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Abstract. Three general trinomial option pricing methods are formally
developed and numerically implemented and explored. Applications to
American option pricing are presented for one and two factor models.

1 Introduction

Hull and White introduced trinomial trees for processes with additive noise and
linear drift. In this work we unify the abstract features of these constructions
and generalize them to encompass the case of nonlinear drifts, and outline some
general Conditions such constructions should satisfy. Increasing computing per-
formance allows for actual implementations of these methods in trading environ-
ments. Since our ultimate objective is to develop different algorithms, we assume
throughout, that all processes are in a risk neutral world, see to [T, 00] for more
on these issues, and [JW, 00] for many up to date references.

2 Continuous Processes

2.1 Generalities

Consider the following stochastic differential equation (SDE)

dst = a(st, θ(t)) dt + b (st) dzt (1)

where the drift and volatility functions a and b satisfy the usual integrability
conditions described, e.g., in [KP, 99] and the parameter θ(t) is a continuous
function of time designed to capture a given term structure or the seasonal
shape of the expectation curve ϕ(t) = E(st | s0) for t ∈ [0, T ]. The construction
of additive trinomial trees requires constant standard deviations. We henceforth
assume that the following transformation exists and is invertible, leading to the
new variables

S = σ

∫
ds

b(s)
, St := S(st) , st := s(St).

Then by the Ito formula we have

dSt = A(St, θ(t)) dt + σ dzt , with A(St, θ(t)) := σ(
a(st, θ(t))

b(st)
− b′(st)

2
). (2)

We next discuss mean reverting processes since they will be used as examples.
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2.2 Mean Reverting Processes with Additive Noise

[HW, 94 a,b] develop models with additive noise, suitable for short term interest
rates. In a slightly modified notation their one factor model writes as

dst = α(l(t) − st) dt + σ dzt (3)

where α and σ are constant, l(t) is the time varying reversion level.
Their two factor model is the system

dst = α(l(t) + vt − st) dt + σ1 dz1
t , dvt = −δ vt dt + σ2 dz2

t (4)

where v0 = 0, the parameters α, δ, σ1 and σ2 are constants and the Brownian
motions have instantaneous correlation ρ12. Assuming the generic condition,
α 6= δ, this system decouples via the new variable yt = st + vt/(δ − α):

dyt = α(l (t) − yt) dt + σ3 dz3
t , dvt = −δ vt dt + σ2 dz2

t (5)

where σ2
3 = (σ2

1(δ − α)2 + 2 ρ12 σ1 σ2(δ − α)+ σ2
2 )/(δ − α)2and z3

t is another
Brownian motion, with the correlation between z2

t and z3
t being given by ρ23 =

(ρ12σ1 + σ2/(δ − α))/σ3.

2.3 Mean Reverting Processes with Multiplicative Noise

[P, 98] introduces processes with multiplicative noise and constant coefficients to
model energy spot prices. A partial study of the dynamics of these equations and
implementations via binomial trees, can be found in [LSW, 00]. For generaliza-
tions of these models and numerical implementations see [T, 00]. We follow the
latter and allow one of the parameters, see l(t) below, to be a function of time,
in order to capture seasonality or match the term structure of forward markets.
The generalized one factor mean reverting model with multiplicative noise is

dst = α(l (t) − st)dt + σ st dzt (6)

where α and σ are constant and l(t) is the time varying reversion level. We next
transform this equation into an additive process by putting St = ln st. Then the
Ito formula yields (after also substituting L(t) = ln l(t))

dSt = (α(eL(t)−St − 1) − σ2

2
)dt + σ dzt. (7)

Note that the drift is no longer linear. The generalized two factor system is

dst = α (lt − st) dt + σ1 st dz1
t , dlt = β (t) lt dt + σ2 lt dz2

t (8)

where the parameters α, σ1 and σ2 are constants, β (t) captures the term struc-
ture and or seasonality of forward markets, and z1

t and z2
t are Brownian motions

with instantaneous correlation ρ12. Under the change of variable St = ln st and
Lt = ln lt, the system becomes
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dSt = (α(eLt−St − 1) − σ2

2
) dt + σ1 dz1

t , dLt = (β (t) − σ2
2

2
) dt + σ2 dz2

t .

To decouple this system introduce the variable Yt = Lt − St so that

dYt = α (B(t) − eYt) dt + σ3 dz3
t , dLt = (β (t) − σ2

2

2
) dt + σ2 dz2

t (9)

where, B(t) = 1 + 1
α (β(t) + σ2

1−σ2
2

2 ), σ2
3 = σ2

1 − 2ρ12 σ1σ2 +σ2
2 and z3

t is another
Brownian motion, with the correlation between z2

t and z3
t being ρ23 = (σ2 −ρ12

σ1)/σ3. Note that (9) is in the format required for trinomial tree construction.

3 Trinomial Trees

3.1 Infinitesimal Structure

For the SDE (2), denote the mean and variance of the displacement ∆St =
St+∆t − St by Mt(∆t) and Vt(∆t) respectively. We then have the expansion
Proposition 1. Mt(∆t) = A(St, θ(t))∆t + O(∆t2) and Vt(∆t) = σ2∆t +
O(∆t2).

Proof. Mt(∆t) =
∫ t+∆t

t
E(A(Su, θu)|A(St, θ(t)) du. Expanding the integrand

yields, Mt(∆t) =
∫ t+∆t

t
(A(St, θ(t)) + O(∆t)) du and hence the result. Now,

Vt(∆t) = E[(St+∆t − Mt(∆t) − St)2] = E[(
∫ t+∆t

t
A(Su, θ(u)) du +

∫ t+∆t

t
σ du −

Mt(∆t))2] = E[(
∫ t+∆t

t
σ du)2 + O(∆t2)]. After using a theorem in [KP, 99] p.

86, the latter becomes, (
∫ t+∆t

t
E(σ2) du) + O(∆t2) = σ2∆t + O(∆t2).

3.2 The Discrete Process

Discretize the interval [0, T ] into n time steps of length ∆t = T/n, set ti = i
∆t and let Sti

= Sij . A trinomial tree for St is a discrete process on a two
dimensional lattice whose integer nodes are indexed by (i, j). From (i, j), over
the interval [ti, ti+∆t], it is only possible to branch to one of the three nodes
(i + 1, hij + 1), (i + 1, hij) or (i + 1, hij − 1), called respectively, the up, middle
and down nodes, with respective probabilities p

(u)
ij , p

(m)
ij and p

(d)
ij . By definition,

hij is assigned so that Si+1,hij
is as close as possible to the expected value

E(Sti+∆t|Sti
= Sij). To remove extra degrees of freedom, we suppose that the

up and down jumps have increments of equal length from the middle node:

Condition 1. ∆Sij := Si+1,hij+1 − Si+1,hij = Si+1,hij − Si+1,hij−1.

Let ηti(∆t) = E(Sti+∆t|Sti = Sij) − Si+1,hij be the offset between
the expected value and the middle node. Since by definition, Mti

(∆t) =
E(Sti+∆t|Sti

= Sij) − Sij we also have ηti
(∆t) = Sij + Mti

(∆t) − Si+1,hij
.

Now by the very definition of hij it follows:
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Lemma 1. With the above notation, ηti
(∆t) < ∆Sij/2.

Note that Sij = Si0 + j ∆Sij , where Si0, the position of the median node of
the ith branch, and the analytical form of hij will be defined for each of the tree
constructions developed next; in all cases S00 = S0. This construction allows for
multiple jumps. The maximum and minimum values of j are recursively defined
by setting jmax(0) = jmin(0) = 0, and for i = 1, ..., n, jmax(i) = hi−1,jmax(i−1) +1
and jmin(i) = hi−1,jmin(i−1) − 1. This relies on the natural

Condition 2. hij < hij′ for j < j′.

By definition of hij this is the case if E(Sti+∆t|Sti
= Sij) < E(Sti+∆t|Sti

=
Sij′). This is equivalent to St + Mt(∆t) being increasing in St, and leads to:

Proposition 2. Suppose 1 + d
dSt

Mt(∆t) > 0, then Condition 2 holds.

Remark 1. In practice it is enough to satisfy the above hypothesis to the order
O(∆t) and for ∆t small enough.

Lemma 2. For the processes (3), (7) and (9) the hypothesis of the above Propo-
sition holds if ∆t is chosen small enough.

Proof. We use Proposition 2. The linear case (3) is trivial, as for (7) and (9), let
L denote l(t) or Lt. Then 1 + d

dS Mt(∆t) = 1 − α eL−St ∆t. By mean reversion
L − St cannot grow large and since the time horizon [0, T ] is compact, L − St is
bounded. Hence ∆t can be chosen small enough to yield the result.

Matching the first and second moments of the continuous processes (2) and
the above discrete process over every subinterval [ti, ti+∆t] leads to the system

p
(u)
ij (Si+1,hij+1 − Sij) + p

(m)
ij (Si+1,hij

− Sij) + p
(d)
ij (Si+1,hij−1 − Sij) = Mti

(∆t)

p
(u)
ij (∆Sij − ηti

(∆t))2 + p
(m)
ij η2

ti
(∆t) + p

(d)
ij (∆Sij + ηti

(∆t))2 = Vti
(∆t)

p
(u)
ij + p

(m)
ij + p

(d)
ij = 1

which has for solutions

p
(u)
ij =

1
2
(
Vti

(∆t) + η2
ti

(∆t)
∆S2

ij

+
ηti

(∆t)
∆Sij

) , p
(m)
ij = 1 − Vti

(∆t) + η2
ti

(∆t)
∆S2

ij

p
(d)
ij =

1
2
(
Vti(∆t) + η2

ti
(∆t)

∆S2
ij

− ηti(∆t)
∆Sij

)

To remove one degree of freedom we now make the assumption

Condition 3. ∆Sij =
√

3Vij(∆t).

Note that [HW, 90] suggests this assumption in the infinitesimal limit as
∆t → 0. Using Condition 3 in the above equations yields the following formulas
generalizing those of [HW, 94 a,b], after dropping the ∆t in ηt(∆t):



A General Framework for Trinomial Trees 601

p
(u)
ij =

1
6

+
1
2
(

η2
ti

∆S2
ij

+
ηti

∆Sij
), p

(m)
ij =

2
3

− η2
ti

∆S2
ij

, p
(d)
ij =

1
6

+
1
2
(

η2
ti

∆S2
ij

− ηti

∆Sij
).

(10)
These probabilities are in [0, 1]. Indeed both p

(u)
ij and p

(d)
ij can be viewed as

quadratic expressions of ηti
(∆t)/∆Sij with negative discriminants, leading to

positive values. It then suffices to verify that p
(u)
ij + p

(d)
ij ≤ 1 and this follows

from Lemma 1. The above can be summarized in
Theorem 1. Assuming conditions 1, 2 and 3, and matching the first and second
moments Mt(∆t), Vt(∆t) of the continuous process with those of the discrete
trinomial process, at each node (i, j), lead to a trinomial tree whose probabilities
are given by (10). Furthermore, all probabilities p

(u)
ij , p

(m)
ij and p

(d)
ij are in [0, 1].

Remark 2. The complete tree specification still requires to determine hij . This
will depend on the tree geometry adopted and the actual SDE considered.

Remark 3. Condition 3 and Proposition 1 yield the values ∆Sij = σ
√

3∆t +
O(∆t) and Mt(∆t) = A(St, θ(t))∆t + O(∆t2). Therefore once hij is known the
entire tree is known.

Remark 4. This trinomial tree is Z2-symmetric. Indeed, let Z2 = {−1, 1} act
on {u, m, d} by: −1.u = d, −1.d = u, 1.m = m. This action holds both for the
nodes and the probabilities.

4 Three Tree Geometries

4.1 Fixed Grid Geometry (FGG)

In FGG the nodes are arranged in a fixed rectangular grid. All positions are refer-
enced relative to the root. That is Si0 = S0 for all i, and for j ∈ [jmin(i), jmax(i)]

Sij = S0 + j∆Sij , hij =
[
j +

Mti
(∆t)

∆Sij

]
, ηti(∆t) = Mti(∆t) − (hij − j)∆Sij ,

where here and in the sequel, [ ] denotes the nearest integer.

4.2 Drift Adapted Geometry (DAG)

In DAG one first defines the median nodes Ψi as being precisely connected by
the drift of the process. Each branch of the tree is then shifted up or down from
these median nodes. That is for j ∈ [jmin(i), jmax(i)], the tree is specified by

Ψ0 = S0 , mi(∆t) = E(Sti+∆t|Sti
= Ψi) − Ψi, Ψi = S0 +

i−1∑
k=0

mk(∆t)

Sij = Ψi + j∆Sij , hij =
[
j +

Mti
(∆t) − mi(∆t)

∆Sij

]
.
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Note that ηti
(∆t) = Mti

(∆t) − mi(∆t) − (hij − j)∆Sij , and by construction,
those associated with all median nodes (i, 0) are all zero; consequently, by (10),
the branching probabilities of all median nodes are p

(u)
i0 = 1/6, p

(m)
i0 = 2/3, and

p
(d)
i0 = 1/6. Finally, note that mi(∆t) = A(Ψi, θ(ti))∆t + O(∆t2).

4.3 Forward Tree Geometry (FTG)

Forward Trees are constructed in two stages. We first construct a preliminary
tree and then shift its median nodes Ŝi0 onto the expected values Φ(ti) = E(Sti

| S0), for all i. We call the SDE (2) preliminarizable if for some constant θ̂

A(0, θ̂) = 0 and
∂A

∂θ
(0, θ̂) 6= 0. (11)

Then by the implicit function theorem, there is a unique curve θ(S) defined for
(S, θ) near (0, θ̂) so that A(θ(S), θ) = 0. We next define the preliminarization of
St to be the process Ŝt defined by

dŜt = A(Ŝt, θ̂)dt + σ dz with Ŝ0 = 0.

Condition 4. Φ̂(t) := E(Ŝt | Ŝ0 = 0) = 0 + O(∆t2) for all t ∈ [0, T ].

Heuristically (11) yields Condition 4, indeed by Proposition 1, E(Ŝt+∆t

|Ŝt) − Ŝt = A(Ŝt, θ̂) ∆t + O(∆t2), starting at t = 0, one would get, by (11)
Φ̂(∆t) = 0 + O(∆t2) and continuing in this manner n times, leads to a total
error of nO(∆t2) = O(∆t). The preliminary tree is then the trinomial tree for
Ŝt, constructed using either FGG or DAG. For j ∈ [jmin(i), jmax(i)], Ŝt at node
(i, j) is given by

Ŝj = j ∆Sij , ĥij =

[
j +

M̂ti
(∆t)

∆Sij

]
, η̂ti = M̂ti(∆t) − (ĥij − j)∆Sij

Note that the above data do not depend on i hence one needs only to compute
{max jmax(i), i ∈ [0, n]}−{min jmin(i), i ∈ [0, n]} +1 sets of node data. The final
tree is formed by shifting the median nodes of the preliminary tree Ŝj onto Φ(ti),
while maintaining branching probabilities: the node (i, j) in the final Forward
Tree for St is Sij = Φ(ti) + Ŝj .

We now address the important issue of the validity of the FTG construction,
which we distinguish by a hat superscript. The DAG and FTG are approxima-
tions of (2), if they are obtained by matching the first and second moments of this
SDE. This implies that ηti

(∆t) should yield the same values, to the order (∆t),
for both trees. Hence, M̂ti

(∆t)−(ĥij−j)∆Sij = Mti
(∆t)−mi(∆t)−(hij−j)∆Sij .

Assuming that almost everywhere on these trees ĥij = hij , we then have
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Proposition 3. With the above notations, the DAG and FTG trees yield the
same option values if M̂ ti

(∆t) = Mti
(∆t) − mi(∆t); or up to O(∆t),

A(j∆Sij , θ̂) = A(Ψi + j∆Sij , θ(ti)) − A(Ψi, θ(ti)) =
∞∑

k=1

∂kA

∂Sk
(Ψi, θ(ti))

(j∆Sij)
k

k!
.

(12)

Proposition 4. The process (3) is preliminarizable and satisfies (12). The same
is true for (7) and (9) if σ � α and provided mean reversion is strong.

Proof. In the linear case (3), θ(t) = l(t) and A(st, l(t)) = α(l(t)− st). Then (11)
obviously holds, and (12) reduces to the true identity α(0 − j∆sij) = −αj∆sij .
As for (7), θ(t) = L(t) and A(St, L(t)) = α(eL(t)− St − 1) − σ2/2. Then (11)
holds with θ̂ = ln(2α+ σ2)/2α and (12) leads to 2α+σ2

2α α( e−j∆Sij − 1) =
α eL(t)− Ψt(e−j∆Sij − 1). If σ � α, then 2α + σ2/2α ≈ 1; also strong mean
reversion forces L(t) − Ψi ≈ 0, and hence the result follows. Regarding (9) the
argument is analogous for St and it is trivially true for Lt.

Remark 5. The above propositions provide a rigorous justification for the famous
tree construction of Hull and White. It also establishes that the construction can
be used in the nonlinear case but some errors might be expected.

The main difficulty in implementing FTG is to compute Φ(t) while matching
forward market features and Term Structures. If the drift of (1) has an affine
functional form, say a(st, θ(t) = f(t) st + g(t), then the expected value ϕ(t) =
E(st | s0) satisfies the ordinary differential equation ϕ̇(t) = a(ϕ(t), θ(t)). Then
given the parameter θ(t) in a functional form exogenously or as a vector matching
forward market data, it is always possible to solve for ϕ(t). It is however not true
that Φ(t) = S(ϕ(t)). One can still manage to calculate the transformed expec-
tations, by ensuring that they are consistent with the expected value equations
ϕi =

∑jmax(i)
j=jmin(i) Pijsij at every branch in the tree, where Pij is the probability

of reaching node (i, j). Provided we have calculated the branching probabilities
at all nodes by (10), the Pij ’s may be computed recursively by P00 = 1 and

Pij =
∑

k

Pi−1,kq[(i − 1, k) → (i, j)]

for i ∈ [1, n], where q[(i − 1, k) → (i, j)] is the probability of branching from
node (i − 1, k) to node (i, j). Since at node (i, j), st is given by the inverse
transformation sij = s(Sij), the desired Φi’s are defined implicitly, for i ∈ [0, n],
by the following equations, which can always be solved by an iterative technique,

ϕi =
jmax(i)∑

j=jmin(i)

Pijs(Φi + j ∆Sij) (13)
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Table 1. American Call Option on a One Factor Model with Additive Noise

Time FGG DAG FTG
Step Opt. Time Error Opt. Time Error Opt. Time Error
100 277588 0.052 1748 278184 0.052 3671 278247 0.058 4272
200 277643 0.198 1205 278025 0.209 2081 278056 0.103 2354
400 277706 0.791 578 277935 0.834 1189 277951 0.484 1306
800 277743 3.157 207 277868 3.326 519 277876 1.629 558

Remark 6. When the original process st has additive noise as in the Hull and
White equations, the above procedure can be greatly simplified. Indeed, in this
case it is not necessary to transform to another stochastic variable St, before
building the Forward Tree. In other words, we construct a tree directly for st.
Therefore, st and their preliminarizations ŝt are positioned at ŝj = ϕ(ti) + j
∆s and ŝj = j ∆s, respectively, for i ∈ [1, n] and j ∈ [jmin(i), jmax(i)], and
most importantly, it is never needed to employ (13). This drastically reduces the
computational cost.

5 Numerical Applications to American Options

We now numerically explore the algorithms discussed. To implement two factor
models via trinomial trees, we use the standard technique introduced by [HW,
94] consisting in building a tree for each security separately, forming the direct
product of the trees and subsequently adjusting the branching probabilities to
induce correlation. Implementing nonlinear models are new and have not received
much attention in the literature as they are quite harder than the linear cases.
For these we choose as underlying process energy spot prices. We price daily
American call options. The risk free interest rate is set to be 0.05, time to
maturity is 0.25, and we denote by K the strike price. The errors reported are
the differences between the option value and the ”true” value which is obtained
by running each method for high number of time steps n. Our goal is to only
demonstrate the convergence patern and the the efficiency of the algorithms.

5.1 Models with Additive Noise

Consider the one factor model (3) with l(t) = 0.03 e0.1t, α = 3, σ = 0.015,
s0 = 0.03 and K = 0.03. The ”true” values are obtained for n = 1600. Time
is in seconds, option values are to be multiplied by 10−10 and the errors by
10−11. The results are reported in Table 1. As for the two factor model (5), l(t)
is the same and α = 3, δ = 0.1, σ1 = 0.01, σ2 = 0.0145, ρ12 = 0.6, s0 = 0.03
and K = 0.03. The ”true” value is for n = 400 and time is in 1000 seconds.
Option values are to be multiplied by 10−8and the errors by 10−9. The results
are reported in Table 2.



A General Framework for Trinomial Trees 605

Table 2. American Call Option on a Two Factor Model with Additive Noise

Time FGG DAG FTG
Step Opt. Time Error Opt. Time Error Opt. Time Error
50 239966 0.212 3289 239994 0.230 3569 240119 0.198 4667
100 239787 1.748 1501 239789 1.878 1526 239852 1.574 1992
150 239721 3.268 846 239725 3.526 882 239767 2.927 1140
200 239688 7.745 515 239689 8.311 519 239720 6.905 674

Table 3. American Call Option on a One Factor Model with Multiplicative Noise

Time FGG DAG FTG
Step Opt. Time Error Opt. Time Error Opt. Time Error
100 1.4335 0.9310 60 1.4339 0.8810 63 1.4317 0.721 52
200 1.4303 3.2550 27 1.4304 3.3250 28 1.4289 2.573 24
400 1.4287 12.558 11 1.4288 13.119 12 1.4276 9.784 10
800 1.4280 51.164 4 1.4280 52.646 4 1.4269 39.39 3

5.2 Models with Multiplicative Noise

Let p(t) = 12.57 e0.80t−0.94 cos 2πt+0.02 sin 2πt. With 1998 NYMEX spot crude
oil data, we imposed in (7) that l(t) models trend and seasonal effects with a
general expression involving exponential and periodic functions. This leads after
calibration to l(t) = p(t), α = 36.7 and σ = 0.336. We use S0 = 12.5, K = 13.50.
The ”true” value obtained for n = 1600, is 1.4276 for FGG and DAG, and 1.4265
for FTG. The unit for computational cost is in seconds and the reported errors
are to be multiplied by 10−4. The results are reported in Table 3.

Using techniques such as those discussed in [T,00], a calibration of the two
factor model (8), on the above data yields β(t) = ( d

dtE(lt))/E(lt), with E(lt) =
p(t), α = 36.7, σ1 = 0.336, σ2 = 0.317; ρ = 0. We use S0 = 12.5, K = 13.50.
The ”true” value obtained for n = 800 is 2.0816 for FGG and DAG and 1.7853
for FTG. The unit for computational cost is in 1000 seconds, the reported errors
are to be multiplied by 10−4. The results are reported in Table 4.

Table 4. American Call Option on a Two Factor Model with Multiplicative Noise

Time FGG DAG FTG
Step Option Time Error Option Time Error Option Time Error
100 2.0869 0.08 53 2.0866 0.09 50 1.7881 0.14 29
200 2.0836 0.63 20 2.0837 0.71 21 1.7863 1.09 11
300 2.0827 2.13 11 0.0827 2.35 10 1.7858 3.54 6
400 2.0823 4.98 6 2.0822 5.53 6 1.7856 8.58 3
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5.3 Conclusions

We developed three methods for arranging the tree geometry: (FGG) originated
in [HW, 93], as for (DAG) we carried out to the end our interpretation of a foot
note suggestion made in [HW, 90]; finally, (FTG) was designed to match the
term structures of forward markets and was proposed in [HW, 94 a,b], in the
case of linear drifts and without giving any proofs. In this paper, we established
the validity of this construction in a more general context. The numerical per-
formance of FGG and DAG are virtually identical. Mixed results are achieved
for FTG: for the nonlinear cases (7) and (8) the positions of the median nodes
are obtained by the painstaking calculation (13); and in this case, FTG is only
slightly faster than the other methods in the one factor case and actually takes
longer for the two factor model. Alternatively, in the linear models (3) and (5),
the median nodes are revealed by the solution of the ordinary differential equa-
tion mentioned after Remark 5. This enhancement allows the FTG to run twice
as fast as the other methods in the one factor model and slightly faster in the two
factor case. One conclusion is that FTG is extremely effective when the model
considered has linear drift and additive noise. Although FTG’s performance was
slower when the transformed drift is nonlinear, it still is of value. Indeed, we
imposed for the reversion level l(t) an exogenous functional form. In practice
the expected value of the spot price ϕ(t) is derived from the knowledge of fu-
tures prices and market price of risk analysis. In this case, of all the methods
considered only the FTG is able to match this expectation.
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