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Abstract. We present a distributed component-object model (DCOM) based
single system image middleware (SSIM) for metacomputer implementation of
genetic programming (MIGP). MIGP is aimed to significantly improve the
computational performance of genetic programming (GP) exploiting the inher-
ent parallelism in GP among the evaluation of individuals. It runs on cost-
effective clusters of commodity, non-dedicated, heterogeneous workstations.
Developed SSIM represents these workstations as a unified virtual resource and
addresses the issues of locating and allocating the physical resources, commu-
nicating between the entities of MIGP, scheduling and load balance. Adopting
DCOM as a communicating paradigm offers the benefits of software platform-
and network protocol neutrality of proposed implementation; and the generic
support for the issues of locating, allocating and security of the distributed enti-
ties of MIGP. Presented results of experimentally obtained speedup character-
istics show close to linear speedup of MIGP for solving the time series identifi-
cation problem on cluster of 10 W2K workstations.

1 Introduction

Genetic programming (GP) [1] is an algorithmic paradigm, inspired by the natural
evolution of species. GP is successfully applied for solving increasingly difficult
problems in artificial intelligence such as  electrical circuits design, evolving
digital hardware, spatial information classification, time-series identification, etc. [1].
However, GP is computationally costly - running even moderately sized problems, to
which GP is applied, often requires hours on currently available computer architec-
tures. One of the ways of speeding-up the GP is to improve the computational per-
formance of the implementation. One of the most promising approaches for improving
the computational performance is to exploit the inherent parallelism of GP by mapping
the GP on parallel multiprocessor systems. Networks (clusters) of workstations
(NOW) as a parallel environment feature most attractive specific cost characteristics
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due to the well-known fact that the prices of the components are based on the manu-
factured volume. Typically, NOW can be built of commodity “off-the-shelf” compo-
nents, significantly reducing both the developing time and the costs [2]. Our objective
is to develop MIGP featuring improved computational performance of GP by exploit-
ing the parallelism among the evaluations of individuals. MIGP must be cost-effective
in that to allow for deployment on clusters of commodity, non-dedicated workstations.

Although some work on implementing GP exploiting the parallelism among
evaluations of individuals on NOW had been previously done [3], [4], [5], it assumes
deployment of developed systems on networks of dedicated, homogeneous worksta-
tions. Therefore, the issues of resources location and allocation, scheduling, load bal-
ancing, and even more, the issue of creating a single image of the underlying distrib-
uted system had not been considered as relevant in these implementations. On the
other hand, employing the currently available general-purpose full-featured metacom-
puter systems [6], [7], [8], [9] for addressing the concrete issue of parallel implemen-
tation of GP is viewed by us as too excessive approach. Moreover, although these
systems do offer flexibility to the end-users, some concerns could be raised about their
ability to be finely tuned to adequately address the communication-intensive nature of
the considered model of parallelism in GP. In addition, from viewpoint of the commu-
nicating paradigm, the currently available metacomputers are heavily relying on the
de-facto-standard MPI/PVM-based communications, while, in our view, the need for
investigating the feasibility of recently emerged component object models for en-
gagement as a communication paradigm in clusters seems to be underestimated by the
HPC. All these concerns represent the rationale behind our approach to develop and
evaluate the component object based SSIM for MIGP.

Addressing the challenge of potentially heterogeneous nature of resources in NOW,
we propose a single system image middleware (SSIM), which represents the NOW as
a single metacomputer (virtual supercomputer). Distributed component object model
(DCOM), adopted as an underlying communicating paradigm contributes to address
the heterogeneity of software platforms of workstations and the heterogeneity of net-
work protocols. The resource management and scheduling subsystem of SSIM ad-
dresses the issue of efficient utilization of workstations that feature different speed of
network connections, computational power, and/or dynamically changeable computa-
tional workloads. The reminder of the paper is organized as follows. Section 2 outlines
the considered time series identification problem (TSIP), and the GP as an algorithmic
paradigm, adopted for solving it. Section 3 discusses the developing of SSIM for
MIGP. Also, it enumerates both the benefits and the challenges of adopting DCOM as
a communicating paradigm. Section 4 presents performance evaluation results. The
conclusion is drawn in Section 5.

2 The Problem and the Algorithmic Paradigm

Identification of a mathematical model of a real process is the necessary step in a wide
class of modern control, information processing, diagnosis and related problem solv-
ing [10]. Let consider an identification problem statement. Assume that some plant is
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isolated from the environment on the grounds of fixed features (Fig. 1). The input u(n)

and output y(n) signals of the plant are supposed measurable at the instants n=1,2,...

during functioning. The plant is interfered with random non-observable disturbance
(n). There is an unknown operator of input-output mapping of the form:

y(n) = Alu(n)] 6]
The operator (1) is characterized with unknown structure St and parameter vector a :

A=<Sta> 2)

The identification problem is determination of the plant's operator estimate A by
means of input and output signals measuring and processing. Typically, the criteria to
evaluate the quality of the model are based on error between plant's output and model's
output. The identification is an optimization problem with an objective to find the
minimum of the error between the output of the model and the real output. We
consider the identification of the model of vibration data from the crystal-polishing
machine as a real-world TSIP. Example of the sample data is shown in Fig. 2.

Requirements of high quality automatic control had made it necessary to use novel
approaches for real process description which are often characterized with high di-
mensionality, substantial non-linearity and unmodelled dynamics. Such class of prob-
lems may be solved by soft computing approaches - artificial neural networks, fuzzy
systems, chaos computing, immune network computing, genetic algorithms, GP, etc.
As the results of many researchers have shown, effective systems may be designed on
the basis of fusion of different soft computing approaches [11]. GP (Fig.3), considered
in our approach, is an algorithmic paradigm, inspired by the natural evolution of spe-
cies based on the survival of the fittest [1].
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Fig. 1. Operator presentation of a plant  Fig. 2. Vibration data of crystal-polishing machine
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1: Create the initial population of GPs;

2: Evaluate initial population;

3: while not success predicate do Steps 4..5

Perform reproduction: mating pool creation;

while initial population size not reached do Steps 6..9
Select a pair of GPs from mating pool;
Perform crossover and produce 2 GPs - offspring;
Evaluate offspring;
Incorporate offspring into the population;
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Fig. 3. Algorithm of GP
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GP considers a population of individuals (genetic programs, GPs) that evolves.
Each of GPs represents a solution to the problem. The initially (randomly) created
population evolves through many generations, applying the main genetic operations -
reproduction, selection and crossover, at each generation until the best individual
solves the problem with desired precision. The power of GP is in that computational
effort of such evolution is much less than in the random search-based approaches. The
main parameters of GP for TSIP are shown in Table 1.

3 SSIM for MIGP

3.1 Model of Parallel Implementation of GP

Partitioning of GP. Partitioning considers the way GP is decomposed into smaller,
relatively autonomous processes that might be simultaneously executed on multiple
workstations. Taking into consideration the algorithm of evolving single generation in
GP and the runtime breakdown results obtained from the developed prototype of se-
quential GP for solving the TSIP, we considered the implementation of parallelism
among the evaluations of individuals (Fig. 3, Step 8). The key argument in favor of
such a decision is that for the considered case of TSIP the evaluation of individuals
consumes more than 98% of GP-runtime.

Communicating Paradigm: DCOM. Exploiting the considered parallelism in GP
assumes that the code of evaluation of individuals must be running on workstations,
remote with respect to the workstation that manages the GP-population and performs
the main genetic operations. Such a code must be implemented as a remotely control-
lable process, and several communication technologies can be exploited for such a
purpose. These include component-object-based (COB) technologies, such as DCOM
[12] and CORBA, and non-COB, such as sockets level programming, MPI, PVM,
RPC, and Java RMI. Our choice for using COB paradigm is based on the fact that it
provides the domain of distributed computing (DC) with many of the same benefits,
such as encapsulation, reuse, portability, and extensibility, as it does for non-DC.
Furthermore, applied to the domain of DC, these benefits can be extended with fea-
tures as binary standardization, platform-, machine- and protocol-neutrality, and abil-
ity to seamlessly integrate with different Internet protocols. All these features are
incorporated into DCOM, which in addition, as a system model offers generic support
for the issues of naming, locating and protecting the communicating entities. Adopting
DCOM tends to compromise (to certain degree) the communication characteristics of
the implementation compared to the widely adopted MPI and PVM. The throughput of
DCOM, which we obtained for two protocol stacks — TCP/IP (W2K) and UDP/IP
(NT4.0), compared with the throughput of several implementations of MPI on NT4.0
[13] is shown in Fig. 4. The CPU for all of the considered cases is 450MHz Pentium
II, and the underlying network is 100 Mbps Fast Ethernet. As figure illustrates, for
small messages DCOM is more than 2 times slower than NT-MPICH - the fastest
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implementation of MPI. For larger messages however, the throughput of DCOM on
W2K (over TCP/IP) is only about 20% off the throughput of NT-MPICH.

Table 1. GP for TSIP

Objective For given data source Y(t), i=1,2,..2000 to find the analytical expres-
sion Y(t)=F(S,) which fits the given data source with specified error. S,
is the terminal set.

Terminal set S, =lY(.), Y(t.),...Y(t,), C, A, M], where C is a random constant
from the interval [0,1], M and A are the average and absolute average
amplitude respectively. P=10.

Function set [+ -, % /]
Fitness cases The given sample of 2000 data points.
Raw fitness The average, taken over 2000 fitness cases, of quadratic value of the

difference between value of the Y(t), produced by individual (S-
expression) and the target value Y(t) of the given data source.

Reproduction ratio  20% - reproduction, 80% - selection (both — fitness-proportional)
Success predicate ~ Raw fitness is less than 0.01

Population size 1000 individuals

Challenges in Adopting DCOM. Batching. Implementing the proposed parallelism
in GP exploiting DCOM implies that the evaluation of individuals is performed by
remote DCOM-server, which runs on a separate workstation. The routine of evalua-
tion of individuals is remotely invoked by the client (GP manager - GPM), which runs
on separate client machine. Client submits the GPs to DCOM-server by invoking the
corresponding methods of DCOM-server. The invocation is location transparent, plat-
form-, and protocol-neutral, which allows for deployment of our implementation on
network of heterogeneous workstations. However, the cost of these benefits is that,
performance-wise compared to MPI and PVM, such a remote method invocation suf-
fers from significant software overhead, and less data transmission rate (refer to
Fig.4). For example, the typical software overhead of DCOM is in order of several
hundreds s, which is comparable with the computational cost of evaluating simple
individuals.

We applied batching (i.e. bundling multiple method invocations into a single one)
both in submission of the individuals and in forwarding the fitness values back to the
client. The experimentally obtained effect of batching on the latency of submission of
individuals with complexity of 100 tree nodes, which is close to the average for the
GP-populations over many independent runs is shown in Fig. 5. As figure illustrates,
with increasing of the batch size, the specific latency (Ls) of submitting single indi-
vidual within the batch decreases, and for batch size of 40 individuals is about 8 times
less than latency of submitting single individual L(/GP). However, we consider the
value of 16 individuals as an optimal batch size for our implementation. As depicted in
Fig. 5, larger batches result only marginal improvement of the specific latency. In
addition, larger batches imply increasing the granularity of scheduled tasks, which
might increase the degree of unbalancing of the workload when the total amount of
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batches cannot be evenly distributed among the available workstations. The effect of
batching on the load balancing is considered later in following subsection 3.2.
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Fig. 4. Throughput of DCOM compared with Fig. 5. Effect of batching on the latency of

various implementations of MPI on NT4.0

3.2 Distributed Architecture

submitting GP-individuals

Exploiting the considered model of parallelism implies that the routine of evaluation
of the individuals is performed by Evaluation Servers (ES), running on separate work-
stations in the cluster. An eventual straightforward two-tiered implementation, where
the client (GPM) besides the main genetic operations handles the resource manage-
ment and scheduling (RMS) would raise modularity-, flexibility- and manageability
related concerns. To address these concerns, we propose a three-tiered architecture
incorporating the single system image middleware (SSIM) with functionality solely
devoted to the issues of RMS. The architecture of MIGP is shown in Fig. 6. The func-
tionality of the entities of the proposed architecture is as follows.
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Fig. 6. Distributed architecture of MIGP
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GPM. Manages the GP-population, and performs genetic operations — reproduction,
selection, and crossover. Using a queue of individuals, ready to be submitted (QIRSb),
packets the pairs of offspring into a single batch. Upon completing QIRSb submits the
batch to SSIM. Incorporates the results of evaluation upon receiving them from SSIM.

SSIM. Dynamically locates and allocates the ESs. For GPM, SSIM creates a view of
the pool of available ESs as a single server, respectively — the network of heterogene-
ous workstations — as a single metacomputer. Accepts the packets of offspring from
GPM in the queue of individuals, ready to be scheduled (QIRSc) and assign each of
them to specific ES in accordance with the scheduling policy. Accepts the results of
evaluations and forwards them to GPM.

ES. Accepts the packets of offspring from SSIM in the queue of individuals ready to
be evaluated (QIRE) and assigns the individuals to separate thread (evaluation thread -
ET) for further evaluation. Introducing ET contributes to achieving asynchronous
(non-blocking) SSIM — ES interaction by separating the communication from evalua-
tion of the individuals. The queue of results (QR) accumulates the obtained fitness
values prior to forwarding them in single batch back to the SSIM.

3.3 Functionality of SSIM

Resource Location and Allocation. The location of the ESs is performed assuming
that ESs are installed on each of a priory known workstations in the cluster. The allo-
cation of ES, performed by DCOM is initiated by SSIM during the creating an in-
stance of the remote object. Not only to the issue of locating, creating instance of the
object is also closely related to the issues of naming and protecting the communicating
entities of the proposed distributed architecture. The benefits of adopting DCOM as a
communication paradigm are that the latter, as a true system model uses globally
unique identifiers to identify object classes and supported interfaces; encapsulates the
life cycle of DCOM-server objects (ESs) via reference counting, and provides a means
for secure access to objects and the data they encapsulate.

Scheduling and Load Balancing. The adopted scheduling policy is based on the
combination of two strategies as follows. At the stage of evaluating of first batches of
current generation SSIM applies static, round robin scheduling (RRS). At this stage
SSIM feeds each ESs with 2 batches, providing ES-side overlapping of the evaluation
with the communication. Then, in order to deal with eventually different, and dynami-
cally changeable performance characteristics of ESs we propose a Synchronous In-
cremental Scheduling (SIS) — a dynamic scheduling policy, which allows for mini-
mizing the computational and communicational cost of scheduling yet providing good
quality of load balancing. Synchronously with the event of receiving the batch of so-
Iutions from ES, the scheduling subsystem of SSIM extracts the first batch from
QIRSc and submits it to ES — the source of recently received result. However, even in
homogeneous cluster, implementing adopted scheduling policy might not yield to
perfect load balancing in case that the total amount of batches cannot be evenly dis-
tributed among the active ESs. Implementing batching would only deteriorate the load
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balancing due to the increased granularity of the scheduled tasks. In order to estimate
the optimal batch size we consider the upper bounds of the efficiency E of load bal-
ancing:

sl C b/S b/S

= - =— 3)
T, C ceil(blS) ceil(blS)

a

where T, the GP-runtime for evolving single population for “ideal” load balancing
when all the individuals are evenly distributed among ESs, 7T, is the actual runtime
for the best possible load balancing in homogeneous environment implementing
batching, C is the computational cost of single batch, b is the amount of scheduled
batches, S is the number of active ESs, and ceil () is a function that returns the
smallest integer greater than or equal a specified value. The amount of batches b is:

b=P Rco!ls “)

where P is the population size, Rcp is the crossover ratio, and s is the batch size. Ap-
plying (3) and (4) we obtain the values of E for the following values of the parameters:
P=1000 individuals, and Rco=0.8, S=var, and s=var. The values of E are shown in
Fig.7. As figure illustrates, increased batch sizes yield lower values of efficiency. To
maintain the bound of efficiency of load balancing equal to 1 we propose to dynami-
cally adjust the population size in that the amount of batches, expressed in (4) could
be evenly distributed among ESs. The correctness of this approach is based on the
empirical observation that the computational effort of GP does not significantly
change with small variations in population size. In our approach we consider the
variation of population size of 6%, achieved for s=16 individuals as an acceptable in
that it does not affect the computational effort of GP. Proposed method for dynamic
adjustment of population size is implemented straightforwardly: SSIM includes the
amount of currently active ESs in the batch of results, forwarded to GPM. The latter
adjusts the population size in accordance with the following rule:

Reo s S
s S Reo

P* = round

(%)

where s=16 individuals, Rcp and P are the end-user defined crossover ratio and popu-
lation size respectively.

4. Performance Evaluation

The performance evaluation results are obtained from the developed prototype of
MIGP running on local cluster of 10 W2K workstations. The workstations are
450MHz/64MB Pentium II-based Hitachi Flora. They are attached to 100 Base TX
Ethernet through Intel 82558-based Ethernet adapter. Workstations are connected in
network through Hitachi Summit-48 switching hub. Experimentally obtained speedup
characteristics of MIGP are shown in Table 2. The granularity of parallelism derived
from these data is about 100. The upper bound of the scalability (assuming that there
are no network collisions, and no serialization of the ES-SSIM communications),



292 1. Tanev, T. Uozumi, and D. Akhmetov

calculated as a ratio of the throughput of scheduling subsystem of SSIM to the per-
formance of ES is more than 60, which indicates that one should expect close to linear
speedup characteristics of MIGP deployed on the considered cluster of 10 worksta-
tions. The experimentally obtained speedup characteristics of MIGP, which are con-
sistent with our anticipation, are shown in Fig.8. The speedup is derived as a ratio of
runtime of evolving one generation in serial GP to the runtime of MIGP in configura-
tion where each workstation (including workstation that hosts GPM and SSIM) hosts a
single ES.

Table 2. Performance characteristics of MIGP

Characteristic Value

Batch size, individuals 16
Computational cost of evolving one generation of individuals (for P'=1000), batches 50
Runtime of evolving one generation in serial implementation of GP, s 14
Performance of serial implementation of GP, batches/s 3.6
Runtime of evolving one generation on MIGP configured with one remote ES, s 15
GPM: throughput of crossover operation, batches/s 2800
GPM: Runtime of submitting all the batches to SSIM, s 0.14
GPM-SSIM throughput, batches/s 370
Throughput of scheduling subsystem of SSIM (SSIM-ES throughput), batches/s 260
Performance of ES, batches/s 3.8

5. Conclusion

We presented a DCOM-based SSIM for MIGP, aimed to significantly improve the
computational performance of GP exploiting the inherent parallelism of GP among the
evaluations of individuals. MIGP runs on cost-effective clusters of commodity, non-
dedicated, heterogeneous workstations. Developed SSIM represents these worksta-
tions as unified virtual resource and addresses the issues of locating and allocating the
physical resources, communicating between the distributed entities, scheduling and
load balancing. Adopting DCOM as a communicating paradigm offers the benefits of
software platform- and network protocol neutrality of proposed implementation and
generic support to the issues of naming, locating and allocating of the entities of
MIGP. Batching reduces the specific software overhead of DCOM and increases the
throughput of SSIM. Developed SIS features reduced runtime overhead and good
quality of load balancing. Mechanism of dynamic adjustment of the size of GP-
population is proposed as a solution to the problem of load unbalance when scheduled
tasks cannot be evenly distributed among the available workstations. Presented results
of experimentally obtained speedup characteristics show close to linear speedup of
developed MIGP for solving TSIP on cluster of 10 W2K workstations.
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