
Robustness Issues in Surface Reconstruction

Tamal K. Dey, Joachim Giesen, and Wulue Zhao?

Abstract. The piecewise linear reconstruction of a surface from a sam-
ple is a well studied problem in computer graphics and computational
geometry. A popular class of reconstruction algorithms filter a subset of
triangles of the three dimensional Delaunay triangulation of the sample
and subsequently extract a manifold from the filtered triangles. Here we
report on robustness issues that turned out to be crucial in implementa-
tions.

1 Introduction

While implementing geometric algorithms, one often has to face the problem of
numerical instabilities. That is also the case for Delaunay based surface recon-
struction algorithms that filter a subset of Delaunay triangles for reconstruction.
But careful examination shows that the only step that inherently requires insta-
ble numerical decisions is the construction of the Delaunay triangulation itself.
All other steps can be implemented relying either on numerically stable or purely
combinatorial decisions. Here we want to emphasize the following design princi-
ple for geometric implementations: Avoid numerical decisions whenever possible.
Our experience shows this pays off as well in robustness as in running time.

2 Filter Based Reconstruction Algorithms

Filter based algorithms consider a subset of triangles of the three dimensional
Delaunay triangulation of a sample P ⊂ R

3 for reconstruction. All these algo-
rithms contain three generic steps:

(1) FilterTriangles. A set of candidate triangles is extracted from the Delau-
nay triangulation of the the sample. In general the underlying space of these
triangles is not a manifold, but a manifold with boundary can be extracted.

(2) Pruning. We want to extract a manifold from the set of candidate triangles
by walking either on the inside or outside of this set. During the walk we
may encounter the problem of entering a triangle with a bare edge, i.e. an
edge with only one incident triangle. The purpose of this step is to get rid
of such triangles.

(3) Walk. We walk on the in- or outside of the set of triangles that remained
after Pruning and report the triangles walked over.

Different filter based reconstruction algorithms distinguish themselves in the
FilterTriangles step. In the following we shortly explain two different filter
strategies which both come with theoretical guarantees. But there are also other
algorithms that fit in the general scheme presented above.
? Department of CIS, Ohio State University, Columbus, OH 43210. This work is sup-

ported by NSF grant CCR-9988216.

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2073, pp. 658–662, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Robustness Issues in Surface Reconstruction 659

2.1 Crust

The Crust algorithm of [1] first computes the Voronoi diagram of the sample
P , i.e. the dual of the Delaunay triangulation. A subset of the Voronoi vertices
called poles is used to filter Delaunay triangles.

Poles: Let Vp be the Voronoi cell of a sample point p ∈ P . The Voronoi vertex
p+ in the Voronoi cell Vp farthest from p is called the positive pole of p. The
negative pole of p is the point p− ∈ Vp farthest from p such that the two vectors
(p+ − p) and (p− − p) make an angle more than π

2 . We call vp = p+ − p the pole
vector of the sample p. See Figure 1. If Vp is unbounded special care has to be
taken.

The Crust algorithm computes the Delaunay triangulation of the union of
the sample P with the set of poles. All triangles in this Delaunay triangulation
that are incident to three samples from the original sample P are candidate
triangles for the reconstruction.

2.2 Cocone

The Cocone algorithm of [2,4] avoids the second Delaunay computation. This
algorithm is using a set called cocone for every sample point p ∈ P to filter
Delaunay triangles.

Cocone: The set Cp(θ) = {y ∈ Vp : ∠((y − p),vp) ≥ π
2 − θ} is called the

cocone of p. In words, Cp(θ) is the complement of a double cone centered at p
(clipped within Vp) with opening angle π

2 − θ around the axis aligned with vp.
See Figure 1.

The Cocone algorithm filters a triangle t from the Delaunay triangulation
of the sample P if all cocones of the three sample points incident to t intersect
the Voronoi edge dual to t.

p−

p+

Fig. 1. A Voronoi cell together with the normalized pole vector and the cocone.

3 Robustness
In this section we discuss the robustness of the four steps (including the com-
putation of the Delaunay triangulation / Voronoi diagram) of the generic filter
based algorithm.



660 T.K. Dey, J. Giesen, and W. Zhao

3.1 Delaunay Triangulation

Delaunay triangulation algorithms are usually designed for the real RAM, a ran-
dom access machine that can handle real numbers at unit cost. Most of these
algorithms assume that two geometric predicates, the sidedness test and the in-
circle test, can be evaluated accurately. The sidedness test decides whether a
point lies left of, right of or on an oriented hyperplane. The incircle test decides
whether a point lies outside of, inside of or on a sphere. Both predicates amount
to the computation of the sign of a determinant. Implementing these tests us-
ing floating point arithmetic can result in completely unreliable output or even
infinite loops depending on the chosen algorithm.

The naive way to circumvent these problems is to compute the value of the
determinants using exact arithmetic and to read of the sign from the value. A
more efficient technique is the use of floating point filters. A floating point filter
computes an approximate value of an expression and a bound for the maximal
deviation from the true value. If the error bound is smaller than the absolute
value of the approximation, approximation and exact value have the same sign.
In this case we can use the sign of the approximation to decide the predicate.

In our implementations we used the floating point filters provided by the com-
putational geometry algorithms library CGAL [3]. Our experience shows that the
running time is no more than twice the running time of a pure floating point
implementation. See Figure 2(a) for an example how the use of floating point
arithmetic can affect the reconstruction algorithms (after FilterTriangles).

Fig. 2. Candidate Triangles computed by the Cocone algorithm from a Delaunay tri-
angulation computed with floating point arithmetic (left) and filtered exact arithmetic
(right).

3.2 Filter Triangles and Pruning

The step FilterTriangles is purely combinatorial in the Crust algorithm
and hence robust. In the Cocone algorithm this step involves the numerical
decision if a Voronoi edge intersects a cocone. But it turns out that the exact
size of the opening angle of the cocone is not important. Thus the decision if a
Voronoi edge intersects a cocone need not be really accurate.



Robustness Issues in Surface Reconstruction 661

The Pruning step is purely combinatorial. It involves only the decision if
an edge is bare, i.e. if it has exactly one incident triangle. Hence this step is also
robust.

3.3 Walk

A pseudo code for the implementation of the walk is given below.

Walk (C, (t, e))
1 S := {t}
2 Pending := ∅
3 push (t, e) on Pending.
4 while Pending 6= ∅
5 pop (t, e) from Pending
6 if e is not marked processed
7 mark e processed.
8 t′ := SurfaceNeighbor (C, t,e)
9 S := S ∪ {t′}

10 if e′ 6= −e incident to t′ induces the same orientation on t′ as −e
11 push (t′, e′) on Pending.
12 return S

The Walk takes two parameters, a complex C containing the candidate
triangles and an oriented triangle t. The orientation of t is given by an oriented
edge e incident to t. First, the surface S is initialized with the triangle t (line
1). Next a stack Pending is initialized with the oriented triangle t (lines 2 and
3). As long as the stack Pending is not empty, we pop its top element (t, e). If
the edge e is not already processed we call the function SurfaceNeighbor to
compute the surface neighbor of the oriented triangle t, i.e. the triangle t′ that
‘best fits’ t (line 8). Then t′ is inserted in S and two new oriented triangles are
pushed on the stack pending (lines 9 to 11). Finally we return S (line 12).

The question is how to implement the function SurfaceNeighbor which has
to circle around edge e according to the orientation of e until it first encounters
another candidate triangle. This is the triangle we are looking for. Let t′ always
denote a candidate triangle incident to t via e.

A naive implementation could compute first the value (nt′ × nt) · e for ev-
ery triangle t′. Here nt and nt′ denote the normalized normals of t and t′ both
oriented according to the orientation of t. From the sign of this value one can
decide if t′ and t lie on the same side of the hyperplane h1 spanned by the
vectors nt and e. Next the value λt′ = (vt′ · nt) is computed. Here vt′ denotes
the normalized vector from the head of e to the vertex opposite of e in t′. See
Figure 3(a). Using the sign of λt′ one can decide if t′ lies above or below the
oriented hyperplane h2 defined by t. In case that there exists a triangle t′ which
lies above h2 and on the same side of h1 as t the function SurfaceNeighbor
returns the triangle which has the smallest value λt′ among all such triangles.
Otherwise it returns the triangle which has the largest value λt′ among all trian-
gles t′ that do not lie on the same side of h1 as t. If such a triangle does not exist



662 T.K. Dey, J. Giesen, and W. Zhao

the function just returns the triangle t′ which has the smallest value λt′ . The
Walk with this implementation of SurfaceNeighbor can produce holes due
to numerical inaccuracy in the computation of λt′ when walking over slivers, i.e.
flat tetrahedra which frequently appear in the Delaunay triangulation of surface
samples. See Figure 3(b).

n
vnt

t’

t’

et t’

Fig. 3. An instable way to compute the surface neighbor (left) and a zoom on a
reconstruction after the Walk (right).

A robust and faster implementation of the function SurfaceNeighbor
avoids numerical computations by exploiting the combinatorial structure of the
Delaunay triangulation to choose the next triangle. Every triangle in the Delau-
nay triangulation has two incident tetrahedra. We fix a global orientation. For
the triangle t we choose the tetrahedron that is oriented according to the orien-
tation of (t, e) and the global orientation. In Figure 3(b) this is tetrahedron T1.
Then we go to neighboring tetrahedra T2, T3, . . . also incident to e until we find
the triangle t′. See Figure 4(a). The Walk with this implementation of Sur-
faceNeighbor is robust since no numerical decisions are involved. The latter
is also the reason why it is fast provided the Delaunay triangulation is given in
a form which allows to answer queries for neighboring tetrahedra quickly. With
our implementation we observe that the time spend for the Walk is only a tiny
fraction of the time needed to compute the Delaunay triangulation.

T

T

T1

2

t t’

3

e

Fig. 4. A stable way to compute the surface neighbor (left) and a zoom on a recon-
struction after the Walk (right).

References
1. N. Amenta and M. Bern. Surface reconstruction by Voronoi �ltering. Discr. Comput.

Geom., 22, (1999), 481{504.
2. N. Amenta, S. Choi, T. K. Dey and N. Leekha. A simple algorithm for homeomorphic

surface reconstruction. Proc. 16th. ACM Sympos. Comput. Geom., (2000), 213{222.
3. http://www.cgal.org
4. T. K. Dey and J. Giesen. Detecting undersampling in surface reconstruction. Proc.

17th ACM Sympos. Comput. Geom., (2001), to appear.


	Introduction
	Filter Based Reconstruction Algorithms
	Crust
	Cocone

	Robustness
	Delaunay Triangulation
	Filter Triangles and Pruning
	Walk


