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Abstract. In this paper we consider parallel algorithms for comput-
ing an optimal link among weighted regions in the 2-dimensional (2-D)
space. The weighted regions optimal link problem arises in several ar-
eas, such as geographic information systems (GIS), radiation therapy,
geological exploration, environmental engineering and military applica-
tions. We present a CREW PRAM parallel algorithm and a coarse-grain
parallel computer algorithm. Given a weighted subdivision with a total
of n vertices, the work of the parallel algorithms we propose is only a
O(log n) factor more than that of their (optimal) sequential counterparts.

1 The Weighted Regions Optimal Link Problem

We consider the (2-D) weighted regions optimal link problem, defined as fol-
lows: Given a subdivision R of the 2-D space, with m weighted regions Ri,
i = 1, 2, . . . , m, and a total of n vertices, find a link L such that: (1) L in-
tersects two specified regions Rs, Rt ∈ R and (2) the weighted sum S(L) =∑

L∩Ri 6=φ wi ∗di(L) is minimized, where wi is either the weight of Ri or zero and
di(L) is the length of L within region Ri. Depending on the application, the link
L may be (a) unbounded (e.g., a line): the link L “passes through” the regions
Rs and Rt; (b) bounded at one end (e.g., a ray): Rs is the source region of L
and L passes through Rt and (c) bounded at both ends (e.g., a line segment):
Rs is the source region of L and Rt is its destination region. We consider only
straight links; the case of links described by some bounded degree curves is left
for further study. Let RL be the set of regions {Ri1 , . . . , Rik

} intersected by a
link L. Then, wi1 and wik

are set to zero. This last condition assures that the
optimal solution is bounded when a source (and/or a destination) region is not
specified (cases (a) and (b)) and allows the link to originate and end arbitrarily
within the source and target regions (cases (b) and (c)). See Figure 1 for an
example.

The weighted regions optimal link problem is an extension of the optimal
weighted penetration problem [5] and arises in several areas such as GIS, radi-
ation therapy, stereotactic brain surgery, geological exploration, environmental
engineering and military applications. For example, in military applications the
weight wi may represent the probability to be seen by the enemy when moving
through Ri, from a secured source region Rs to another secured target region
Rt. In radiation therapy, it has been pointed out that finding the optimal choice

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2073, pp. 649–657, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



650 O. Daescu

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

R s

R t

R

R

R

R

1

2

3

4

R

(a)

R s

R t

R

R

R

R

1

2

3

4

R

R s

R t

R

R

R

R

1

2

3

4

R

(b) (c)

L LL

Fig. 1. Illustrating the problem: (a) L intersects Rs and Rt; (b) L originates in Rs and
(c) L ends in Rt

for the link (cases (a) and (b)) is one of the most difficult problems of medical
treatment optimization [3].

In computational geometry, there are a few results that consider weighted
region problems, aiming to compute or approximate an optimal shortest path
between pairs of points [1,15,16,17]. Mitchell and Papadimitriou [17] first consid-
ered the problem of computing an approximate geodesic shortest path between
two points in a weighted planar subdivision. Their algorithm runs in O(n8B)
time and O(n4) space, where B is a factor representing the bit complexity of
the problem instance, and approximates the optimal solution within an (1 + ε)
factor. Later, Mata and Mitchell [16] presented an approximation scheme for
computing approximate shortest paths in a weighted polygonal subdivision. In
O(kn3) time, they create a graph of size O(kn) for (1 + ε) approximate shortest
paths, where k depends on ε and 0 ≤ ε < 1: by varying the parameter k that
controls the graph density, one can get arbitrarily close to the optimal solution.

The optimal link problem however, has a different structure than the shortest
path problem. The few papers that consider finding an optimal link either dis-
cretize the problem (e.g., see [14]) or consider some simplified versions (e.g.,
see [18]). Important steps towards solving the optimal weighted penetration
problem have been made very recently in [5,7], where it has been proved that the
2-D problem can be reduced to a number of (at most O(n2)) subproblems, each
of which asks to minimize a 2-variable function f(x, y) over a convex domain
D, where f(x, y) is given as a sum of O(n) terms. These subproblems can be
generated sequentially in O(n2) time and thus the bulk of computation consists
of solving the optimization problems. To compute the optimal solution for each
subproblem, a global optimization software has been used in [5]. As the number
of terms in f increases (i.e., > 100), such global optimization software performs
badly in both time and memory usage. Since in practical applications, having
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hundreds and even thousands of terms in the objective function is not an un-
common case, sequentially solving the global optimization problems (GOPs) on
a single processor seems impractical. Instead, one can take advantage of the fact
that, once the feasible domain and the objective function for each subproblem
have been produced, the GOPs are independent and can be solved in parallel.
After all GOPs are solved, the optimal solution can be obtained by a simple
minimum selection.

It would then be of interests to efficiently produce the set of GOPs in parallel.
We consider this problem and present the following results: (1) We give an
O(log n) time, O(n log n + k) processors algorithm in the CREW PRAM model,
where k is the total complexity description for the feasible domains of the GOPs
(Ω(n2) in the worst case). The algorithm is based on the arrangement sweeping
techniques of Goodrich et al. [13]. Our parallel algorithm implies an optimal
output sensitive O(n log n+k) time sequential algorithm for generating all GOPs,
by using the optimal segment arrangement construction in [4]. (2) We show
that, if at most n processors are available, all GOPs can be generated using
O(n2 log n) work. This algorithm is targeted to coarse-grain parallel computer
models, consisting of a relatively small set of nodes (up to a few thousand),
where each node has its own processor, with fair computing power, and a large
local memory, allowing to store all data involved in (sequentially) solving the
problem. In contrast, in a fine-grain computing model, one would allow only
constant local memory, but unrestrict the number of processing nodes available.

2 Useful Structures

The optimal link problem can be reduced to solving a number of (at most O(n2))
GOPs. Since each GOP can be solved using available global optimization soft-
ware, we are only concerned with efficiently generating the GOPs. We start by
describing the structure of a GOP.

Let L be a link intersecting the source and target regions Rs and Rt. Let S
be the set of line segments in the subdivision R and let Sst = {si1 , si2 , . . . , sik

}
be the subset of line segments in S that are intersected by L. Consider rotating
and translating L. An event ev will occur when L passes a vertex v of R. Such
an event corresponds to some line segments (with an endpoint at v) entering
or leaving Sst. As long as no event occurs, the formula describing the objective
function S(L) does not change and has the expression S(L) =

∑ik−1
i=i1

wi ∗ di,
where di is the length of L inside region Ri and si, si+1 are on the boundary of
Ri. We refer the reader to [5,9] for more details.

Let H = {l1, l2, . . . , ln} be a set of n straight lines in the plane. The lines
in H partition the plane into a subdivision, called the arrangement A(H) of
H, that consists of a set of convex regions (cells), each bounded by some line
segments on the lines in H. In general, A(H) consists of O(n2) faces, edges and
vertices and it can be computed in O(n2) time and O(n) space, by sweeping the
plane with a pseudoline [11].
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For case (a) of the optimal link problem (the link L is a line), using a point-
line duality transform that preserves the above/bellow relations (i.e., a point
p above a line l dualizes to a line that is above the dual point of l), all lines
intersecting the same subset of segments Sst ∈ S correspond to a cell in the dual
arrangement A(R) of R, defined by HR = {l1, l2, . . . , ln}, where li ∈ HR is the
dual of vertex vi ∈ R. The case of a semiline (case (b) of the link problem), and
that of a line segment can be reduced to that of a line, by appropriately main-
taining the set of line segments intersected by L and dropping those that arise
before a segment in Rs or after a segment in Rt. This can be done sequentially
in constant time, by extending the data structures in [5,9]. We leave the details
to the full paper.

Generating and sweeping the entire arrangement however, as proposed in [5],
may not be efficient since many cells of A(R) may correspond to set of links
that do not intersect Rs and/or Rt. Rather, we would like to compute only the
cells of interest. Assume that Rs and Rt are convex (the results can be extended
in the same complexity bounds to the nonconvex case, by observing that a line
intersects a region Ri if and only if it intersects the convex hull of Ri; more
details in the full version). Using a point-line duality transform that maps the
line y = mx + p in the (x,y) plane to the point (m, p) in the (m,p) plane, the
set of lines intersecting Rs (resp., Rt), define a “strip” region DRs

(resp. DRt
)

in between two m-monotone, unbounded and nonintersecting chains.
The set of lines intersecting both Rs and Rt thus correspond to the common

intersection of DRs and DRt . Let ks and kt be the number of vertices of Rs and
Rt, respectively. Let Dst = DRs

∩ DRt
.

Lemma 1. Dst is a (possibly unbounded) region bounded by two m-monotone
chains with a total of O(ks + kt) vertices.

Proof. DRs
has ks vertices, each vertex corresponding to a line supporting a

boundary segment of Rs. Similarly, DRt
has kt vertices, each vertex correspond-

ing to a line supporting a boundary segment of Rt. Since there are only O(1)
common tangents to Rs and Rt, the pairs of chains defining the boundaries of
DRs and DRt intersect O(1) times, and the proof follows. 2

An example is given in Figure 2, where Dst is the quadrilateral with vertices
A,B,C and D.

Lemma 2. The lines in A(R) have at most O(n) intersections with the chains
bounding Dst.

Proof. Only O(1) lines tangent to Rs and Rt can pass through a point p. Then,
the dual line of p can intersect the chains bounding Dst only O(1) times, from
which the proof follows. 2

Thus, computing the cells of the arrangement defined by A(R) that corre-
spond to set of lines intersecting both Rs and Rt reduces to computing the
arrangement of O(n) line segments in Dst (some of these line segments may in
fact be semilines, but this does not influence the overall computation).
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Fig. 2. The line transversals of Rs, Rt dualize to quadrilateral Dst=ABCD

3 Parallel Solutions

In this section we present two parallel solutions for the optimal link problem. The
first algorithm uses the CREW PRAM model of computation. Recall that in this
model processors act synchronously and may simultaneously access for reading
the same memory location on a shared memory space. To obtain output sensitive
algorithms, we use the paradigm in [13]: the pool of virtual processors can grow
as the computation proceeds, provided that the allocation occurs globally [12].
Given a subdivision R with a total of n vertices, the algorithm we present runs
in O(log n) time using O(n log n + k) processors, where k is the size of the
output (the total description complexity for the feasible domains of the GOPs
to be solved), and it could be Ω(n2) in the worst case. If the traditional CREW
PRAM model is used, our solution would require O(n2) processors.

As outlined in the previous section, to compute the feasible domains for the
GOPs it suffices to compute the cells in the arrangement A(Dst) of O(n) line
segments in Dst, where each line segment has its endpoints on the boundary of
Dst. Further, in order to produce the corresponding objective functions, with
each cell C of A(Dst) we must associate the subset of line segments in S that
are intersected by a line whose dual is a point in C. This computation may be
regarded as a set of queries on the line segments in S.

The algorithm we present follows the one in [13], where the following segment
intersection problem has been considered and solved: given a set of line segments
in the plane, construct a data structure that allows to quickly report the segments
intersected by a query line. Their algorithm is based on a parallel persistence data
structure termed array-of-trees and on fast construction of line arrangements.
The main idea in [13] is to build the arrangement, an operation sequence σ for
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that arrangement, and then use the array-of-trees data structure to evaluate the
sequence. A reporting query can then be answered in O(log n) time per query,
resulting in a O(log n) time, O(n2) processors CREW PRAM algorithm.

The main difference in the algorithm we present is in defining and handling
the operation sequence σ. Given the nature of the optimal link problem, a vertex
of the subdivision R may in fact be the endpoint of multiple line segments (e.g.,
O(n) such segments). Then, while crossing from one cell to an adjacent one, many
line segments may enter or leave the set Sst and thus many enable/disable-like
operations in [13] would be associated to such crossing. Rather than defining the
enable/disable operations on individual segments, we define these operations
on subsets of segments in S. Doing this, in order to maintain the processing
bounds, we must be able to obtain these subsets in constant time per subset.
Fortunately, this can be done by extending the data structures introduced in [9,
5] for the optimal penetration problem. We only mention here that, if not given
as part of the input, the additional data structures can be easily computed in
parallel in O(log n) time using O(n) processors. Knowing the number d(v) of
edges adjacent to each vertex v ∈ R and using these structures, we can assign
O(d(v)) processors to handle an event at v in constant time. Observe that, since
R is a planar subdivision, we have

∑
v∈R d(v) = O(n).

Lemma 3. The feasible domains and the objective functions for the GOPs asso-
ciated with the region Dst can be generated in O(log n) time using O(n log n+k)
processors, where k is the size of the output.

Proof. We give an algorithm that constructs the GOPs in the claimed time
and processor bounds. The algorithm proceeds as follows. (1) Construct the
arrangement of line segments inside Dst. This can be done in O(log n) time
with O(n log n + k) processors, using the algorithm in [12]. We then compute
a spanning tree for this arrangement and an Euler tour of this tree, as in [13].
While computing the Euler tour, we use an extension of the data structures in [9,
5] to produce the operation sequence σ for the tour. Since the enable/disable
operations in σ add only constant time, this computation can still be done in
O(log n) time using O(k/ log n) processors. Constructing the array-of-trees data
structure and answering reporting queries can be done as in [13]. Then, the
claimed processing bounds follow. 2

We mention here that an O(log n) time, O(n2) processors algorithm can
be obtained by associating an enable/disable operation with each line segment
involved in a crossing at a node v (i.e., to O(d(v)) segments) and applying the
algorithm in [13].

The second algorithm we present uses a coarse-grain parallel computer model
of computation. In this model, a relatively small number of processors are avail-
able and each processor has a large amount of local memory available, thus being
able to store all data involved in (sequentially) solving the problem, much like
a personal computer. In particular, such a processing element would be able to
store the region R and its dual arrangement, as well as all data that is required
in the process of generating and solving a GOP. If at most n processors are avail-
able, we present a simple yet efficient algorithm that generates all GOPs using
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O(n2 log n) work and with practically no communications between processors.
The GOPs can be solved locally or they can be sent for solving to some external
processing clusters, as in [10].

We make the following assumptions for our model: (1) processors are con-
nected and can communicate via a global data buss or a communication network
that allows efficient data broadcasting (i.e, feed the subdivision R to all process-
ing elements) and (2) processors are numbered and each processor knows its
order number.

The algorithm we present is based on computing the portion of an arrange-
ment of lines that lies in between two vertical lines. At the start of the algorithm,
each processing element stores the subdivision R and the set of lines in A(R)
(following a broadcasting operation), and knows its order number. Since each
processor will perform similar computation, it then suffices to discuss the com-
putation involved at only one of them, say the k-th processor Pk.

At processor Pk, the algorithm will compute the GOPs associated with the
portion of the arrangement A(R) that is in between the vertical lines Lk−1 and Lk

passing through the (k−1)n-th and kn-th leftmost intersection points of the lines
in A(R). We denote these two points as pk−1 and pk. First, the algorithm finds
the lines Lk−1 and Lk by computing the points pk−1 and pk. These points can be
computed in O(n log n) time each using the algorithm in [8]. Next, the algorithm
computes the intersection points of the lines in A(R) with Lk−1 and Lk and runs
a topological sweep algorithm [2] to produce the GOPs inside the parallel strip.
Sweeping the strip, as well as generating the corresponding objective functions,
can be done altogether in O(n log n) time, which follows from [9,5]. Alternatively,
we can obtain the same results using the (optimal) sequential version of the
CREW PRAM algorithm above (i.e., by computing a line segment arrangement
inside the strip and traversing that arrangement). Finally, the last step of the
algorithm consists of a maximum selection among the optimal solutions stored
“locally” at different processing elements, in order to obtain the optimum over
all GOPs. These can be done using O(n) broadcasting operations, starting at
processor P1, with the overall optimum computed at processor Pn. Thus, we
have the following lemma.

Lemma 4. In the proposed coarse-grain computing model, the feasible domains
and the objective functions for the GOPs can be computed in O(n log n) time
using O(n) processors.

Corollary 1. If only p processors are available, where p ≤ n, the feasible do-
mains and the objective functions for the GOPs can be computed with O(n2 log n)
total work.

There are two important features of our solution that should be noted here.
First, the approach we propose allows for scalability in solving the GOPs. That
is, after a GOP is produced, it can be solved either locally or it can be sent to
some external processing cluster, that would in turn compute and return the
optimal value for that GOP. Second, once the initial setup for the computation
has been completed, it takes constant time to generate a new GOP; since the
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objective function of a GOP could have O(n) terms, this implies that all GOPs in
a strip can be generated in time comparable to that required to perform a single
evaluation of a GOP’s objective function, and justifies the proposed coarse-grain
model of computation.

In the full paper, we will show that the algorithm above can be extended to
compute only the GOPs corresponding to the portion of the arrangement A(R)
that lies inside the region Dst, with each processing element solving about the
same number of GOPs. However, we expect such an approach to be slower in
practice when compared to the algorithm above, due to the increased complex-
ities of the data structures involved, which may considerably add to the values
of the constants hidden in the big-Oh notations.
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