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Abstract. We give the background and required tools for applying
quasi-Monte Carlo methods efficiently to problems in computational fi-
nance, and survey recent developments in this field. We describe methods
for pricing european path-dependent options, and also discuss problems
involving the estimation of gradients and the simulation of stochastic
volatility models.

1 Introduction

The Monte Carlo (MC) method has been introduced in finance in 1977, in the
pioneering work of Boyle [5]. In 1995, Paskov and Traub published a paper [42]
in which they used quasi-Monte Carlo (QMC) methods to estimate the price
of a collaterized mortgage obligation. The problem they considered was in high
dimensions (360) but nevertheless, they obtained more accurate approximations
with QMC methods than with the standard MC method. Since then, many
people have been looking at QMC methods has a promising alternative for pric-
ing financial products [20,37,53,1,10,3,49]. Researchers studying QMC methods
have also been very interested by these advances in computational finance be-
cause they provided convincing numerical results suggesting that QMC methods
could do better than MC even in high dimensions, a task that was generally
believed to be out of reach.

The aim of this paper is to provide the required background and tools for
applying QMC methods to computational finance problems. We first review
the idea of QMC methods and recall general results about their performance in
comparison with the MC method. We give pseudocode for implementing Korobov
rules [22], which constitute one type of QMC method, and provide references to
papers and websites where other constructions (and code) can be found. Different
randomizations are also discussed. In Section 3, we describe how randomized
QMC methods can be applied for pricing European path-dependent options
under the Black-Scholes model. Various methods that can be used in combination
with QMC methods to enhance their performance are discussed in Section 4.
We conclude in Section 5 by discussing more complex applications such as the
simulation of stochastic volatility models.
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2 Quasi-Monte Carlo Methods

The general problem for which QMC methods have been proposed as an alter-
native to the MC method is multidimensional numerical integration. Hence for
the remainder of this section, we assume the problem under consideration is to
evaluate

µ =
∫

[0,1)t

f(u)du,

where f is a square-integrable function. Many problems in finance amount to
evaluate such integrals, as we discuss in Section 3. To approximate µ, both MC
and QMC proceed by choosing a point set Pn = {u0, . . . ,un−1} ⊂ [0, 1)t, and
then the average value of f over Pn is computed, i.e., we get

Qn =
1
n

n−1∑
i=0

f(ui). (1)

In the MC method, the points u0, . . . ,un−1 are independent and uniformly dis-
tributed over [0, 1)t. In practice, one uses a pseudorandom number generator to
choose these points. The idea of QMC methods is to use a more regularly dis-
tributed point set, so that a better sampling of the function can be achieved. An
important difference with MC is that the set Pn is typically deterministic when
a QMC method is applied. Niederreiter presents these methods in detail in his
book [35], and describes different ways of measuring the quality of the point sets
Pn on which QMC methods rely. More specifically, the goal is to measure how
far is the empirical distribution induced by Pn from the uniform distribution
over [0, 1)t.

Such measures can be useful for providing upper bounds on the deterministic
integration error |Qn −µ|. For example, the rectangular-star discrepancy D∗(Pn)
looks at the difference (in absolute value) between the volume of a rectangular
“box” aligned with the axes of [0, 1)t and having a corner at the origin, and the
fraction of points from Pn contained in the box, and then take the maximum
difference over all such boxes. Typically, a point set Pn is called a low-discrepancy
point set if D∗(Pn) = O(n−1 logt n). For a function of bounded variation in the
sense of Hardy and Krause, the integration error |Qn − µ| is in O(n−1 logt n)
when Pn is a low-discrepancy point set (see [35,30,31] and the references therein
for the details).

This type of upper bound suggests that the advantage of QMC methods over
MC, which has a probabilistic error in O(n−1/2), will eventually be lost as the
dimension t increases, or more precisely, it suggests that QMC methods will
require a sample size n too large, for practical purposes, to improve upon MC
when t is large. In this context, numerical results showing an improvement of
QMC over MC in high dimensions and using a relatively small sample size n [42,
10,32,26] seem hard to explain. To reconciliate this apparent contradiction, two
main approaches have been used. First, the study of randomized QMC methods
[12,38,51,52,41,26] has provided new tools to understand the advantages of QMC
over MC. Second, the notion of effective dimension, introduced by Paskov [43]
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and redefined in [10,18], has been very useful to understand how QMC methods
could improve upon MC even in large dimensions, as we now explain.

2.1 Effective Dimension

The effective dimension of a function is linked to its ANOVA decomposition [19,
14,41], which rewrites any square-integrable function f : [0, 1)t → R as a sum of
2t components; there is one component fI per subset I of {1, . . . , t}, i.e.,

f(u) =
∑

I⊆{1,...,t}
fI(u),

and the fI ’s are such that
∫
[0,1)t fI(u)du = 0 for any nonempty I, and∫

[0,1)t fI(u)
fJ(u)du = 0 for any I 6= J . Hence this decomposition is orthogonal and we get

σ2 def= Var(f) =
∑

I⊆{1,...,t}
σ2

I ,

where σ2
I = Var(fI). Therefore, the quantity σ2

I/σ2 can be used as a measure
of the relative importance of the component fI for explaining the variance of
f . If the l-dimensional components with l ≤ s contribute to more than 100α%
of the variance (i.e., if

∑
I:|I|≤s σ2

I ≥ ασ2), then f is said to have an effec-
tive dimension of at most s in the superposition sense [10,18] in proportion α.
Similar definitions can be given for the effective dimension in the truncation
sense (if

∑
I⊆{1,...,s} σ2

I ≥ ασ2) [10,18], or in the successive dimensions sense (if∑
I⊆{i,i+1,...,i+s−1} σ2

I ≥ ασ2) [26].
It is often the case in computational finance that the functions to be inte-

grated have a low effective dimension in some sense. When this happens, it means
that even if the function is t-dimensional with t large, a QMC method based on
a point set Pn that has good low-dimensional projections (i.e., such that when
|I| is small, the projection Pn(I) of Pn over the subspace of [0, 1)t indexed by
the coordinates in I is well distributed) can provide an accurate approximation
for µ. Hence the success of QMC methods rely on a combination of “tractable”
problems (i.e., problems involving functions with a low effective dimension), and
point sets having good low-dimensional projections.

Note that in the study of the effective dimension, the variability of f is
measured by its variance rather than, e.g., the bounded variation used in the
upper bounds discussed earlier. In this context, it seems natural to measure the
quality of an estimator for µ by also looking at its variance. This can be achieved
for QMC methods if we randomize their associated point set. By doing so, the
integration error can be estimated easily. Also, the analysis of the variance has
the advantage of requiring much weaker conditions on the function f than when
the deterministic error is studied.
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2.2 Constructions

Two main families of QMC methods are the lattice rules and the digital nets [35,
47]. Korobov rules are a special case of lattice rules that are easy to implement,
as we now describe. For a given sample size n, the only parameter required to
generate a point set Pn in t dimensions is an integer a relatively prime to n. We
then get

Pn =
{

i

n
(1, a, a2, . . . , at−1) mod 1, i = 0, . . . , n − 1

}
, (2)

where the modulo 1 is applied component-wise. The choice of the generator a is
important and tables of values of a leading to point sets Pn that are “good” for
many values of t are given in [26]. What do we mean by good ? The criterion used
to measure the quality of Pn in [26] looks at many low-dimensional projections
of the point set Pn and makes sure they are well distributed (with respect to
the spectral test), in agreement with the requirements mentioned in the previous
subsection. The points in Pn can be generated very easily as follows:

input: a, n, t
g0 = 1
for j = 1 to t − 1 do gj = (gj−1 × a) mod n
u = (0, . . . , 0)
for i = 1 to n − 1 do u = (u + (g0/n, . . . , gt−1/n)) mod 1

The generation of the points in (2) can be done in an even simpler and faster
way than that illustrated above when n is prime and a is a primitive element
modulo n; see [26] for more details. In any case, generating the point set Pn is
faster than when MC is used, and this holds for most QMC methods.

Two nice properties of the point set (2) are that it is dimension-stationary and
fully projection-regular [26,47]. The first property means that if two subsets I =
{i1, . . . , is}, J = {j1, . . . , js} of equal cardinality are such that jl − il is constant
for l = 1, . . . , s, then Pn(I) = Pn(J), i.e., the projection of Pn over the subspaces
of [0, 1)t indexed by the the coordinates in I and J is the same. For example,
it means that all the two-dimensional projections of the form Pn({j, j + 1}), for
j = 1, . . . , t − 1, are the same. Not all QMC methods have this property. The
second property simply means that all projections of Pn have n distinct points,
which is certainly desirable.

Another construction that shares many similarities with lattice rules are the
polynomial lattice rules [25,29]. As explained in [33,34,26], special cases of both
methods can be constructed by using all overlapping t-tuples output by a lin-
ear congruential generator and a Tausworthe generator, respectively, from all
possible initial seeds.

As for digital nets, details on their construction can be found in [35] and
the references therein. Improved constructions are presented in, e.g., [50,45,36,
46,11,44]. Details on the implementation of Sobol’s sequence [48], and Faure’s
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sequence [15], which were the first constructions proposed in the family of digital
nets, are given in [7] and [16], respectively. The code that goes with these two
papers can be found at www.acm.org/calgo/. More recent software for these
methods and other ones can be found at www.mathdirect.com/products/qrn/
and www.cs.columbia.edu/˜ap/html/finder.html, which is the link to the
FinDer software [42]. The MC and QMC methods’ website www.mcqmc.org con-
tains other relevant links.

2.3 Randomizations

As mentioned earlier, it is often useful for the purpose of error estimation to
randomize QMC point sets. Two desirable properties that a given randomization
should have are: (1) each point in the randomized point set should have a uniform
distribution on [0, 1)t; (2) the regularity of the point set should be preserved.
The three randomizations discussed below have these properties.

For lattice rules, Cranley and Patterson [12] suggested to randomly generate
a vector ∆ in [0, 1)t, and then add it to each point of Pn, modulo 1. This means
that in the pseudocode given above, before the loop over i, one simply needs to
call a pseudorandom generator t times to generate the vector ∆ = (∆1, . . . , ∆t),
and then output (u + ∆) mod 1 instead of u. The variance of the estimator

1
n

n−1∑
i=0

f((ui + ∆) mod 1)

based on a randomly shifted lattice rule is studied in [26,52]; in [26], the only
condition required on f is that it must be square-integrable. This randomization
can be applied to other types of QMC point sets, as suggested in [51]. However,
for digital nets and polynomial lattice rules, using a “XOR-shift” as proposed
by Raymond Couture [25,29] is more natural because it preserves the equidis-
tribution properties of this type of point sets. The idea is to generate a random
vector ∆ in [0, 1)t, but instead of adding it to each point ui = (ui1, . . . , uit)
of Pn modulo 1, an exclusive-or operation between the binary representation
of ∆j and uij is performed, for each dimension j = 1, . . . , t. The variance of
the estimator based on a polynomial lattice rule that has been XOR-shifted is
studied in [29]. Another randomization that can be used for those point sets is
the scrambling of Owen [38], which leads to tighter bounds on the variance of
the associated estimators [38,39,40], but it requires more computation time than
the XOR-shift.

3 Pricing under the Black-Scholes Model

In this section, we describe how to use QMC methods for estimating the value
of a financial contract, such as an option, whose underlying assets follow the
Black-Scholes model [4]. More precisely, we assume the goal is to estimate

µ = E∗(gp(S1, . . . , St)),
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where S1, . . . , St are prices (e.g., from one asset at t different times, or from t
assets at the expiration date of the contract) that have a lognormal distribu-
tion. The function gp is assumed to be square-integrable and it represents the
discounted payoff of the contract, and p is a vector of parameters (e.g., contain-
ing the risk-free rate r, the volatility σ, the strike price K, the expiration time
T , etc.). The expectation is taken under the risk-neutral measure [13]. Written
similarly as in (1), the MC estimator for µ is given by

1
n

n−1∑
i=0

fp(ui), (3)

where the ui’s are independent and uniformly distributed over [0, 1)t, and fp :
[0, 1)t → R is a function that takes as an input a sequence of t numbers u1, . . . , ut

between 0 and 1, transforms them into observations of S1, . . . , St, and then
evaluates gp(S1, . . . , St). Also, fp is such that E∗(fp(ui)) =

∫
[0,1)t fp(u)du = µ.

For example, if f represents the discounted payoff of a path-dependent option
on one asset, then S1, . . . , St would represent observed prices on one path of this
asset. To generate these prices, start with u1, transform it into an observation x
from the standard normal distribution (using inversion, see, e.g., [23]), and then
generate the first price by letting S1 = S0e

rt1+σ
√

t1x, where t1 is the time at
which S1 is observed, and S0 is the price of the underlying asset at time 0. In
a similar way, u2 can be used to generate the second price S2, and so on. The
precise definition of fp for an Asian option pricing problem is given in [26]. In the
case where one has to generate prices of correlated assets, procedures requiring
one uniform number per observed price can be found in, e.g., [1].

The QMC estimator for µ can be built in the exact same way as for MC if we
use a randomized QMC point set: just take the estimator (3) but with the ui’s
coming from a randomized QMC point set. With an appropriate randomization,
each point ui has a uniform distribution over [0, 1)t and thus the observation
fp(ui) has the same distribution as in the MC setting. Hence (3) is an unbiased
estimator of µ in both cases. The only difference with MC is that with QMC, the
observations fp(u0), . . . , fp(un−1) are correlated instead of being independent.
With a carefully chosen QMC point set, the induced correlation should be such
that the estimator has a smaller variance than the MC estimator. The variance of
the randomized QMC estimator can be estimated by constructing M i.i.d. copies
of the estimator (3) (e.g., with M i.i.d. random shifts), and then computing the
sample variance.

4 Reducing the Variance and/or the Dimension

To increase the efficiency of MC simulations, many variance reduction techniques
are available [24,23] and can be applied for financial simulations; see the survey
[6] for an overview. A good example of such technique is for pricing an Asian
option on the arithmetic average; one can then use as a control variable the price
of the same option but taken on the geometric average [21]. This can reduce the
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variance by very large factors. These techniques can usually be combined with
(randomized) QMC methods in a straightforward way; see, e.g., [10,53,26]. The
combination almost always improves the naive QMC estimators, but usually the
advantage of QMC over MC is decreased by applying variance reduction tech-
niques. Intuitively, this can be explained by the fact that these techniques might
reduce the variance of the function in a way that concentrates the remaining
variance in very small regions, and this makes it harder for QMC to improve
upon MC.

Techniques for reducing the effective dimension are useless to improve MC
simulations, but they can greatly enhance the performance of QMC methods [9,
32,1,10,27,2]. We discuss two of them: the Brownian bridge (BB) and the princi-
pal components (PC) techniques. The idea of BB was first introduced in [9] and
can be used to generate a Brownian motion at T different times B(t1), . . . , B(tT )
by using T uniform numbers u1, . . . , uT . Instead of generating these observations
sequentially (as outlined in the previous section), u1 is used to generate B(tT ),
u2 is used to generate B(tbT/2c), u3 for B(tbT/4c), u4 for B(tb3T/4c), etc. This
can be done easily since for u < v < w, the distribution of B(v) given B(u) and
B(w) is Gaussian with parameters depending only on u, v, w. The reason why
this can be helpful for QMC methods is that by generating the Brownian motion
path in this way, more importance is given to the first few uniform numbers, and
thus the effective dimension of a function depending on B(t1), . . . , B(tT ) should
be decreased by doing that.

In the same spirit as BB, one can decompose the variance-covariance matrix
of the prices to be simulated using principal components, and then generate the
prices using this decomposition [1]. An advantage of this approach over BB is
that it can be used to generate prices of correlated assets whereas BB can only
be applied for generating prices coming from a single path. However, PC requires
more computation time than BB for the generation of the prices, but see [2] for
a way of speeding up PC.

5 Broadening the Range of Applications

We conclude this paper by discussing applications that go beyond the context
discussed in Section 3. One such application is the estimation of derivatives
(or gradients) of prices with respect to one (or more) parameter(s) (which are
often called the greeks). For example, one might be interested in estimating how
sensitive an option’s price is to the volatility of the underlying asset. Broadie and
Glasserman [8] discuss how to do this using MC combined with some variance
reduction techniques; a QMC approach based on randomly shifted lattice rules
that improves upon MC is presented in [28]. These estimators could also be
used for the more complex problem of American option pricing since the latter
can be addressed using stochastic approximation methods that require gradient
estimators, as discussed in [17].

QMC estimators can also be used for pricing contracts that depend on assets
whose volatility is assumed to be stochastic. The difference with the problems
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discussed in Section 3 is that one needs to discretize the price process and at
each time step in the discretization, an observation from the volatility process
must be generated in addition to one from the asset’s price. Hence for T time
steps, at least 2T random numbers are required to generate one path, which
means the dimension of the problem is also at least 2T . When using QMC, such
simulations require a careful assignment of the uniform numbers u1, . . . , u2T to
the generation of the prices and the volatilities [3], but improvement upon MC
can still be achieved in this context [53,3].

These applications are just a small sample of the possible problems for which
QMC can provide more precise estimators than MC in computational finance.
We believe that basically any problem that can be addressed using MC also has
a QMC counterpart that can not only reduce the variance of the estimators, but
that also typically requires less computation time.
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