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Abstract. In many biology, chemistry and physics applications quan-
tum mechanics is used to study material and process properties. The
methods applied are however expensive in terms of computational as
well as memory requirements and scale poorly. In this work we describe
an alternative method based on wavelets with better scaling properties.
We show how the Kohn-Sham equations, both spin polarized and spin
unpolarized, are solved and give a description of pseudopotentials and a
preconditioned conjugate gradient method to solve the Hartree potential
and the Schrödinger equation. Example calculations for small molecules
are given to show the validity of the method.

1 Introduction

Most of low-energy physics, chemistry and biology can be explained by the quan-
tum mechanics of electrons and ions. First-principles methods based on density
functional theory have proven to be an accurate and reliable tool in under-
standing and predicting a wide variety of physical and chemical properties [1].
Traditional ab-initio methods are however extremely expensive in terms of com-
putational as well as memory requirements. Typically, the computer time scales
as N3 where N is the number of electrons in the system, restraining the system
sizes that can be examined. In order to treat grand challenge problems, such as
computational description of catalytic processes, a significant increase in compu-
tational power is required or new methods have to be devised with better scaling
properties. One such method based on wavelets is described in this paper.

In section 2 wavelets are discussed. In section 3 the method used to solve
the Kohn-Sham equations is described. In section 4 numerical results of some
example calculations are given and we finish with some conclusions.

2 Interpolating Wavelets

Most methods for solving electronic structure calculations employ plane waves or
atomic orbitals (LCAO). Plane waves have the advantage of being orthonormal
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and complete, permitting systematic convergence and straightforward evaluation
of forces, which is essential for the extension to molecular dynamics simulations.
But they are not efficient in describing localized orbitals and wavefunctions in
surfaces or clusters.

On the other hand localized bases, like LCAO or Gaussians, are usually
over-complete, lack explicit convergence properties and result in difficult force
calculations.

However, the well known fact that electronic wave functions vary much more
rapidly near the atomic nuclei than in inter-atomic regions calls for a multireso-
lution approach. This is provided by an alternative basis, formed of wavelets [2].
This alternative was first presented by Cho et al. [4] who employed (Mexican
hat) wavelets in solving the Schrödinger equation for Hydrogen like atoms. The
idea is that a wavelet basis set combines the desirable properties of both local-
ized as well as plane wave basis sets. Its main advantage lies in its capability to
provide a multiresolution analysis, allowing one to use low resolution and to add
extra resolution only in those regions where necessary. In this way, wavelets as
basis sets allow accurate description over a range of length scales.

Later, self-consistent LDA calculations on H2 and O2 using Daubechies wave-
lets were reported [5,6]. The use of interpolating wavelets has been introduced
recently by Lippert et al. [7]. A review on wavelets in electronic structure has
been given by Arias [3].

The multiresolution property of the wavelets is related to the dilation equa-
tion

φ(x/2) =
∑
l∈Z

hlφ(x − l). (1)

Figure 1 shows how a wavelet at one level is, according to this dilation equation,
the weighted sum of wavelets at one level lower.
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Fig. 1. Construction of an interpolet using the dyadic equation. An interpolet (right)
is the weighted sum of interpolets at one level lower (left).

Because of the freedom in choosing the filter coefficients hl, very many differ-
ent kinds of wavelets exist. This freedom can be used to give the wavelets other
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favorable properties. The interpolating wavelets, interpolets for short, were con-
structed by Donoho [9]. The reason we have chosen for these wavelets for our
basis is that they combine the multiresolution property of general wavelets with
the smoothness of interpolation.

Within the family of interpolets there are again various members. These
differ in the number of non-zero filter coefficients hl. This number of non-zero
filter coefficients is related to the support length of the interpolet, i.e. the range
in which the interpolet is non-zero. The number of non-zero filter coefficients
also determines the degrees of freedom to imply the other properties of the
interpolets. First, cardinality is implied, i.e. φ(k) = δk,0, ∀k ∈ Z. The remaining
freedom is used for polynomial span. This means that the higher the number of
non-zero filter coefficients, the higher the degree M of polynomials that can be
represented exactly.

The basis we employ consists of interpolets of different resolution levels j
and of different centers k, i.e. various dilations and translations of one mother
function. A function f is thus expanded as

f(x) =
∑

j

∑
k

sj
kφj(x − k). (2)

An important aspect is that not all possible translations and dilations have
to be present. If high frequency oscillations are present only in a small range,
only in this range narrow interpolets are needed, whereas it suffices to use only
broader interpolets in the remaining space, resulting in a truncated basis. Each
interpolet coefficient sj

k can be calculated from the functional values of f in
a fixed number of calculations. The interpolet transform is thus linear in the
number of interpolets used.

In order for the basis to be useful we want to perform operator actions on
the interpolets. The action on the interpolets should be written in terms of the
interpolets themselves. An example of an operator needed in our calculations
is the second derivative operator. For interpolets in the same resolution level a
relation

L0
l =

∫
dx φ(x − l)

d2

dx2 φ(x) (3)

is obtained. By substituting the dilation equation one obtains the recursive re-
lation [10]

L0
l = 2

∑
l1

∑
l2

hl1hl2L2l+l1−l2 . (4)

Because of the compact support of the interpolets, most coefficients L0
l are equal

to zero and the non-zero elements can be calculated. From these the inter-level
coefficients can be calculated as well, again, using the dilation equation. Using
these coefficients the action of the operator can be calculated in linear time with
the number of basis functions used.

Interpolets in three dimensional space are created as a tensor product of one
dimensional versions.
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3 Approach

A method to resolve the electronic structure is by using a variational principle:

E(Ψ) =
〈Ψ |Ĥ|Ψ〉
〈Ψ |Ψ〉 , (5)

where 〈Ψ |Ĥ|Ψ〉 =
∫

dr Ψ∗(r)ĤΨ(r), Ψ denotes the electronic wave function and
Ĥ the Hamiltonian. The energy computed from a guess Ψ is an upper bound to
the true ground state energy E0. Full minimization of the functional E(Ψ) will
give the true ground state Ψgs and energy E0 = E(Ψgs).

Density functional theory states that the many electron problem can be re-
placed by an equivalent set of self-consistent one-electron equations, the Kohn-
Sham equations

ĤΨσ
i (r) =

(
−1

2
∇2 + V̂pp(r) + V̂H(r) + V̂ σ

xc(r)
)

Ψσ
i (r) = εσ

i Ψσ
i (r). (6)

The eigenfunctions Ψσ
i are the one-electron wavefunctions that correspond to

the minimum of the Kohn-Sham energy functional. In these wavefunctions, i is
the orbital index and σ denotes the spin, which can be either up ↑ or down ↓.

The Hamiltonian Ĥ consists of four different parts: a part related to the
kinetic energy of the electrons, the pseudopotential V̂pp, the Hartree potential
V̂H and the exchange correlation potential V̂xc.

The interaction of the positively charged nuclei with the electrons is described
using the pseudopotential V̂pp instead of using the full Coulombic potential. The
pseudopotential usually consists of both a local and a non-local part

V̂pp(r) = Vlocal(r) +
∑

l

|l〉V̂l(r, r′)〈l|. (7)

The Hartree potential V̂H describes the interaction between electrons and is
given by

V̂H(r) =
∫

dr′ ρ↑(r′) + ρ↓(r′)
|r − r′| . (8)

Finally, the exchange correlation potential V̂xc describes the non classical in-
teraction between the electrons and is given by the functional derivative of an
exchange correlation energy functional

V σ
xc(r) =

δExc(ρ↑, ρ↓)
δρσ

. (9)

In these equations ρσ is the electron spin density, defined as

ρσ(r) =
∑

i

fσ
i |Ψσ

i (r)|2, (10)
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where fσ
i is the occupation number, i.e. the number of electrons in orbital i.

In case of LSD every orbital can contain at most one electron. In case of LDA
where there is no longer a distinction between spin up and spin down, orbitals
can contain at most two electrons.

As can be seen from eqs. (6) to (9) the Hamiltonian Ĥ depends on the density
and via eq. (10) thus on the wavefunctions. This system of non-linear coupled
differential equations can be solved self-consistently. Figure 2 gives a schematic
overview of the approach used. We start with an initial guess for the orbital
wavefunctions {Ψ0

i }. The corresponding electron density is then calculated using
eq. (10). Given this density ρ the Hartree potential, the exchange correlation
potential and the non-local part of the pseudopotential are calculated.

Vxc
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Fig. 2. Scheme used for solving the Kohn Sham equation.

Once the potentials have been calculated, they are kept constant. As a result
the Hamiltonian does no longer depend on the wavefunction Ψ and we can use a
steepest descent or conjugate gradient method to solve the remaining minimiza-
tion problem.

After some iterations of this minimization the wavefunction and thus the
density will be changed so much that the potentials have to be updated to this
new wavefunction. The number of steps before the potentials are recalculated
can be chosen fixed or it can depend on a convergence criterion. Given the
new potentials the energy minimization is started again, etc. This procedure is
repeated till self-consistency.

The rest of this section describes the various blocks in the scheme in more
detail.

3.1 Hartree Potential

An important part of the electronic structure calculations is to solve the type of
integrals as in eq. (8). However, such integrations are very costly, and problematic
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because of the singularity. Instead of calculating the Hartree potential in this
way directly, it can also be calculated by solving the Poisson equation

∇2VH(r) = −4πρ(r). (11)

Written in terms of wavelets, this is equivalent to solving the set of linear equa-
tions Ls = r, where L is the matrix that represents the laplacian in wavelet
space, s are the wavelet coefficients of the potential and r are the wavelet coef-
ficients of the density.

Solving straightforwardly s = L−1r is not the way to go. Namely, L is singular
so the inverse does not exist. And even if it would exist, it would probably,
contrary to the original matrix L, not be a sparse matrix. This results in an
inefficient calculation, quadratic in the number of basis functions. A better way
is to use an iterative procedure like the conjugate gradient method to minimize
the function f(s) = 1

2sLs − rs, since in this minimum ∇f(s) = Ls − r = 0.
Because of the large condition number of the matrix representing the laplacian
a preconditioner is used to improve the convergence.

For periodized wavelets the matrix L is singular because of the existence
of multiple solutions. This can be resolved by applying boundary conditions
through a constraint, e.g using a penalty function.

3.2 Pseudopotential

It is well known that most physical and chemical properties are dependent on the
valence electrons to a much greater degree than that of the tightly bound core
electrons. It is for this reason that pseudopotentials can be used. This has the
advantage of a much smaller number of electrons and smoother orbitals, where
the singularity in the normal electron-nucleus interaction is removed.

Various pseudopotentials are described in the literature. We have chosen
to implement both simple versions and state of the art ones. The Shaw [12]
pseudopotential and the Topp-Hopfield [13] pseudopotential are examples of
simple, completely local pseudopotentials. The Bachelet-Hamann-Schluter [14]
pseudopotential is more advanced but especially suited for plane waves what
makes the non local part hard to implement. The Hartwigsen-Goedecker-Hutter
[15] pseudopotential is state of the art and also very well suited for grid methods.

The local part of the pseudopotentials only depends on the positions of the
nuclei. Thus for a fixed nuclear configuration this only has to be calculated
once. The non-local part however depends on the wavefunction and thus has to
be recalculated in every step.

3.3 Exchange Correlation Potential

The first approximation for the exchange correlation potential is the local spin
density approximation LSD.

ELSD
x = −

∫
dr cx

(
ρ↑(r)

4/3 + ρ↓(r)
4/3

)
. (12)
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The corresponding exchange potentials are

V σ
x (r) = −4

3
cxρσ(r)1/3. (13)

where cx = 3
4

( 6
π

)1/3. In case of LDA this reduces to V LDA
xc (r) = − 4

3cxρ(r)1/3

where the constant cx is equal to 3
4

( 3
π

)1/3. More precise approximations for the
exchange correlation potential do not only use the density, but also the gradient
of the density ∇ρ. These methods are called generalized gradient approximations.
We implemented one by Becke [16] and one by Perdew, Burke and Ernzerhof
[17]. In these references only the energy functionals are given. The corresponding
potentials can be derived by taking the functional derivative to the density. These
potentials will not only depend on the density and its gradient, but also on the
laplacian of the density.

3.4 Schrödinger Equation

The way we look for the ground state of the electronic wavefunction is by min-
imizing the total energy given by eq. (5). This total energy is related to the
energies Ei of the individual orbitals Ψi, i.e.

Ei(Ψi) =
〈Ψi|H̄|Ψi〉
〈Ψi|Ψi〉 , (14)

where the orbital wavefunctions Ψi satisfy the appropriate orthonormalization
conditions.

The minimization procedure we use is a steepest descent or conjugate gradi-
ent method. In such a method the wavefunction is updated in a certain direction
gi

Ψ
(n+1)
i = Ψ

(n)
i + λ

(n)
i g

(n)
i . (15)

In the steepest descent method, this direction is the direction of the gradient the
wavefunction, which can be calculated by [11]

δEi(Ψi)
δΨ∗

i

= H̄Ψi. (16)

Minimizing in the direction of the gradient seems a natural way to work. How-
ever, it has been proven that it is much more efficient to regard also the search
directions of previous steps. This is employed in the conjugate gradient method.

The only free parameter we have is λ. This determines the step size and
should be chosen such that the energy is minimized in our search direction. A
simple method is to take a fixed (small) step size. However, this does probably
not bring us to the minimum in our search direction. An optimal value for λ

(n)
i

can be derived by substituting equation 15 in eq. (14) and rewriting it as

E
(n+1)
i =

d + eλ + fλ2

1 + bλ + cλ2 , (17)
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where the coefficients b, c, e and f are integrals that have to be evaluated and d

is the old energy E
(n)
i . Given these coefficients the minimum of the function for

the energy, eq. (17), can be solved analytically.
However, this method only works as long as the Hamiltonian is constant.

In general this is not the case. The non-local part of the pseudopotential, the
Hartree potential and the exchange and correlation potential depend on the
wavefunction and thus change together with this wavefunction in every step
of the iteration. Because of this, the energy is minimized to fixed potentials,
which are then updated, giving rise to a new minimization. And this procedure
is repeated till self-consistency is reached.

4 Example Calculations

A code has been developed that implements the scheme described above, where
interpolating wavelets are used as a basis. Because of the use of pseudopotentials
there is an offset in the energies calculated. However, most interesting properties
depend on differences of energies, where these offsets cancel each other.

For instance, for single atoms, using differences of energies, ionization and
excitation energies can be calculated. Ionization energies for the first 11 elements
of the periodic table are given in table 1. All calculations have been performed on
a grid of 643 points using Hartwigsen pseudopotentials, LDA or LSD exchange
and no correlation energy.

Table 1. First and second ionization energies for various atoms. Experimental results
are from www.webelements.com.

Atom First ionization energy Second ionization energy
(eV) (eV)

calculated experiment calculated experiment
H 13.0 13.6
He 24.3 24.6 52.8 54.4
Li 5.4 5.4
Be 8.9 9.3 18.0 18.2
B 9.0 8.3 24.4 25.2
C 12.3 11.3 25.3 24.4
N 15.6 14.5 30.7 29.6
O 14.2 13.6 36.4 35.1
F 17.1 17.4 34.2 35.0
Ne 21.6 21.6 40.6 41.0
Na 5.2 5.1

For molecules, bond properties can be calculated. The energies of different
diatomic molecules have been calculated for different inter-nuclei distances (R).
As an example, the results for carbon monoxide CO has been plotted in figure 3.
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The calculated points around the minimum are fitted using a parabola because
close to the bond length the bond can be assumed to be elastic. Some bond
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Fig. 3. Energy vs. inter-nuclei distance for carbon monoxide (CO).

properties can be derived from the combination of such a figure and the energy
of the separate atoms. In the first place the bond length can be found as the
inter-nuclei distance (R) for which the energy of the molecule EAB is minimal.
Secondly, the binding energy can be determined by the difference of the energy
of the molecule minus the energies of the two separate atoms Ebond = EAB −
EA − EB . Thirdly, the bond strength, which can be described both with the
bond frequency or with the force constant. The resulting properties for carbon
monoxide and for the hydrogen molecule H2 are given in table 2.

Table 2. Comparison of bond properties as calculated with experimental results[18]
for the hydrogen molecule (H2) and for carbon monoxide (CO).

H2 CO
LDA LSD Exp. LDA LSD Exp.

Binding energy (eV ) 6.30 4.90 4.52 16.80 10.76 11.16
Bond length (a.u.) 1.48 1.44 1.40 2.14 2.12 2.13
Force constant (N/cm) 4.48 5.41 5.75 15.57 17.98 19.02
Bond frequency (cm−1) 3882 4269 4401 1963 2109 2169

The results in tables 1 and 2 show good agreement with results reported in
literature obtained using Kohn-Sham calculations with different basis sets.

5 Concluding Remarks

The Kohn-Sham equations, both spin polarized and spin unpolarized, were
solved using a basis consisting of interpolating wavelets. The validity of the
scheme was demonstrated using some example calculations.
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So far only electronic structure has been considered, but the intention is to
extend the code to an ab-initio molecular dynamics code. An important part
here is the pruning, i.e. the selection of the interpolets that can be left out,
resulting in an as small as possible basis. Another improvement would be the
development of special pseudopotentials for wavelets.
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