
Introducing Fault-Tolerant Group Membership Into
The Collaborative Computing Transport Layer

R. J. Loader†, J. S. Pascoe† and V. S. Sunderam‡

†Department of Computer Science ‡Math & Computer Science
The University of Reading Emory University

United Kingdom Atlanta, Georgia
RG6 6AY 30302

fRoger.Loader j J.S.Pascoeg@rdg.ac.uk vss@mathcs.emory.edu

Abstract. In this paper we introduce the novel election based fault tolerance
mechanisms recently incorporated into the Collaborative Computing Transport
Layer (CCTL). CCTL offers the atomic reliable multicast facilities used in the
Collaborative Computing Framework (CCF). Our approach utilizes a reliable IP
multicast primitive to implement two electorial algorithms that not only form
consensus, but efficiently deliver a compact matrix based view of the network.
This matrix can subsequently be analyzed to identify specific network failures
(e.g. partitioning). The underlying premise of the approach being that by basing
fault tolerance on a reliable multicast primitive, we eliminate the need for specific
keep-alive packets such as heartbeats.

1 Introduction

The Collaborative Computing Frameworks (CCF) [2] is a suite of software systems,
communications protocols, and methodologies that enable collaborative, computer-based
cooperative work. CCF constructs a virtual work environment on multiple computer
systems connected over the Internet, to form a collaboratory. In this setting, participants
interact with each other, simultaneously access or operate computer applications, refer
to global data repositories or archives, collectively create and manipulate documents
spreadsheets or artifacts, perform computational transformations and conduct a number
of other activities via telepresence. CCF is an integrated framework for accomplish-
ing most facets of collaborative work, discussion, or other group activity, as opposed
to other systems (audio tools, video/document conferencing, display multiplexers, dis-
tributed computing, shared file systems, whiteboards) which address only some subset
of the required functions or are oriented towards specific applications or situations. The
CCF software systems are outcomes of ongoing experimental research in distributed
computing and collaboration methodologies.

CCF consists of multiple coordinated infrastructural elements, each of which pro-
vides a component of the virtual collaborative environment. However, several of these
subsystems are designed to be capable of independent operation. This is to exploit the
benefits of software reuse in other multicast frameworks. An additional benefit is that
individual components may be updated or replaced as the system evolves. In particular,
CCF is built on a novel communications substrate called the Collaborative Computing
Transport Layer (CCTL) [5] and it is this that is the focus of this paper.

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2073, pp. 326−335, 2001.
Ó Springer-Verlag Berlin Heidelberg 2001c©

CCTL is the fabric upon which the entire system is built. A suite of reliable atomic
communication protocols, CCTL supports sessions or heavyweight groups and chan-
nels (with relaxed virtual synchrony) that are able to exhibit multiple Qualities of
Service (QoS) semantics. Unique features include a hierarchical group scheme, use
of tunnel-augmented IP multicasting and a multithreaded implementation. Other novel
inclusions are fast group primitives, comprehensive delivery options and signals.

The original CCTL did not incorporate failure resilience and experiences with the
system demonstrated this to be a critical requisite of any group communication proto-
col. To address this, the reliable multicast primitive has been modified to give reports
of suspected failure i.e. it has been enhanced to act as a failure detector. Thus every
multicast message acts as a probe of the sessions liveness. The main advantage of the
approach is that it does not require keep-alive packets (e.g. heartbeats). This not only
improves bandwidth utilization, but also increases scalability and reduces latency.

An error monitor protocol was introduced to process failure reports and to appro-
priately signal a second error handling protocol that an election must take place to form
consensus. We base consensus on a novel electorial algorithm that compiles a matrix
representation of the networks state. From this, we postulate that certain matrix trans-
formations will identify specific types of network failure.

The remainder of this paper is structured as follows. Section 2 introduces CCTL and
outlines its architectural design. Section 3 focuses on the CCTL failure model before
section 4 describes the lengths to which the architecture was adapted. Sections 5 and
6 describe the error monitor and error handler protocols before section 7 outlines the
role of a failure log and how the votes are returned. Section 8 discusses how the result is
calculated. Finally, in section 9 we give our conclusions and outline the future directions
of the research.

2 An Introduction To CCTL
CCTL is the communication layer of the CCF and as such it provides channel and ses-
sion abstractions to clients. At its lowest level, CCTL utilizes IP multicast whenever
possible. Given the current state of the Internet, not every site is capable of IP multicast
over WANs. To this extent, CCTL uses a novel tunneling technique similar to the one
adopted in the MBone. At each local subnet containing a group member is a multicast
relay. This multicast relay (called mcaster) receives a UDP feed from different subnets
and multicasts it on its own subnet. A sender first multicasts a message to its own sub-
net, and then sends the tunneled message to remote mcasters at distant networks. The
tunneled UDP messages contains a multicast address that identifies the target subnet.
TCP-Reno style flow control schemes and positive acknowledgments are used for data
transfer, resulting in high bandwidth as well as low latencies. This scheme has proven to
be effective in the provision of fast multiway communications both on local networks
and on wide area networks. IP multicast (augmented by CCTL flow control and fast
acknowledgment schemes) on a single LAN greatly reduces sender load, thus, through-
put at each receiver is maintained near the maximum possible limit (approximately 800
kB/s on Ethernet) with the addition of more receivers. For example, with a 20 member
group, CCTL can achieve 84% of the throughput of TCP to one destination. If in this
situation TCP is used, the replicated transmissions that are required by the sender cause
receiver throughput to deteriorate as the number of hosts increases. A similar effect is
observed for WAN’s; Table 1 in [6] compares throughput to multiple receivers from one
sender using TCP and CCTL.

327Introducing Fault-Tolerant Group Membership

Group
Module

Support
Modules

Comms
Module

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

���
���
���
���

��

Network (UDP IP Multicast)

CCTL

CCTL API

Application

Membership Services

Channel Session

Group Module

Fig. 1. CCTL Architecture

CCTL offers three types of delivery ordering: atomic, FIFO and unordered. FIFO
ordering ensures that messages sent to process q by process p are received in the same
order in which they were sent. FIFO guarantees point-to-point ordering but places no
constraint on the relative order of messages sent by p and q when received by a third
process r.

CCTL offers both reliable and unreliable message delivery. Reliable delivery guar-
antees that messages sent by a non-faulty process are eventually received (exactly once)
by all non faulty processes in the destination set. In a group communication system, this
can only be defined in relation to view change operations (membership protocols).

2.1 Architecture

Hierarchical Group Architecture CCTL is logically implemented as a group module,
interposed between applications (clients) and the physical network. This module imple-
ments the CCTL API and provides session and channel abstractions. Recall that chan-
nels are light weight groups supporting a variety of QoS semantics. Note that related
channels combine to form a heavy-weight group or session. Recall also that sessions
provide an atomic virtually synchronous service called the default channel. Sessions
and channels support the same fundamental operations (join, leave, send and receive)
but many channel operations can be implemented efficiently using the default session
channel. Session members may join and leave channels dynamically, but the QoS for
a particular channel is fixed at creation. Channels and sessions are destroyed when the
last participant leaves.

Fig. 1 shows the CCTL architecture. The group module consists of channel mem-
bership, QoS and session sub modules. The channel membership module enforces view
change messages (join and leave). The QoS module also provides an interface to lower-
level network protocols such as IP multicast or UDP and handles internetwork routing
(IP multicast to a LAN, UDP tunneling over WANs).

Several researchers have proposed communication systems supporting light-weight
groups. These systems support the dynamic mapping of many light-weight groups to

328 R.J. Loader, J.S. Pascoe, and V.S. Sunderam

a small set of heavy-weight groups. CCTL statically binds light-weight channels to a
single heavyweight session, mirroring the semantics of CSCW environments.

As noted above, CCTL implements channel membership using the default session
channel. Session participants initiate a channel view change by multicasting a view
change request (join or leave) on the default channel. The channel membership sub
module monitors the default channel and maintains a channel table containing name,
QoS and membership for all channels in the session. All session participants have con-
sistent channel tables because view change requests are totally ordered by the default
channel. This technique simplifies the execution of channel membership operations
considerably. For instance, the message ordering imposed by the default channel can
be used for ordering view changes. Furthermore, the implementation of channel name
services is trivial, requiring a single lookup in the channel table. The architecture of
CCTL logically separates channel control transmission (using the default channel) and
regular data transmission. This separation increases flexibility by decoupling data ser-
vice quality from membership semantics.

The hierarchical architecture is also scalable. Glade et al. [3] argue that the presence
of recovery, name services and failure detectors degrade overall system performance
as the number of groups increases. Typically failure detectors periodically poll group
members1. CCTL performs failure detection on transmission of each multicast message.
When a failed process is detected, a unified recovery procedure removes the process
from all channels simultaneously, thus restoring the sessions health.

3 Failure And CCTL

Recall that CCTL is implemented as a multithreaded system. However, only the channel
sender (CS) thread associated with each channel is of direct interest here; although
we acknowledge that the impact of failure during a membership change operation is
also an important issue. The sender thread implements a reliable multicast protocol and
there is one instance of it for each channel. For each host, the sender thread provides
a fault report for every send operation that fails. These operations include the channel
id, the message sequence number and the session ids of those members that have not
acknowledged within a time-out 2. The session id of each defaulting session member is
encoded as a bit mask.

It is envisaged that members can suffer a number of failures (e.g. process crash, link
crash). This can result in either a complete or a partial failure of one or more chan-
nels. The former problem will be handled by forming a consensus amongst live session
members that failed hosts should be removed from the session.The latter problem will
be rectified with a second election.

The impossibility result for achieving consensus in asynchronous, message passing
systems is well known. Fortunately the addition of even a weak failure detector allows
protocols that solve consensus to be developed.

The comprehensive collection and presentation of the scale of the partial failure
problem is an important issue. It is possible to provide automatic closing of channels
if it is clear that the majority of hosts are reporting a constant stream of irregularities.

1 E.g. Horus [7, 1] transmits a heartbeat message every two seconds.
2 The retransmission time-out is actually the slowest round-trip latency for the hosts in the ses-

sion plus an arbitrary constant

329Introducing Fault-Tolerant Group Membership

Automatic selective closing of channels will require further investigation as it involves
interaction with applications. This is currently the subject of active research.

Symmetric link failures are dealt with using a seniority mechanism. If the session
owner can not be reached (i.e. the network has partitioned or the host has suffered a
process crash failure), then the most senior of the remaining members can assume the
role of the session owner. Should the network subsequently remerge, the most senior of
the session owners asserts their authority and any others revert to being standard clients.
Typically, a network remerge is detected by the presence of multiple session owners.

The loss of given session member generates errors for any session member that is
party to a reliable channel. All live members receive copies of messages but the sender
will attempt to contact the failed member. Before the integration of fault tolerance, this
resulted in degraded performance that was exasperated as the number of outstanding
failures was increased.

4 Adapting The Architecture

It was desirable to investigate if fault tolerance could be introduced without major
changes to the existing applications code. The additions to the architecture are given
in Fig. 2. Three new threads have been added; these are called the Error Handler (EH),
Error Monitor (EM) and Election Timer (ET). In addition a new UDP socket, called
FailFd, is used to allow direct UDP communication between the channel sender, error
monitor, error handler and election timer threads. The error detector and error handler
also use a new reliable channel called the fail channel. The fail channel is similar to the
default channel in that every member automatically joins it upon joining the session.
Similar to the concept of the session owner one error handler will act as a coordinating
master EH(M) and the rest as slaves.

4.1 Monitoring Failure By Augmenting The Sender Thread

The sender thread provides a reliable multicast over CCTL channels. Reliability is en-
sured by noting acknowledgments from the members of the channel. The details of
channel membership are compactly included in the reliable channel message exchanges
as an array of unsigned integers. The session id is used to address the bit when its value
is changed. When used to represent channel membership, the mask will be termed the

Default Channel

Fail Channel

FailFD

EM EH ET CS

Fig. 2. The Additional Architecture

330 R.J. Loader, J.S. Pascoe, and V.S. Sunderam

channel member mask. For the purposes of this discussion membership is indicated
by a 1 and non-membership by a 0. When a message is sent, a copy of the channel
membership mask is included. This is used by the sender thread to check off the desti-
nation session members as they acknowledge. Since the sender’s copy is sent via shared
memory it is it automatically marked as having acknowledged. In this context the copy
has become an acknowledgment mask. The state of the acknowledgment mask after the
retransmission time-out will be termed the channel error mask.

5 The Error Monitor Protocol

The Error Monitor thread (EM), provides first level processing of failure and failure
correction reports from the transport mechanism. The main role of the EM is the main-
tenance of a failure log (that stores failure reports) and a channel monitor mask which
is used to indicate the failure status of all channels. The log is a shared data structure
between the Error Monitor and Error Handler threads. Details of how the log data is
recorded are not currently pertinent and are deferred to section 7. It is assumed at this
stage that ‘add to log’ and ‘remove from log’ functions for a single failure report are
present.

Failure reports are transmitted reliably and contain the channel error mask to iden-
tify those hosts that did not acknowledge the message. Recall that in CCTL, a dedicated
channel (called the fail channel) is provided for the transmission of failure reports and
the operation of the election protocols. As each host joins the session, they are automat-
ically admitted to the fail channel. Thus, a message transmitted on the fail channel will
be multicast to every host in the session.

On the detection of a failure, the reliable multicast transport mechanism will at-
tempt to resend the message. Each new failure report results in the log being updated.
If a failure report is received for a message that has not been logged, then a new entry
is made in the log. Otherwise, the appropriate log entry is located, and the correspond-
ing number of failure reports is incremented. Should a host recover and subsequently
acknowledge an outstanding message, then the associated number of failure reports is
decremented. If the number of reports reaches 0, then the entry is pruned from the log.
If the log becomes empty, then an ER CLEAR message is sent to the Error Handler.

If the number of failure reports exceeds a confirmation threshold3 for any failure
report, the protocol sends an ER IND message to the Error Handler thread (EH) to signal
that a confirmed failure has occurred. Thus, the complete protocol can be described as:

1. A FAIL REP message results in the log being scanned. If the FAIL REP corresponds
to a known failure, then the number of failure reports associated with that record is
incremented. If this value exceeds the confirmation threshold, then this indicates a
confirmed failure and an ER IND message is sent to the EH. Otherwise, a new entry
is added to the log and the channel monitor mask is updated to indicate the fault
status of the channel.

2. A FAIL CORR message decrements the number of failure reports associated with a
message. If all of the failing hosts subsequently deliver FAIL CORR messages for
a report, then the corresponding entry is pruned from the log. If the log becomes
empty then an ER CLEAR message is sent to the Error Handler.

3 The value used in our implementation of the approach is 3.

331Introducing Fault-Tolerant Group Membership

3. The reception of an EL START message from the EH means that any new FAIL REP
(or FAIL CORR) messages are suppressed, except for those that result from the
EL PROBE and EL CALL messages (see below). The occurrence of these events
must also generate an ER IND.

4. An EL RESULT message contains details of which members are to be removed
from the session. In this case, the log is pruned of all entries relating to those failed
members.

5. Finally, an EL END message indicates that the process is complete.

A further role of the EM thread is to govern an election time-out during the voting
phase. This topic will be explored in the next section.

6 The Error Handler Protocol
The function of the EH thread is to execute the election based failure recovery protocol.
As noted above, there are two versions of the EH protocol; the master, referred to as
EH(M) and the slaves EH(S). Clearly, EH(S) is a subset of EH(M). The master and slaves
collectively operate the protocol to request, call and vote in two elections to remove
failing hosts and deal with partial failures. Either the EH(M) or any EH(S) can request
an election as a consequence of receiving an ER IND message on the fail channel from
its local EM thread4. Thereafter the protocol proceeds as follows:

1. The host requesting an election sends a multicast EL REQ to the EH(M). This also
informs the other session members that an election is to take place.

2. The EH(M) responds to an EL REQ by setting the number of expected failures to
zero and multicasting an EL START followed by an EL CALL. If there is an ER IND
generated as a consequence of the call then the number of expected failures can be
calculated from the channel error mask. A time-out on the voting phase is set.

3. All recipients of the EL CALL send a multicast EL PROBE on the fail channel. This
can result in fresh failure reports being generated, the purpose of which is for all of
the sessions participants to obtain an up-to-date view of the sessions liveness.

4. An EL PROBE message can generate an ER IND message from the EM thread be-
cause of existing and possibly new failures. Alternatively an EL PROBE SUCC mes-
sage is sent by the EH(M), which indicates that all hosts are capable of responding
on the fail channel and that problems previously reported have been resolved.

5. Regardless of whether an ER IND is received, an EL RETURN is sent to the error
master using a point-to-point message. The return consists of the latest channel
error mask plus a serialized form of the session member’s failure log.

6. The EH(M) receives the EL RETURN from each live host. The count is terminated
either by all expected returns being received or the EM signals a time-out. The
latter is required to guarantee termination when more failures have occurred since
the EL CALL. Note also, that each returned failure log is combined to form the
global failure log.

7. The EH(M) calculates the result of the election from the data returned (see section
8). The election result is then multicast to the live session members in the form of
an EL RESULT message. Following this, each live member removes those members
that are agreed to have failed from its channels.

4 If at any time, the EH(M) is uncontactable or fails, the role is transferred to the sessions most
senior live member and the election is restarted (if one is in progress). Note that the topics of
EH(M) failure and its extension to partitioning are covered in more depth in [4].

332 R.J. Loader, J.S. Pascoe, and V.S. Sunderam

8. Note that while the election is in progress, further ER IND messages (other than
those expected during the election) are queued by all Error Handlers. On comple-
tion of the election, these queues are examined and a session election is called if
new failures have occurred.

9. The session election interrogates the global failure log compiled during the first
election. Failures on individual channels are considered to ascertain a deeper view
of the sessions health. For example, intermittent failures may be evident for a host
across the entire session (i.e. for all channels). In this case, the problem can be re-
solved by transmitting a second EL RESULT message. Alternatively, a host may be
experiencing problems on a subset of the sessions channels. This may be resolved
by resynchronizing the affected part of the system.

10. When the algorithm has finished, an EL END message is multicast to all of the
sessions participants informing them that the process is complete.

A more formal definition of the protocols expressed in state event table form is
given in [4]. This defines the state variables, the necessary predicates for guarding the
atomic actions and gives details of the message formats.

7 The Failure Log And Returning The Vote

The failure log records the stream of failure reports about messages on channels which
have not been acknowledged in time. Suppose that the first such report on a channel
arrives. Three pieces of information are given: the channel id, the message sequence
number and channel error mask with bits set corresponding to the destinations that have
not acknowledged the message. If the underlying condition that caused the generation
of the message is not cleared, the reliable multicast will send the message again to the
tardy hosts until the number of failure reports exceeds the confirmation threshold. Fault
reports from the same channel, but with greater message sequence numbers, can also
arrive. This is a boon since every failed trial at sending obtains the latest information
about the failed hosts in the channel.

It is necessary to keep only the latest copy of the error mask for the channel because
it represents the latest information on the session state as far as this channel is con-
cerned. All message sequence numbers are recorded. Suppose that the hosts concerned
are only temporarily slow in responding. A stream of FAIL CORR messages with chan-
nel id and sequence numbers will be received. The receipt of a FAIL CORR on a given
channel decrements the total of failure reports associated with a given report. If this
count reaches zero then the entry is pruned from the log. If the log is now empty, then
the session is considered to be nominal.

8 Producing The Result

The purpose of the election is to assemble from the live members an up to date collective
view of the health of the entire session. An initial vote can be taken on the first part
of each return, namely the channel error mask resulting from the transmission of the
EL PROBE. This is called the membership removal election and it results in any agreed
failed members being removed from the session. In the presence of partial failures, this
may not repair the session and so the global failure log is then inspected.

333Introducing Fault-Tolerant Group Membership

Algorithm 1: Membership Removal Algorithm
Code for host EH(M)

Initially VY
M V N

M VT nret 0; VR f alse; Ns number in session

1: while (nret < Ns - number of estimated failures (from initial ER IND))
2: (Receive a time-out; goto 8) _ (Receive EL RETURNi from host i)
3: Convert channel error maski to VT and add failure logi to global failure log

4: for (j 0; j < Ns; j++)
5: if VT [j] = 1 then VY

M [j] VY
M [j]+1

6: else V N
M [j] V N

M [j]+1
7: nret nret + 1

8: for (j 0; j < Ns; j++)
9: if VY

M [j]� dNs
2 e then VR[j] true

10: else VR[j] false
11: Send VR as an EL RESULT to all hosts

Fig. 3. Membership Removal Algorithm

8.1 Membership Removal Election
Once all of the votes have been returned the EH(M) conducts the membership removal
election. Declaring a vector VY

M for the ‘yes’ votes, a vector V N
M for the ‘no’ votes, a

temporary vector VT , a boolean result vector VR and an integer nret to count the number
of returns, the informal counting algorithm is given in fig. 3.

The approach taken aims to build a degree of fault tolerance that can allow a mi-
nority of simultaneous failures. Suppose there are Ns current session members and n f
failures when the probe took place. The elementary case is defined to be when the group
of remaining live members, Ns �n f , is the majority and there are no more failures dur-
ing the election. In this instance, the value of Ns is reduced by n f . Now consider that
Ns � n f is still the majority but the vote is split between those voting yes, nyes, those
voting no, nno, and those that have failed after the probe but before they can return a
result, n f ail. Again, the simple case is when the majority of Ns vote yes. A vote where
not enough members vote yes, nno > nyes, can arise because of a time skew between
members and is resolved by holding a session election. The case where not enough
votes are cast nyes+nno < dNs

2 e, can occur either when an election has taken place in a
minority partition or too many extra members have failed during the election. This case
is regarded as unrecoverable as is the one where a minority remains.

8.2 Session Election
The execution of the first election may result in the removal of some members. In the
presence of partial failures, this may not rectify the problem. An election is now per-
formed using the global failure log to produce an overall picture of the sessions state.

The result of the election is a pair of matrices, where the row index is the channel id,
c, and the column index is the host id s. A positive element in the ‘yes’ matrix signifies
that there have been reported errors about the respective member on the corresponding
channel. A zero value signifies no reported errors and a negative element indicates that
s is not a member of c. Declaring a pair of two dimensional vectors VY

S and V N
S to store

the result, we present the session election algorithm in fig. 4.

334 R.J. Loader, J.S. Pascoe, and V.S. Sunderam

Algorithm 2: Session Election Algorithm
Code for host EH(M)

Initially VY
S V N

S 0;VR f alse; Ns number in session

1: for (c 0; c < number of channels; c++)
2: for (s 0; s < Ns; s++)

3: if (s is a member of c) ^ (global log shows errors reported about s on channel c)
then VY

S [s;c] VY
S [s;c]+1

4: else if (s is a member of c) ^:(global log shows errors reported about s for channel c)
then V N

S [s;c] V N
S [s;c]+1

5: else VY
S [s;c] V N

S [s;c] �1
6: for (s 0; s < Ns; s++)

7: if 8c 2 channel �VY
S [s;c]� dNs

2 e then VR[s] true
8: else if 9c 2 channel �VY

S [s;c]� dNs
2 e then resynchronize channel(c)

9: if (VR has been updated) then send VR as an EL RESULT to all hosts

Fig. 4. Session Election Algorithm

9 Conclusion
This paper describes the novel fault tolerant group membership mechanisms recently
incorporated into the Collaborative Computing Transport Layer.

Future work is considering a number of avenues. In the short term we are con-
sidering the migration of this approach to wireless environments. It is the opinion of
the authors that collaborative computing can benefit greatly from the recent advances
in wireless networks and hand-held / wearable computing. When the approach docu-
mented here has been fully evaluated, insight will be gained as to how the research
should evolve.

References

1. K. P. Birman. Building Secure and Reliable Network Applications. Prentice Hall, 1997.
2. S. Chodrow, S. Cheung, P. Hutto, A. Krantz, P. Gray, T. Goddard, I. Rhee, and V. Sunderam.

CCF: A Collaborative Computing Frameworks. In IEEE Internet Computing, January / Febru-
ary 2000.

3. B. Glade, K. P. Birman, R. Cooper, and R. Renesse. Light weight process groups in the isis
system. Distributed Systems Engineering, 1:29–36.

4. R. J. Loader, J. S. Pascoe, and V. S. Sunderam. An Electorial Approach to Fault-Tolerance
in Multicast Networks. Technical Report RUCS/2000/TR/011/A, The University of Reading,
Department of Computer Science, 2000.

5. I. Rhee, S. Cheung, P. Hutto, A. Krantz, and V. Sunderam. Group Communication Support
for Distributed Collaboration Systems. In Proc. Cluster Computing: Networks, Software Tools
and Applications, December 1998.

6. I. Rhee, S. Cheung, P. Hutto, and V. Sunderam. Group Communication Support for Distributed
Multimedia And CSCW Systems. In Proc. 17th International Conference On Distributed
Systems, May 1997.

7. R. van Renesse, K. P. Birman, and S. Maffeis. Horus, a flexible group communication system.
In Communications of the ACM, April 1996.

335Introducing Fault-Tolerant Group Membership

	Introduction
	An Introduction To CCTL
	Architecture

	Failure And CCTL
	Adapting The Architecture
	Monitoring Failure By Augmenting The Sender Thread

	The Error Monitor Protocol
	The Error Handler Protocol
	The Failure Log And Returning The Vote
	Producing The Result
	Membership Removal Election
	Session Election

	Conclusion
	References

