
Performance Prediction for Parallel Local
Weather Forecast Programs

W. Joppich and H. Mierendorff

GMD – German National Research Center for Information Technology
Institute for Algorithms and Scientific Computing (SCAI)

Schloß Birlinghoven, 53754 Sankt Augustin, Germany

Abstract. Performance modeling for scientific production codes is of
interest both for program tuning and for the selection of new machines.
An empirical method is used for developing a model to predict the run-
time of large parallel weather prediction programs. The different steps
of the method are outlined giving examples from two different programs
of the DWD (German Weather Service). The first one is the new local
model (LM) of DWD. The second one is the old Deutschland Model
(DM) which is characterized by more complicated algorithmic steps and
parallelization strategies.

1 Introduction

Weather forecast belongs to a class of large applications for parallel computing
since more than ten years. The life time of the codes is considerably longer than
that of the fast evolving computer systems to be used for weather forecast.

Having in mind a large existing system or an hypothetical one, the key ques-
tions which have been posed by the DWD are: Will a one day LM forecast with
about 800 × 800 × 50 grid points, using a time step size of 10 seconds, be fin-
ished within half an hour. And for the DM: Will a one day forecast with about
811×740×40 grid points, using a time step size of 7 seconds, be finished within
half an hour, too. Additional questions concern the number of processors: for eco-
nomical and practical reasons the number of processors should not exceed 1024.
How should the components of the desired machine look like? Is it necessary to
change the code dramatically in order to reach the required speed?

2 Basic Decisions

At first, proper test cases had to be defined. To avoid technical problems with
parallel input and output, an artificial topography has been chosen. The initial
weather situation is artificial, too. Local models require an update of boundary
values from time to time. The new values are generated within the program itself,
again in order to avoid either input and output from files or communication with
a global model. To have a rather realistic view of the algorithm the decision was
to model a 24 hour forecast. By this, especially the time-consuming radiation

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2073, pp. 492–501, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Performance Prediction for Parallel Local Weather Forecast Programs 493

part is included into the modeling pretty well. For each program test cases are
selected in order to derive the model. The final model is applied to predict the
run time for the test cases. Where possible, some test cases were not used for
modeling but have been left for verification of the performance prediction model.
Because the test cases have to run on existing machines and on machines being
considerably smaller than the target machine the resolution is far from the finally
desired one. The test cases which have been considered both for LM and DM
are listed in Table 1.

Table 1. Collection of test cases for LM and DM

resolution time-step processors
x-dir. y-dir. z-dir. ∆T [s]

test cases LM 51 51 10, 15, 20 60 1x1 to 4x8
153 153 10, 15, 20, 25 30 4x4 and 4x8
325 325 35 30 4x8

target resolution LM 800 800 50 10

test cases DM 41 37 20,30 15, 45, 90 4x4
81 73 20 90 2x8, 4x4, 8x2

16x4, 4x16, 8x8
81 73 30, 40 90 4x4
121 109 30 90 4x4, 8x8
271 244 40 90 8x8

target resolution DM 811 741 40 7

3 Analysis of the Parallel Programs

Partial differential equations are the mathematical background of weather pre-
diction models. The equations are discretized in space and in time. The programs
are written in FORTRAN 90 and the message passing interface MPI is used for
communication on parallel machines. The basic concept of parallelization is grid
partitioning. This concept is realized in a straight forward manner, including the
usual overlap region for each partition both in the LM and in the DM. Never-
theless, the mapping of the different data fields to logical processes is slightly
different within the two programs. In Figure 1 the 2D-partitioning strategy and
the mapping to processes is shown both for the LM and for the DM. The number
of inner points per partition and the logical process numbers are given. For the
DM (right picture) the process identification number pid is determined by the
given pair of indices (pidx, pidy): pid = nprocx(pidy − 1)+ pidx where the number
of participating processes nproc is the product of nprocx and nprocy. The inte-
rior overlap areas are not shown. But this overlap area in practice enlarges for
instance a DM partition by two lines and columns in each direction. This type
of partitioning is used everywhere within the LM and in most parts of the DM.

494 W. Joppich and H. Mierendorff

Fig. 1. LM grid (51× 51, left) partitioned for 4× 4 processes, DM grid (41× 37, right)
partitioned for 12 = 3 × 4 processes

The general approach to solve the discrete equations derived from the con-
tinuous model consists of an iterative sequence of several phases like dynamics
computations, physics computations, FFT, Gauss-elimination, local communi-
cation, global communication, input/output of results, and transposition of data
within the system of parallel processes. The LM equations are discretized explic-
itly in time and require no special solver for large systems of algebraic equations.
The DM instead uses a semi-implicit method which leeds to a discrete equation
of Helmholtz type. The corresponding discrete equation is solved by a well-
established algorithm using Fast Fourier Transformation (FFT) in combination
with Gauss elimination (GE). The data-partitioning for these cases is described
in Figure 2. It is necessary to switch between the different partitioning strategies
within the algorithm (transposition). Such a transposition is a very challenging
task for the communication network of massively parallel computers.

The programs have been instrumented such that they provide with detailed
timing information about every essential part of the program. From this infor-
mation the computational complexity of the two main parts of each program
(dynamics and physics) have been modeled. The model depends on critical pa-
rameters of the parallel application like size of the partition, relative position of a
partition within the partitioning structure (boundary process, interior process),
and time steps. The analysis of the parallel programs has led to a complete set of
information about the communication pattern, the communication complexity,
and the communication frequency of the programs. As an example, the result
of the analysis is given for the subroutine TRANSPOSE of the program DM.
This subroutine, which is called four times per time step, exchanges the data
between the different processes when switching from 2D-partitioning to FFT
row partitioning, to GE column partitioning, and back to 2D-partitioning. FFT
and GE belong to the dynamics part of the DM. In Table 2 myi, myj, and myk

Performance Prediction for Parallel Local Weather Forecast Programs 495

Fig. 2. DM grid (41 × 37) distributed to 3 × 4 processes for the steps FFT (left) and
GE (right)

denote the local size of the 2D partition in x, y, and z direction, respectively.
rfft and cge are the rows and columns of a process for FFT and GE (the index
pp denotes the same quantity for the partner process).

Table 2. Messages which are sent by TRANSPOSE in DM

no. of calls per day: 24·3600
∆T

total no. of messages message
action processes per process length
2D → 1D-FFT nprocx × nprocy nprocx − 1 myk · rfftpp · myi
1D-FFT → 1D-GE nprocx × nprocy nproc − 1 myk · rfft · cgepp

1D-GE → 1D-FFT nprocx × nprocy nproc − 1 myk · rfftpp · cge
1D-FFT → 2D nprocx × nprocy nprocx − 1 myk · rfft · myipp

The different phases are synchronized because of data dependences and by
local and global communication phases. The LM also contains MPI barrier calls
for synchronization and the DM uses wait-all at the end of subroutines which
realize the exchange of data with neighboring processes. Therefore, an additive
model can be used to estimate the overall runtime by adding the runtime of
all the single phases: dynamics, physics, FFT (only DM), GE (only DM), and
communication which includes the time for buffering of data into a linearly
ordered send buffer (and similar for the receive).

496 W. Joppich and H. Mierendorff

4 Modeling Computational Time

For estimating the runtime of the dynamics part of the LM it turned out that
the numerical effort is mainly depending on the number of interior grid points.
The upper left picture of Figure 3 shows this for the first hour of a low resolution
experiment. There is some effort related to exterior boundary points which can
be identified by analyzing several examples numerically. But this has almost
no influence. The dynamics computing time depends linearly on the number of
levels in vertical direction and linearly on the time step size as the lower pictures
of Figure 3 show for the DM.

1
2

3
4

R1

R2

R3

R4

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

Dynamic, 51x51x20-4x4-60/1h

1
2

3
4

R1

R2

R3

R4

2 0

2 2

2 4

2 6

2 8

3 0

3 2

3 4

3 6

 Physics, 51x51x20-4x4-60/1h

Fig. 3. Distribution of computational time for the first hour. LM dynamics (upper left)
and LM physics (upper right) on 4 × 4 processors, low resolution. Linear dependence
of the dynamics computation time for DM (levels, lower part left and time-step size,
lower part right).

The computational time is approximated by a multi-linear function in the
number of interior grid points (and derived quantities) and the number of time
steps. The coefficients of the multi-linear function have been determined by a
least squares method in order to match all considered measurements. Because it

Performance Prediction for Parallel Local Weather Forecast Programs 497

is intended to extrapolate the performance of very large application cases running
on very large computing systems on the basis of measurements of relatively small
examples running on small parallel systems the leading term of the function has
to be determined as exact as possible.

The runtime of physics computations depends on the number of grid points,
the hour, and on the local weather situation. Especially the last mentioned ef-
fect causes non-balanced load, see the upper right picture in Figure 3. To avoid
the dependence on the hour it is possible to accumulate all values of a day.
Since the different numerical processes of the parallel codes are synchronized by
data dependences and calls of some synchronizing MPI-constructs, the additive
model has been justified and therefore the maximum runtime among all pro-
cesses is of main interest. However, this maximum should not be caused by the
number of grid points but by the local weather. The physics measurements are
related according to the effective number of grid points before using them for
estimating the runtime of physics computations. In principle, it is the ratio of
physics and dynamics computation time which is approximated in order to get
the computational time for the physics part of the programs [4].

5 The Machine Models

The machine models are based on measurements on existing machines. The
benchmarking itself took much time and new questions arose while evaluating
the results. The large amount of data required a careful analysis and not all of
the data was reliable at all. The programs behaved differently on different archi-
tectures. One example is the influence of cache effects. This was observed both
for LM and DM. Therefore, if necessary, the model includes for each part of the
algorithm a cache factor which represents the effect of slow down by L2-cache
misses. This factor depends on the local partition size, on the size of the cache
and on the algorithm. It is desirable after all that the local partition fits into
the cache. Figure 4 shows these slow-down factors both for the dynamics com-
putation and the Gauss elimination in DM. This heuristic approach is strongly
depending on the program under consideration and is reliable only in the range
of the measured points. In addition to this cache effect the memory access is also
included into the models. The time for copying data from 3D-data structures into
linearly organized send buffers and back from receive buffers into 3D-arrays is
not necessarily neglectable. The model for buffering is based on measurements
with a program which uses a similar data structure for data access and storing as
in the applications themselves. The analysis of the communication pattern com-
bined with measurements was used to set up a formula to compute the time for
local communication. Models for the barrier- and reduce-function, respectively,
have been developed from measurements, too. They also reflect the underlying
implementation of these MPI-constructs. The knowledge about the frequency
and the required action of these events finally allows to estimate the time for
these parts of the programs (see Tables 6 and 7).

498 W. Joppich and H. Mierendorff

1

1.1

1.2

1.3

1.4

1.5

2000 4000 6000 8000 10000 12000 14000 16000 18000
cache/xz

 Slow down by cache misses for dynamics computations of DM

1

1.05

1.1

1.15

1.2

1.25

1.3

2000 4000 6000 8000 10000 12000
cache/xy

Slow down by cache misses for Gauss elimination of DM

Fig. 4. Model for slow down of the DM by cache effects; dynamics left, GE right,
Origin2000

6 Verification of the Models

The initial model for the LM has been developed on a SP-2 with 32 processors
using 9 out of 13 parallel runs. Due to the needs of vector machines the models
have been ported to an SX-4 using 3 calibration runs to adapt the model pa-
rameter. The vector start-up and the computational effort per grid point had
to be included. This could be done because the main direction of vectorization
was known. Further, the partitioning has to be adapted to the direction of vec-
torization in order to get long vectors. But none of the application programs is
particularly tuned for vector processors, yet.

For proving the reliability of the models, the deviation of model evaluation
and runtime values for a collection of test cases is shown. Some of the test
cases are used for model development, others are exclusively used for testing
the performance prediction. The values are given in Table 3 for the LM on an
SP-2. Similar results are given for the LM running on an SX-4 in Table 4. All
times concern 24 hour simulations. The different cases are characterized by the
resolution in x, y, and z direction, the number of processors, nprocx × nprocy,
and the time step size in seconds (x × y × z − r × s − ∆T).

Table 3. Comparison of measured and estimated timing values for the LM on SP-2

case runtime [h] deviation [%]
measured estimated

51 × 51 × 20 − 1 × 1 − 60 8.75 8.85 1.17
51 × 51 × 20 − 2 × 2 − 60 2.42 2.48 2.41
153 × 153 × 20 − 4 × 4 − 30 11.20 11.30 0.85
153 × 153 × 25 − 4 × 8 − 30 7.42 7.47 0.78
325 × 325 × 35 − 4 × 8 − 30 43.50 45.87 5.44

Performance Prediction for Parallel Local Weather Forecast Programs 499

Table 4. Comparison of measured and estimated timing values for the LM on SX-4

case runtime [h] deviation [%]
measured estimated

153 × 153 × 20 − 1 × 1 − 30 1.23 1.32 7.40
153 × 153 × 20 − 1 × 4 − 30 0.35 0.34 -0.99
255 × 255 × 25 − 1 × 1 − 30 3.56 3.77 5.86
255 × 255 × 25 − 1 × 4 − 30 1.02 0.96 -6.07
255 × 255 × 25 − 1 × 12 − 30 0.37 0.33 -11.24

Models of the DM have originally been developed for the VPP700 as well
as for an Origin2000. The verification runs for the DM on a VPP700 show a
maximum deviation from measurement in the range of less than ten percent. For
a twelve hour forecast (the above tables show results for 24 hour simulations) on
an Origin2000 Table 5 shows an acceptable agreement between estimated and
measured time.

Table 5. Comparison of measured and estimated timing values for the DM on Ori-
gin2000

case runtime [h] deviation [%]
estimated measured [s]
(12 hrs) (12 hrs)

41 × 37 × 20 − 1 × 1 − 90 216,54 222,62 -2,73
41 × 37 × 30 − 4 × 4 − 90 33,73 32,93 2,44
81 × 73 × 20 − 8 × 8 − 90 31,19 32,25 -3,29
81 × 73 × 20 − 16 × 4 − 90 34,72 37,41 -7,18
121 × 109 × 30 − 8 × 8 − 90 77,84 80,84 -3,72
271 × 244 × 40 − 8 × 8 − 90 468,78 447,41 4,78

7 Application of the Models

As already mentioned, the desired resolution for the LM is 800×800×50 with
∆T = 10 seconds. The extrapolation to this final resolution both in space and
time and considering the defined set of parameters for the test case neglects
the fact that not each of the systems having in mind allows an extremely large
configuration. Therefore the 1024-processor system is assumed to be a cluster
architecture, if necessary. The parameters for the cluster network communication
can be specified.

Applying the model to a T3E-600 the prediction for the LM delivers an
estimated runtime of more than 5 hours. The expected distribution of work is
specified in Table 6 both for 1024 and 2048 processors.

500 W. Joppich and H. Mierendorff

Table 6. Runtime estimation for the final resolution on T3E-600

case runtime distribution of work [%] eff.
[h] dynam. physic comm. buffer. barrier reduce

800×800×50−32×32−10 5.62 54.36 41.21 0.75 3.61 0.06 0.01 0.82
800×800×50−32×64−10 3.08 53.29 41.06 1.11 4.40 0.11 0.03 0.75

This shows that the processor speed compared to the T3E-600 has to be
increased by a factor of about 11 in order to reach the requirements of the DWD
for the LM. The results also show that the T3E interconnect network is powerful
enough to work with processors having the required speed. We have applied
the model to a currently available Origin2000 (195 MHz processors, Table 7).
Because of the shared memory architecture we had to assume this machine to
consist of several (4×4 and 8×8) Origin2000 systems with 64 shared memory
processors each.

Table 7. Runtime estimation for the final resolution on an Origin2000 cluster archi-
tecture

case runtime distribution of work [%] eff.
[h] dynam. physic comm. buffer. barrier reduce

800x800x50-32x32-10 5.53 76.34 17.73 4.19 1.48 0.25 0.01 0.83
800x800x50-64x64-10 1.78 71.03 16.76 8.67 2.55 0.94 0.05 0.64

8 Conclusion

Two performance prediction models (for LM and DM) have been developed both
for vector machines and for clusters of shared memory architectures. Although
the old DM is no longer used for operational purposes it may serve as bench-
mark because of its sophisticated algorithm and due to the changing partitioning
strategy within different algorithmic steps. The original version of the DM con-
tains the data transposition as described in [1] - [3]. This type of transposition
turns out to be the bottle-neck on large systems because the number of messages
then increases with the square of the processors used (a transposition strategy
which linearly depends on the number of processors is assumed for the model).
Further improvement should be made by parallel FFT and Gauss-elimination.
Otherwise the degree of parallelism would be limited by the 1D-partitioning of
these computational steps.

The initial version of the LM performance prediction model (1998) predicted
that no 1024-processor system of at that time existing processors would reach
the goal of finishing a one day forecast using the required resolution within half

Performance Prediction for Parallel Local Weather Forecast Programs 501

an hour computing time. But it was observed that a Cray T3E-like network is
powerful enough to work with processors which are up to ten times faster. Such
a T3E-like system with nodes of approximately seven to ten GigaFlop has been
estimated to be able to satisfy the required condition.

After adaptation of our model to the needs of vector machines (1999) and
choosing an appropriate partitioning (long vectors) large systems of about 512
vector processors are expected to be close to the requirements. It is still an open
question which performance parameters the architecture at the DWD will show
at the end of 2001.

The development of the performance prediction model has led to improve-
ments of the codes themselves. The application of the models allows to estimate
the influence of hardware parameters of future computer architectures to oper-
ational weather forecast.

Acknowledgments

This work has been initiated by G.-R. Hoffmann from DWD. E. Krenzien and
U. Schättler advised us how to use the codes. We had helpful discussions with
E. Tschirschnitz (NEC) and R. Vogelsang (SGI). K. Cassirer (GMD), R. Hess
(GMD, now DWD), and H. Schwamborn (GMD) substantially contributed to
this work.

References

1. D. Dent, G. Robinson, S. Barros, L. Isaksen: The IFS model – overview and parallel
strategies. Proceedings of the Sixth Workshop on Use of Parallel Processors in
Meteorology, ECMWF, 21–25 November 1994.

2. Foster, I., Gropp, W., Stevens, R.; The parallel scalability of the spectral transform
method. Monthly Weather Review 120 (1992) 835 – 850.

3. U. Gärtel, W. Joppich, A. Schüller, Portable parallelization of the ECMWF’s
weather forecast program, Arbeitspapiere der GMD 820, GMD, St. Augustin, 1994.

4. H. Mierendorff, W. Joppich, Empirical performance modeling for parallel weather
prediction codes, Parallel Computing, 25 (1999), pp. 2135-2148.

5. W. Gropp and E. Lusk, Reproducible Measurements of MPI Performance Charac-
teristics, Argonne NL, http://www.mcs.anl.gov/mpi/mpich/perftest or by ftp
from ftp://ftp.mcs.anl.gov/pub/mpi/misc/perftest.tar.gz.

6. P. J. Mucci, K. London, J. Thurman, The MPBench Report, November 1998,
http://www.cs.utk.edu/˜mucci or by ftp from
ftp://cs.utk.edu/thurman/pub/llcbench.tar.gz.

7. Pallas MPI Benchmarks - PMB, Part MPI-1, Revision 2.1, 1998,
http://www.pallas.de/pages/pmbd.htm.

8. R. Reussner, User Manual of SKaMPI (Special Karlsruher MPI-Benchmark), Uni-
versity of Karlsruhe, Department of Informatics, 1999.

	Introduction
	Basic Decisions
	Analysis of the Parallel Programs
	Modeling Computational Time
	The Machine Models
	Verification of the Models
	Application of the Models
	Conclusion

