Protocols and Software for Exploiting
Myrinet Clusters

P. Geoffray', C. Pham, L. Prylli?, B. Tourancheau?®, and R. Westrelin

Laboratoire RESAM, Université Lyon 1
'Myricom Inc., 2 ENS-Lyon, > SUN Labs France
Congduc.Pham@ens-lyon.fr

Abstract. A cluster, by opposition to a parallel computer, is a set of
separate workstations interconnected by a high-speed network. The per-
formances one can get on a cluster heavily depend on the performances
of the lowest communication layers. In this paper we present a software
suite for achieving high-performance communications on a Myrinet-based
cluster: BIP, BIP-SMP and MPI-BIP. The software suite supports single-
processor (Intel PC and Digital Alpha) and multi-processor machines,
as well as any combination of the two architectures. Additionally, the
Web-CM software for cluster management that cover job submissions and
node monitoring is presented as the high-level of the software suite.

1 Introduction

In the past 5 years, there has been a tremendous demand, and offer, on cluster
architectures involving commodity workstations interconnected by a high-speed
network such as Fast Ethernet, Gigabits Ethernet, Giganet, SCI and Myrinet.
These architectures are often referred to as Network Of Workstations (NOW) or
high-performance clusters (HPC). Several research teams have launched projects
dealing with NOWSs used as parallel machines. Previous experimentations with
IP-based implementations have been quite disappointing because of the high la-
tencies of both the interconnection network and the communication layer. There-
fore, the goal of most research groups is to design the software needed to make
clusters built with commodity components and high-speed networks really effi-
cient. The NOW project of UC Berkeley [1] was one of the first projects.

The performances one can get on a cluster heavily depend on the perfor-
mances of the lowest communication layers. Previous experiences have shown
that efficient communication layers and fast interconnection networks must be
present altogether to build a high-performance cluster. The availability of HPCs,
at an affordable price, and adequate communication software is a great opportu-
nity for the parallel processing community to bring these techniques to a larger
audience.

In this paper we present a software suite for achieving high-performance
communications on a Myrinet-based cluster: BIP, BIP-SMP and MPI-BIP. The
software suite supports single-processor (Intel PC and Digital Alpha) and multi-
processor machines, as well as any combination of the two architectures. It can

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2073, pp. 233-242] 2001.
© Springer-Verlag Berlin Heidelberg 2001

234 P. Geoffray et al.

be viewed as a collection of highly optimized components that contribute at
each level of the cluster communication architecture to provide the maximum
of performance to the end-user. It is also possible for the end-user to choose
at which level he wants to program, knowing as a rule of thumb that the low-
est level usually provides high-performances but less functionalities. Each of
these components has been previously described in the literature so the main
motivation for this paper is to present to the parallel computer users a bottom-
up approach for efficiently exploiting on a daily basis a Myrinet cluster. Of
course, the problems covered by cluster-based computing is much broader than
the communication-oriented problems we focused on. Issues such as cluster man-
agement, check-pointing and load-balancing are also very important. In many
cases, these features are desperately lacking on cluster-based environments, as
opposed to traditional (expensive and mainly proprietary) parallel computer
environments. In this first attempt, however, we will address more specifically
the high-performance communication issues as we believe that this point may
drive the first motivation to move from massively parallel computer to a cluster-
based solution. Additionally, the Web—-CM software for cluster management that
cover job submissions and node monitoring is presented as the high-level of the
software suite.

The rest of the paper is organized as follows. Section 2 presents the hardware
characteristics of the interconnection network. Section 3 presents the low-level
communication layers and Section 4 presents the customized MPI communica-~
tion middle-ware. Related works are presented in Section 5 and performance
measures in Section 6. Web-CM is described in Section 7 and we present our
conclusions in Section 8.

2 The Myrinet Hardware

The Myrinet communication board uses a PCI slot to connect a node to a
Myrinet switch [2]. The bandwidth provided by the network is approximately
160 MBytes/s (1.2Gbits/s), but the PCI bus (32 bits, 33 Mhz) limits the max-
imum throughput to 132 MBytes/s. All links are full-duplex and the Myrinet
switch is a full cross-bar operating a source-based routing algorithm. There are
several features that make this kind of technology much more suitable than a
traditional commodity network:

— The hardware provides an end-to-end flow control that guarantees a reliable
delivery and alleviates the problem of implementing in software the reliability
on top of an lossy channel. As message losses are exceptional, it is possible
to use algorithms that focus on very low overheads in the normal case.

— The interface card has a general purpose processor that can be programmed
in C. The code, called Myrinet Control Program (MCP), is downloaded at
the initialization of the board. It is powerful enough to handle most of the
communication activity without interrupting the main processor.

Protocols and Software for Exploiting Myrinet Clusters 235

— The interface card has up to 8 megabyte memory for buffers (LANai 9). This
memory compensates in some cases (contention on I/O bus, on network. . .)
the throughput difference between the communication components.

3 Low-Level Communication Layers

3.1 BIP

At the lowest level of the communication architecture, BIP (Basic Interface
for Parallelism) [3l4] provides an efficient access to the hardware and allows
zero memory-copy communications. It has been optimized for low latency, high
throughput and a rapid throughput increase. As BIP supplies very limited func-
tionalities, it is not meant to be used directly by the parallel application program-
mer. Instead, higher layers (such as MPI) are expected to provide a development
environment with a higher functionality /performance ratio.

The BIP’s API is a classical message-passing interface: it provides both
blocking and non-blocking communication (bip_send, bip_recv, bip_isend,
bip_irecv, bip_wait, bip_probe...). Communications are as reliable as the
network, errors are detected and in-order delivery is guaranteed. BIP is com-
posed of a user library, a kernel module and a NIC program. The key points of
the implementation are:

A user level access to the network. Avoiding system calls and memory co-
pies implied by the classical design becomes a key issue: the bandwidth of
the network (160 MBytes/s in our case and 132 MBytes/s for the I/O bus)
is equivalent to the bandwidth of the memory (300 MBytes/s for memory
read and 160 MBytes/s for a copy on a computer with a BX chip set).

Long messages follow a rendez-vous semantic: the receive statement must be
posted before the send is completed. Messages are split into chunks and the
different steps of the communication are pipelined.

Small messages. Since initializations and handshakes between the host and
the NIC program are more expensive than a memory copy for small messages
so they are written directly in the network board memory on the sending
side, and copied in a queue in main memory on the receiving side. The size
of this queue is statically fixed and the upper layers must guarantee that no
overflow occurs.

Highly optimized, the raw communication performance for BIP is about 5us
latency one-way. The maximal bandwidth is 126 MBytes/s for a LANai 4 on
a PCI 32 bits 33 Mhz (95% of the theoretical hardware’s limit residing, in our
case, in the PCI bottleneck). Half of the maximum bandwidth is reached with a
message size of 4 KBytes. There is a distinction between small and large messages
at 1024 bytes.

236 P. Geoffray et al.

3.2 BIP-SMP

In the context of SMP nodes, BIP is not able to exploit all of the hardware
performance as only one process per node can gain access to the Myrinet board
while the other processors must remain idle for communication. BIP-SMP [5]
provides the support of several processes per node. The difficulties in doing so
are: (i) to manage the concurrent access to the hardware and the Myrinet board
and, (i¢) to provide local communications with the same level of performance as
BIP over Myrinet. The key points of the implementation are:

Handling the concurrent access to the network. The concurrent access
to the send request queue is managed by a lock. In the current implementa-
tion on the Linux OS, the lock uses a specific function provided by the kernel
(test_and_set_bit in kernel 2.2.x). This function guarantees the atomicity
of the memory operation. The cost of the lock operation is small compared
to IPC system V locks or the pthread library locks. With BIP-SMP two
processes can overlap the filling of a send request queue. The only operation
that needs serialization is to obtain an entry in the send request queue.

Managing Internal communication. For efficiency reasons, BIP-SMP uses
both shared memory to implement mailboxes and direct data transfer from
user space to user space. The shared memory scheme moves small buffers
with two memory copies but small latency, and the direct copy scheme moves
large messages with a kernel overhead but a large sustained bandwidth. The
shared-memory strategy needs one queue per communicating peer and the
amount of shared memory needed increases by the square of the number of
local processes. However, as commodity SMP nodes usually contain 2 or 4
processors, the implementation is justified. The direct-memory copy feature
is provided by implementing a Linux kernel module to move data from one
user space to another user space.

Multi-protocol layer. Another part of this work is to enable BIP-SMP to
simultaneously use both remote communications and local communications
while hiding this new feature in the BIP’s API. We use two independent
pools of receive queues per node: one for the internal communications and
the other one for remote communications on Myrinet. Then we can allow
the receipt of a message from the Myrinet network and the receipt of a
message from another process in shared memory at the same time without
any synchronization. The use of BIP-SMP is completely transparent as each
process receives a different logical number. Everything else is hidden by the
BIP-Multi-protocol layer. Variables are available to provide the information
about the location of the other logical nodes, the number of processes on the
same physical node, etc.

4 MPI-BIP: The Communication Middle-Ware

MPI-BIP [6] is the privileged middle-ware for the end-user. It is a high per-
formance implementation of MPI [7] for Myrinet-based clusters using the BIP

Protocols and Software for Exploiting Myrinet Clusters 237

protocol. The current MPI-BIP implementation is based on the work done by
L. Prylli on MPI-GM. Most of the code is now shared between MPI-GM and
MPI-BIP.

MPI API

Generic part (collective ops, context/group mgmt....)

MPI - BIP
Abstract Rttt ittt f
Device i BIP’s API b
Interface Generic ADI code, ————
datatype mgmt, heterogeneity BIP — SMP (Multiprotocol layer)
" Protocol request queves memt BIP over Myrinet| ~ BIP-SMP
interface” | “short", ”e?ger”. ther pors| SGIport (Ce (Communication between processes)
lcndcz—u‘)us Pljomc,u]: M‘PI shared-mem| between nodes) | Shared memory Direct memory
Channel Check_incoming BIP copy copy

Interface port
P4 NX MPL

TCp/p |Paragon| SP/2 BIP

Fig. 2. Architecture of BIP-SMP.
Fig. 1. The architecture of MPI-BIP

MPICH is organized in layers and designed to facilitate the porting to a new
target hardware architecture. Figure [Il presents our view of the MPICH frame-
work and shows at what level we inserted the MPI-BIP specific part. Different
ports choose different strategies depending on which communication system they
use. We implemented our network specific layer at a non-documented interface
level that we will call the “Protocol Interface”. This API allows us to specify
custom protocols for the different kinds of MPI messages. Each MPI message of
the application is implemented with one or several messages of the underlying
communication system (BIP in our case). The main contribution of MPI-BIP
are:

— As BIP’s flow control for long messages relies on the hardware flow-control, it
is not sufficient when one side is not able to receive for a long time. For small
messages, MPI-BIP uses a credit-based flow control taking into account the
size of the BIP’s queues.

— MPI-BIP uses request FIFO to allow multiple non-blocking operations.

Figure [2 shows the architecture of the BIP-SMP module within MPI-BIP.
The complete view of the communication software architecture can be obtained
by replacing the MPI-BIP and BIP blocks in figure [I] by figure 2l We chose to
maintain the split view for simplicity.

5 Related Works

First introduced in 1997, BIP was more an incremental step in a large family of
software than a complete new design. Especially on Myrinet, we can find many
other communication systems: Active Messages from Berkeley[8], Fast Messages
from Ilinois [9] and U-Net from Cornell University [L0]. All these systems bypass
the operating system to shorten the communication critical path and to limit, or

238 P. Geoffray et al.

avoid completely, memory copies for bandwidth improvements. BIP is however
a very efficient implementation.

More recently, the efficient usage of clusters of shared-memory multi-
processors (CLUMPs) has gain attention. We have investigated issues related to
a multi-protocol message passing interface using both shared memory and the
interconnection network within a CLUMP. Several projects have proposed solu-
tions for this problem in the last few years and BIP-SMP is in the same research
line. Projects like MPI-StarT [II] or Starfire SMP Interconnect use uncommon
SMP nodes and exotic networks but performances are limited. Multi-Protocol
Active Messages [12] is an efficient multi-protocol implementation of Active Mes-
sages using Myrinet-based networks and Sun Enterprise 5000 as SMP nodes.
Multi-Protocol AM achieves 3.5 us of latency and 160 MBytes/s of bandwidth.
The main restriction is the use of the Sun Gigaplane memory system instead of
a common PC memory bus. The polling is also a problem in Multi-Protocol AM
as polling for external messages is more expensive than for internal messages.
However, Multi-Protocol AM is the first message passing interface to efficiently
manage CLUMPs. Finally, one of the first message-passing interfaces to manage
CLUMPs as a platform is the well-known device P4 [13] used by MPICH. P4
provides mechanisms to start multiple processes on hosts and uses either mes-
sage passing or shared memory copies to communicate between these processes.
However, the programmer must explicitly select the appropriate library calls.
We can also cite implementations of MPI limited to a single SMP node, like
the MPICH devices ch_shmem or ch_lfshmem . The device ch_lffshmem
is a lock-free shared memory device that achieves very good performance (2.4
pus and 100 MB/s on one of our SMP nodes). Regarding the shared memory
management, some works about concurrent access for shared memory Active
Messages [14] presents very efficient solutions such as a lock-free algorithm and
a high performance lock implementation.

6 Performance Measures

For all measures, the operating system is Linux. Figure B] and @ shows the per-
formances of BIP and MPI-BIP for LANai 7 and LANai 9 (the latest board
available). The additional cost of MPI-BIP is approximately 4 us for a 0-byte
messages (mainly CPU) over BIP for the latency on our test-bed cluster. Note
that the latency of MPI-BIP depends in a large part on the processor speed
as the network part of the latency is very small. For instance, as the processor
speed is increased, the latency of MPI-BIP is decreased. The results obtained
with a LANai 9 on a 2Gbits/s link are still experimental and performed with
a back-to-back configuration as no switch was available yet. The jumps in the
latency curves come from the BIP distinction between small and large messages
at 1024 bytes. For the LANai 9, this distinction is beneficial for the latency.
In figure B one jump in the MPI-BIP curve comes from BIP; the other one,
occurring a bit earlier, comes from the way MPI-BIP switches from short to a
three-way eager strategy.

Protocols and Software for Exploiting Myrinet Clusters 239

100 L L L L 300
BIP LANAI 7 - PII 450Mhz
90 —{BIP LANAI 9 - PIIT 600 Mhz, PCI 64bi
MPI-BIP LANAI 7 - PII 450 Mh:

250 4 L

200 BIP LANAI 7 - PII 450Mhz
| BIP LANAI 9 - PIII 600 Mhz, PCI 64bits ~-----
| MPI-BIP LANAI 7 - PII 450 Mhz -------

150 i L

ONE-WAY LATENCY (us)
v
3
L
T
THROUGHPUT (MBytes/s)

100 4

0 T T T T T T T T 0 T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 0 200000 400000 600000 800000 le+06 1.2¢+06
MESSAGE SIZE (bytes) MESSAGE SIZE (bytes)

Fig. 3. BIP and MPI-BIP latency. Fig. 4. BIP and MPI-BIP bandwidth.

Table [T shows the raw point-to-point communications performance of BIP-
SMP and MPI-BIP/BIP-SMP. The experimental platform consists in a cluster
of 4 dual Pentium IT 450 MHz 128 MBytes SMPs interconnected by a LANai 7
Myrinet network. We measured the latency and the bandwidth between two pro-
cesses using ping-pong communications, on the same node and on two different
nodes of the cluster.

Table 1. Pt-to-pt communications with BIP-SMP and MPI-BIP /BIP-SMP

Architecture BIP-SMP MPI-BIP/BIP-SMP
Intra-node latency (Shared memory) 1.8 ps 3.3 us
Inter-node latency (Myrinet network) 5.7 us 7.6 us

Intra-node bandwidth (Shared memory) 160 MBytes/s 150 MBytes/s
Inter-node bandwidth (Myrinet network) 126 MBytes/s 107 MBytes/s

We then compared the latency and the bandwidth of MPI-BIP/BIP-SMP
with several other related works: the ch_shmem and ch_lfshmem MPICH de-
vices; MPICH over GM and MPI-PM/CLUMP (with mpizerocopy flag). We
used the benchmark program mpptest included in the MPICH distribution.
This software measures the latency and the bandwidth of a network architec-
ture using a round-trip communication with blocking calls. The tests (cf. figure
and [G) are performed by varying the size of the packets sent between two
processes on the same node node for the intra-node tests and between two
processes on two different nodes for the inter-node tests.

7 Web-CM: Executing Programs on the Myrinet Cluster

A number of steps must be performed before programs can be executed on a
Myrinet cluster. These steps are, in a chronological order: install the Myrinet
hardware, install the BIP software suite, and run biproute to determines the
topology of the cluster. We will not describe these steps as they are very spe-
cific to the user’s hardware and operating system configuration. We will describe

240 P. Geo ray et al.

35 F BIP-SMP inter-node
PM inter-node -~
GM inter-node

LATENCY (us)
LATENCY (us)

0 50 100 150 200 250 0 50 100 150 200 250
PACKET SIZE (bytes) PACKET SIZE (bytes)

Fig. 5. Intra-node MPI. Fig. 6. Inter-node MPI.

below the main steps for running parallel programs on an operational Myrinet
cluster: linking the libraries and submitting jobs. Then the Web-CM tool is pre-
sented.

7.1 Linking the Libraries

Depending on the choice of the end-user, the program may only need the bip
library, or also the bipsmp library if multi-processor support is needed. If MPI
is used then the mpi library must be added. All the required low-level libraries
are automatically included with the bipcc command but the user must include
the mpi library in its makefile file. bipcc internally calls gcc by default but
any other compiler can be used (such as g++) with the -comp flag.

7.2 Submitting Jobs and Monitoring Nodes

The BIP software comes with a few Perl scripts such as bipconf, myristat
and bipload that respectively configures a virtual parallel machine, shows the
status of the Myrinet board and launches a program on a virtual machine. For
the moment, the utilization of a Myrinet board is exclusive to a user. Therefore,
the typical way to submit jobs was to (¢) run myristat to know how many nodes,
and which one, are available, (i7) run bipconf to select the available nodes (if
they are in a sufficient number), (¢i7) run bipconf to build the virtual machine,
and (iv) call bipload with the program to be executed.

7.3 Web-CM: The Integrated Web-Based Cluster Management Tool

Web-CM is our first attempt to ease the utilization of a cluster. The main goals of
Web-CM are to facilitate the submission of jobs and to offer a graphical view of
the resources on the cluster. However Web-CM must be viewed as an integrated
web-based environment and not as a new package for job submission or graphical
visualization. Web-CM integrates existing packages into the web framework and
interacts with them through a number of CGI-bin scripts (mainly Perl and shell
scripts).

Protocols and Software for Exploiting Myrinet Clusters 241

B Codasll CLUSTER
* 3 Contor Stares
A& Beser
¢4‘—> Web- CM user screens and forms ‘
Nuster afnades: 7
3
statne | e 47 ‘Web-CM CGI-bi ipts ‘
nade | Tntat | myrinet > | © n serip
B reseront | cotam ‘ v Web- CM AbstractCommand Layer (ACL) ‘
e o |
= 2 XX Condor Vo [xx Myrinet-BIP | |
Ll e 2 N |
| | | o condor_submit|} ! myristat
L‘m w condor_queue [} | bipconf
reserved | ke D 0
i 2 biprun
— @
e — [|
Job submission Interconnect- dependent § oftware XX
software software
BIP /BIP-SMP /MPI-BIP /XX
¢4‘-> Operating System

Fig. 8. Architecture of Web-CM.

Fig. 7. Main screen.

The choice of a web-based environment makes it easy to gain access to re-
mote clusters through a regular web page, and this in the whole Internet. For
the moment, it supports Myrinet-based clusters and the condor job submission
package (http://www.cs.wisc.edu/condor/) but an abstraction layer (ACL in
fig. B) makes it possible to adapt it to another type of hardware and software
configurations. This ACL simply maps predefined functionalities into specific
platform-dependent commands. Such predefined functionalities are for example
the list of available nodes, the submission of a job in a batch queue, the status
of a job...The realization of the functionality is left to an existing package.

For the moment, Web-CM allows a user to graphically view the available nodes
and to interactively create a virtual machine by selecting the desired nodes. Then
the user can run interactively the job or submit it with the condor package.
Further implementations will allow an automatic virtual machine configuration
just by indicating the number of nodes needed (mainly for queued jobs).

The modular view of Web-CM, and the fact that it integrates existing packages
rather that developing new ones, allows for an quick increase of its functionalities.
For instance, the ACL can be easily configured for another kind of interconnect
network technology (SCI, Giganet...) and the new dedicated software package
integrated into the common framework. We plan to add additional job submis-
sion packages since condor was initially chosen because of its free availability
but appears to be too complex.

8 Conclusions

HPCs represent a serious alternative to expensive parallel computers. In this
paper, we mainly focus on a Myrinet-based cluster and have presented a soft-
ware suite exploiting on a daily basis such a cluster. The software suite is used
intensively in our group for several projects involving genomic simulations and
parallel simulations of large scale communication networks. BIP is used world-
wide by several universities.

242

P. Geoffray et al.

One of the principal aims of this paper is to show the maturity of the more
recent technologies. Generalizing the use of the faster systems available will
provide to the end-user community a way to reach a higher level of scalability,
and to make parallel solutions usable for a wider range of applications, especially
those that require fine grain decomposition.

Acknowledgements

The initial version of Web-CM was developed by S. Oranger and F. Goffinet (as
part of their undergraduate work) and, L. Lefévre and C. Pham.

References

10.

11.

12.

13.

14.

Thomas E. Anderson, David E. Culler, David A. Patterson, and the NOW Team.
A case for networks of workstations: Now. IEEE Micro, Feb 1995.

Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, charles
L. Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet - a gigabit-per-second
local-area network. In IEEE Micro, volume 15.

Loic Prylli and Bernard Tourancheau. BIP: a new protocol designed for high
performance networking on myrinet. In Workshop PC-NOW, IPPS/SPDP98.
L. Prylli, B. Tourancheau, R. Westrelin, An Improved NIC Program for High-
Performance MPI, in: International Conference on Supercomputing (1CS’99),
N. P. Carter, S. S. Lumetta (éditeurs), Workshop on Cluster-based Computing.
P. Geoffray, L. Prylli, B. Tourancheau:, BIP-SMP: High Performance message
passing over a cluster of commodity SMPs. in : Supercomputing’99 (SC99).

L. Prylli, B. Tourancheau, and R. Westrelin. The design for a high performance
mpi implementation on the myrinet network. In EuroPVM/MPI’99, 1999.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Computing,
22(6):789-828, September 1996.

T. von Eicken. Active Messages: an Efficient Communication Architecture for
Multiprocessors. PhD thesis, University of California at Berkeley, November 1993.
Pakin, S., Karamcheti, V., Chien, A,: Fast messages (FM): Efficient, portable
communication for workstation clusters and massively-parallel processors. I[EEE
Concurrency, 1997.

von Eicken, T., Basu, A., Welsh, M.: Incorporating memory management into
user-level network interfaces. TR CS Dept., Cornell University, 1997.

Parry Husbands and James C. Hoe. Mpi-start: Delivering network performance
to numerical applications. In SuperComputing (SC’98), Orlando, USA.

Steven S. Lumetta, Alan M. Mainwaring, and David E. Culler. Multi-protocol
active messages on a cluster of smp’s. In SuperComputing (SC’97).

Ralph M. Butler and Ewing L. Lusk. Monitors, messages, and clusters : the p4
parallel programming system. TR, University of North Florida and ANL, 1993.
Steven S. Lumetta and David E. Culler. Managing concurrent access for shared
memory active messages. In International Parallel Processing Symposium, 1998.

	Introduction
	The Myrinet Hardware
	Low-Level Communication Layers
	BIP
	BIP-SMP

	MPI-BIP: The Communication Middle-Ware
	Related Works
	Performance Measures
	{tt Web-CM}: Executing Programs on the Myrinet Cluster
	Linking the Libraries
	Submitting Jobs and Monitoring Nodes
	{tt Web-CM}: The Integrated Web-Based Cluster Management Tool

	Conclusions

