and Red-Black Gauss-Seidel relaxation schemes, on five mod-
ern computing platforms. The test problem is a two-dimensional Poisson problem of size 1025 x
1025. Larger numbers are better.

Platform CPU Clock speedHGauss—Seidel Red-Black Gauss-Seidel
UltraSPARC 60 |UltraSPARC-II| 300 MHz 1.35 24
SGI Origin 2000 | MIPS R12000 | 300 MHz 1.35 24
AlphaPC 164LX | Alpha 21164 | 599 MHz 22 2.7
AlphaServer DS10| Alpha 21264 | 466 MHz 2.2 2
Dell Workstation | Pentium II | 400 MHz 1.15 2

Figures[B(a) and (b) plot subgrid size vs. running time on the Sparc, one curve for
each value of NITER. The plots demonstrate that the temporal blocking algorithm runs
about 35% faster than the standard algorithm.

The plots in Figure Bb) show an increase in running time of the cache-efficient FMV
as the subgrid size increases, which is explained by TLB misses. All memory hierarchy
simulations were performed using Lebeck’s fast-cache and cprof simulators [8]], for
NITER = 4. Figure[6la) shows the plot of TLB misses, which correlates with the degra-
dation in running times for large subgrid sizes. The reason for the increase in the TLB
misses is as follows. Since the size of the solution array is large, each row gets mapped to
one or more virtual memory pages. When the temporal blocking algorithm works within
a subgrid, the TLB needs to hold all the mapping entries of elements in that subgrid in
the solution array (and the array of function values) in order to avoid additional TLB
misses. Beyond a particular grid size, the number of TLB entries required exceeds the
capacity of the TLB.

FMV-GS , Sparc, Standard FMV-GS,, Sparc, Temporal Blocking

Fig.5. FMV with Gauss-Seidel relaxation, N=1025, and vp=4 on the Sparc. (a) Running time,
standard version. (b) Running time, temporal blocked version.

Figure [6lb) shows the L1 cache misses on the Sparc. While the temporal blocking
algorithm has fewer cache misses than the standard algorithm, the number of L1 cache
misses increases with increase in subgrid size. Figures [6c) and (d) show that conflict
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FMV-GS , Sparc, TLB misses FMV-GS , Sparc, L1 cache misses

‘Temporal Blocking s— Temporal Blocking - L1 ——
Standard ---- Standard-L1 -

30 40
Subgrid Size - K

(a) (b)

FMV-GS , Sparc, L1 - Capacity misses FMV-GS,, Sparc, L1 - Conflict misses

30 40
Subgrid Size - K

Temporal Blocking s—
Standard -

Temporal Blocking s—
Standard ----

0 40
Subgrid Size - K

(©) (d)

Fig. 6. FMV with Gauss-Seidel relaxation, N=1025, and v9=4 on the Sparc. (a) Number of TLB
misses, NITER = 4. (b) Number of L1 cache misses, NITER = 4. (¢c) Number of L1 capacity misses,
NITER = 4. (d) Number of L1 conflict misses, NITER = 4.

misses cause this increase. We confirmed that the conflict misses are due to cross inter-
ference between the V' and f arrays, by running a cache simulation for a version of the
code without the reference to f in the stencil. L1 cache misses remained constant in this
simulation.

5 Related Work

Leiserson et al. [9] provide a graph-theoretic foundation for efficient linear relaxation
algorithms using the idea of blocking covers. Their work, set in the context of out-of-
core algorithms, attempts to reduce the number of I/O operations. Bassetti et al. [2]]
investigate stencil optimization techniques in a parallel object-oriented framework and
introduce the notion of temporal blocking. In subsequent work [1]], they integrate the
blocking covers [Q] work with their framework for the Jacobi scheme. Stals and Riide [11]]
studied program transformations for the Red-Black Gauss-Seidel method. They explore
blocking along one dimension for two-dimensional problems, but our work involves two-
dimensional blocking. Douglas et al. [5] investigate cache optimizations for structured
and unstructured multigrid. They focus only on the Red-Black Gauss-Seidel relaxation
scheme, Povitsky [10] discusses a different wavefront approach to a cache-friendly
algorithm to solve PDEs.
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Bromley et al. [4]] developed a compiler module to optimize stencil computations on
the Connection Machine CM-2. To facilitate this, they worked with a particular style of
specifying stencils in CM Fortran. They report performance of over 14 gigaflops. Their
work focuses on optimizing a single application of a stencil, but does not handle the
repeated application of a stencil that is characteristic of multigrid smoothers. Moreover,
their technique does not handle cases when the stencil operations are performed in a
non-simple order, like the order of updates in Red-Black Gauss-Seidel.

6 Conclusions

We have demonstrated improved running times for multigrid using a combination of al-
gorithmic ideas, program transformations, and architectural capabilities. We have related
these performance gains to improved memory system behavior of the new programs.
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