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Abstract. Given a set of three circles in a plane, we want to find a circumcircle
to these given circles called generators. This problem is well known as
Apollonius Tenth Problem and is often encountered in geometric computations
for CAD systems. This problem is also a core part of an algorithm to compute
the Voronoi diagram of circles. We show that the problem can be reduced to a
simple point-location problem among the regions bounded by two lines and two
transformed circles. The transformed circles are produced from the generators
via linear fractional transformations in a complex space. Then, some of the lines
tangent to these transformed circles corresponds to the desired circumcircle to
the generators. The presented algorithm is very simple yet fast. In addition,
several degenerate cases are all incorporated into one single general framework.

1 Introduction

Suppose that we want to compute circumcircles of a set of three circles in a plane.
The radii of the circles are assumed to be not necessarily equal and where the circles
are possibly intersecting one another. This problem is frequently encountered in
various geometric computations in CAD systems and the computation of the Voronoi
diagram of circles [3,8,10,11,13,15,18].

The problem can be solved in various ways. One approach could be computing the
center of circumcircle as an intersection between two bisectors defined by two circles.
It turns out that this process involves the solution process of a quartic equation that
can be solved by either the Ferrari formula or a numerical process [9]. Note that this
approach can be applied only after the number of circumcircles to the generators is
determined. On the other hand, the solution may be symbolically generated via tools
like Mathematica. However, the cost of such symbolic generation can be also quite
high.

It is known that there are at most eight circles simultaneously tangent to three
circle generators as shown in Fig. 1. In this and the following figures, the black circles
are given generator circles while the white ones are tangent circles.

Among the tangent circles, we want to find the circumcircles for three generator
circles. Depending on the configuration of three generators, however, there may be
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either no, one, or two circumcircles, as shown in Fig. 2. We want to determine which
case a given generator set is and find such circumcircles with less computation as
possible if they exist.

In Section 2, we provide the previous researches related to the problem. In Section
3, the properties of the linear fractional transformation in a complex plane are
provided so that the problem can be transformed to easier one. The discussions in this
section is a slight variation of the noble approach initially presented by Rokne[16].
Based on the transformation, we present the point location problem formulation of the
problem in Section 4.

2 Related Works

In his book On Contacts, Apollonius of Perga(262-190 B.C.), known as The Great
Geometer, left the famous Apollonius problems : Given any three points, lines, or
circles, or any combination of three of these, to construct a circle passing through the
points and tangent to the given lines and circles. Among ten possible combinations of
the geometric entities involved, The Apollonius’ Tenth Problem is the most general
problem to construct the circles simultaneously tangent to three circles. [2,4,5].

There have been several efforts to solve the problem in various ways [1,3,14,17].
Recently, Rokne reported an approach based on the linear fractional transformation
(also known as Möbius transformation) in the complex plane [16]. Using the fact that
a linear fractional transformation in a complex plane maps circles to lines and vice
versa, he suggested to compute a tangent line of two circles in a mapped space to
back-transform into a circumcircle. Most recently, Gavrilova reported an analytic
solution which involves trigonometric functions [7].

(a)                      (b)                      (c)                      (d)

Fig. 1. Circles tangent to three generator circles

    (a)                                (b)                                (c)

Fig. 2. Circumcircles. (a) no circumcircle exists, (b) one
circumcircle exists, and (c) two circumcircles exist.
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Even though the problem is quite complicated in Euclidean space, it turns out that
it can be rather easily solved by employing a complex system. Following Rokne’s
suggestion, we have adopted the linear fractional transformation to transform the
given problem into the problem of finding tangent lines of two circles in a mapped
space. Then, we formulate a point location problem so that all of the degenerate
configurations of generators can be handled in a unified way. It turns out that our
approach incorporate all variations of degeneracies in a single framework, is easy to
program, numerically robust, and computationally very efficient. Hence the proposed
algorithm is preferable for the implementation for geometric computations.

3 Linear Fractional Transformations

Let the plane, where the circles are given, be complex. Then, a point (x, y) in the
Euclidean plane can be treated as a complex number z = x + iy. Also, let ( )iii rz ,=c , i =

1, 2, and 3, be the generator circles with a center (xi, yi) and a radius 0321 ≥≥≥ rrr  as

shown in Fig. 3. Then, ( )3,~ rrz iii −=c  transforms generator circles 
1c , 

2c  and 
3c  to

shrunk circles 
1

~c , 
2

~c  and 
3

~c  respectively. Note that 
3

~c  degenerates to a point 
3z . Then,

if we can find a circle c~  passing through 
33

~c≡z  and tangent to both 
1

~c  and 
2

~c , we can

easily find a circle c which is simultaneously tangent to c1, c2 and c3 by simply
subtracting r3 from the radius of c~ .

Consider a linear fractional transformation defined as

dcz

baz
zW

+
+=)( (1)

where 0≠− bcad , and a, b, c and d are either complex or real numbers. Note that
W(z) is analytic so that the mapping W(z) is everywhere conformal and maps circles
and straight lines in the Z-plane onto circles and straight lines in the W-plane. Among
others, we note a particular linear mapping

c2

c1

c3

1z

2z

3z

c

2
~c

1
~c

33
~c=z

1z

2z

c~

(a) (b)

Fig. 3. Circumcircle and the inflated circumcircle. (a)
generators and the desired circumcircle, (b) shrunk generators
and a circumcircle passing through z3.
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as was suggested by [6,16]. The mapping defined in Equation (2) is known to possess
the following properties.
• It transforms lines and circles passing through z0 in the Z-plane to straight lines in

the W-plane.
• It transforms lines and circles not passing through z0 in the Z-plane to circles in the

W-plane.
• It transforms a point at infinity in the Z-plane to the origin of the W-plane.

The details can be found in a material on the subject such as [12]. Therefore, a
mapping W(z) = 1 / (z – z3) transforms 

1
~c  and 

2
~c  in the Z-plane to circles W1 and W2 in

the W-plane, if z3 is not on 
1

~c  and 
2

~c . Then, the desired circle c~  tangent to circles 
1

~c

and 
2

~c  in the Z-plane will be mapped to a line L tangent to W1 and W2 in the W-plane

by W(z). It can be shown that W(z) maps circles ( )3,~ rrz iii −=c  into circles ( )iii RW ,ω=
defined as

( )( )iiiii DyyDxx 33 , −−−=ω

( ) iii DrrR 3−=

(3)

where 2
3

2
3

2
3 )()()( rryyxxD iiii −−−+−= , i = 1 and 2. Similarly, it can be also shown

that the inverse transformation

3
1 1)()( zwwZzW +==− (4)

is also another conformal mapping, and hence, maps lines not passing through the
origin of the W-plane to circles in the Z-plane. Suppose that a line is given as

01 =++ bvau  in the W-plane. Then, its inverse in the Z-plane is a circle ( )00 ,~ rz=c ,

where  ( )330 2/,2/ ybxaz ++−=  and 222
0 bar += . We recommend [16] for the

details of the computation using this mapping.

4 Point Location Problem

Based on Rokne’s approach to transform Z-plane to W-plane, we formulate the
problem as a point location problem. Let W1 and W2 be two circles with radii R1 and R2

in the W-plane, respectively. Suppose that R1 > R2 > 0, as shown in Fig. 4(a). Then,
there could be at most four distinct lines simultaneously tangent to both W1 and W2.
Suppose that the black dot in Fig. 4(a) is the origin O of the coordinate system in the
W-plane. Then, the line L1 maps to the circumcircle 1

1
~−c  in the Z-plane, as shown in

Fig. 4(b), by the inverse mapping Z(w) because the circles W1 and W2 as well as the
origin O are located in the same side with respect to L1. Since the origin O of the W-
plane corresponds to infinity in the Z-plane and Z(w) is conformal, 

1
~c  and 

2
~c  in the Z-

plane are located to the infinity from the inverse mapped circle 1
1

~−c  and therefore 1
1

~−c
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should be the desired circumcirlce. Therefore, we can also derive an observation of
( )21 WWO ∪∉ , which means that the origin O of the W-plane cannot lie on or interior to

the circles W1 and W2.
Similarly, L2 maps to the inscribing circle 1

2
~−c  since the circles W1 and W2 are in the

opposite side of O which corresponds to the infinity in the Z-plane. Cases of L3 and L4

correspond to 1
3

~ −c  and 1
4

~ −c , respectively. Therefore, the line L which corresponds to a

circumcircle in the Z-plane is either one or both of the exterior tangent lines, L1

and/or L2. Between L1 and L2, the one containing W1, W2 and the origin O in the same
side of the line will map to the desired circumcircle(s). Remember that zero, one or
both exterior tangent lines may be the correct result depending on the configuration of
the initially given generator circles. From now on, we will drop the word exterior
from the term for the convenience of presentation, unless otherwise needed.

4.1 Decomposition of the W-Plane

Suppose W1 and W2, R1 > R2 ≠ 0, are given as shown in Fig. 5(a). Let L1 and L2 be the
tangent lines to both circles. Let +

iL  be the half-space, defined by Li, containing W1 as

well as W2. Similarly, −
iL  means the opposite side of +

iL . Then, W-plane consists of

six mutually exclusive regions as follows:
( ) ( )

( ) ( ) ( ) ( )2121212121

21212121

                                        

                                       

LLLLLLLLLL

LLLLLLLL

∩∪∩=∩∪∩=∩=

∩=∩=∩∪∩=
++−−

++−−+−−+

As shown in the figure, the region α consists of two subregions and the region γ
consists of three (or four, if W1 and W2 intersect each other) subregions.

4.2 Location of the Origin of the W-Plane

Once the W-plane is decomposed into a set of such regions, the problem of computing
a circumcircle(s) now further reduces to a point location problem among the regions.

W2

W1

L1

L2

L3

L4

O

2
~c

1
~c 33

~c=z

2z

1z

1
3

~−c

1
1

~−c

1
2

~−c
1

4
~−c

(a) (b)

Fig. 4. 
3

1 /1)()( zwwZzW +==−  maps from the W-plane to the

Z-plane. (a) the W-plane, (b) the Z-plane.
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Note that, in Fig.5, the shaded circles are shrunk circles, and black dots are the shrunk
circles with zero radii and thus degenerate to a point in the Z-plane. In addition, a
circumcircle is shown in a solid curve while an inscribing circle is shown in a broken
curve.

Theorem 1. If R1 > R2 ≠ 0, there are six cases as follows.
• Case α: If α∈O , one tangent line maps to a circumcircle while the other tangent

line maps to an inscribing circle. (Fig. 5(b)-α)
• Case β: If β∈O , both tangent lines map to inscribing circles. (Fig. 5(b)-β)

• Case γ: If γ∈O , both tangent lines map to circumcircles. (Fig. 5(b)-γ)

• Case δ: If δ≡O , both tangent lines map to lines intersecting at a point. (Fig. 5(b)-
δ)

• Case ε: If ε∈O , a tangent line on which O lies maps to a line, while the other
tangent line maps to an inscribing circle. (Fig. 5(b)-ε)

• Case ζ: If ζ∈O , the tangent line on which O lies maps to a line, while the other

tangent line maps to a circumcircle. (Fig. 5(b)-ζ)

Proof.
• Case α: Suppose that ( )+− ∩= 211 LLα  and ( )−+ ∩= 212 LLα . Without loss of generality we

can assume that 
1α∈O . Then, L1 in the W-plane is inverse-mapped to a circle 1

1
~ −c

inscribing 
1

~c  and 
2

~c  in the Z-plane, as illustrated by a dotted curve in Fig.5(b)-α.

This is because L1 places O on the opposite side of W1 and W2. Note that 
1

~c  and 
2

~c

are the inverse maps of W1 and W2. On the other hand, L2 is inverse-mapped to a
circumcircle 1

2
~−c  tangent to 

1
~c  and 

2
~c  in the Z-plane, and is illustrated as a solid

curve. This is because L2 places W1, W2 and O on the same side. Since two tangent
lines in the W-plane intersect each other at δ, the inverse mapped circles, regardless
they are circumcircles or inscribing circles, always intersect each other at

)(1 δ−W computed by Eq.(4) shown as a black rectangle in the Z-plane.

• Case β: When β∈O , both W1 and W2 are on the opposite side of O with respect to
both tangent lines L1 and L2. Therefore, both L1 and L2 should be mapped to
inscribing circles, and hence, no circumcircle will result as shown in Fig. 5(b)-β.

• Case γ: When γ∈O , both W1 and W2 are on the same side of O with respect to
both tangent lines L1 and L2. Hence, both L1 and L2 should be mapped to
circumcircles only. In this case, two different situations may occur. Note that the
region γ consists of three subreigons. The case in Fig. 5(b)-γ1 occurs when O lies
in-between two circles W1 and W2, and the case γ2 in Fig. 5(b)-γ2 occurs when O lies
in the other subregions of γ.

• Case δ: When δ≡O , the inverse mapping to the Z-plane yields results similar to
what is shown in the W-plane. Since the tangent lines in W-plane pass through the
origin O, the inverse-mapped (supposedly) circles should pass through the infinity.
This means that the radii of the inverse-mapped circles are infinite. Therefore, the
mapping results in lines in Z-plane as shown in Fig. 5(b)-δ. Note that they only
intersect at 

3
~c .
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• Case ε: When ε∈O , O lies precisely on a ray ε starting from δ. In this case, the
corresponding tangent line on which O lies is inverse mapped to a line in the Z-
plane, as was explained in the above. Then, O should be located on the opposite
side of the other tangent line with respect to W1 and W2, meaning that there is an
inscribing circle as shown in Fig. 5(b)-ε.

• Case ζ: When ζ∈O , O lies precisely on a ray ζ, which is also a ray starting from

δ. In this case, the corresponding tangent line inverse maps to another line in the Z-
plane similarly to the above cases. In this case, however, O as well as W1 and W2

should be located on the same side of the other tangent line. It means that the
tangent line inverse maps to a circumcircle in the Z-plane as shown in Fig. 5(b)-ζ.

Note that some tangent circles to shrunk circles degenerate to lines in Cases δ,
ε and ζ. In this case, the desired tangent circles to the generators can be obtained by
translating the degenerate lines to the opposite direction of the shrunk circles.

Slightly changing the configuration of generator circles, various degeneracies may
occur. It turns out that the degeneracies are mainly due to the radii of W1 and W2.
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α                       β                  γ1              γ2

δ         ε          ζ
(b)

Fig. 5.  R1 = R2 > 0. (a) the W-plane, (b) the Z-plane
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4.3 Degenerate Cases

Even though the problem has been discussed for a general case, there could be several
degeneracies which may make the problem more difficult. The degeneracies are
mainly due to the radii of W1 and W2. It turns out that, however, the theory previously
discussed can be used for such degeneracies without much modifications.

One degenerate case is R1 > R2 = 0, which means that W2 degenerates to a point as
shown in Fig. 6. This case occurs when two smaller generator circles c2 and c3 in the
Z-plane have identical radii. The differences of this case from the general case are the
followings: i) The region γ  consists of two subregions, and ii) Case δ does not occur.
Otherwise, everything is same as before.

A second degenerate case occurs when R1 = R2 > 0, as shown in Fig. 7, which
means that W1 and W2 have identical non-zero radii. Note that R1 = R2 in general does
not guarantee r1 = r2, which are the radii of generator circles. In other words, even
though two generator circles in the Z-plane have identical radii, the radii of mapped
circles in the W-plane are not necessarily identical, and vice versa. Note that two
exterior tangent lines in the W-plane are parallel in this case. In this case, therefore,
the regions β, δ, and ε disappear. Therefore, the cases left are Cases α, γ, and ζ, and
Theorem 1 still holds except the missing cases.

A third, and the last, degenerate case is R1 = R2 = 0, and is illustrated in Fig. 8. This
case occurs when both W1 and W2 have zero radii, and therefore 

21 LL ≡ . This case is

possible only when all generator circles in the Z-plane have identical radii. In this
case, only the regions α and ζ only remain. The interpretations of the remaining
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Fig. 6. R1 > R2 = 0.
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Fig. 8. R1 = R2 = 0 : generator circles in the Z-plane



736         D.-S. Kim et al.

regions stay the same as before. Note that Fig. 6 and Fig. 7 illustrate the W-plane
while Fig. 8 shows the Z-plane.

Therefore, these degenerate cases can be all treated in a unified algorithm without
any modification, except the minor treatment of parsing the regions. One possible
special treatment would be the very last case where the centers of three circles with
identical radii are collinear. In this case, there are no circumcircle but two tangent
lines, as shown in Fig. 8.(b), and they can be only computed by translation of the
computed line.

5 Conclusions

Presented in this paper is an algorithm to compute the circumcircles of a set of three
generator circles in a plane. This problem is a part of the well-known Apollonius’
Tenth Problem and is frequently encountered in various geometric computations for
CAD systems as well as for the computation of the Voronoi diagram of circles. It
turns out that this seemingly trivial problem is not an easy problem at all to solve in a
general setting. In addition, there can be several degenerate configurations of the
generators.

Even though the problem is quite complicated in Euclidean space, it turns out that
it can be rather easily solved by employing a complex system. Following Rokne’s
approach, we have adopted the linear fractional transformation to transform the given
problem into the problem of finding tangent lines of two circles in a mapped space.
Then, we formulate a point location problem so that all of the degenerate
configurations of generators can be handled in a unified way.

It turns out that the proposed approach incorporates all variations of degeneracies
in a single framework, is easy to program, numerically robust, and computationally
very efficient. We have also demonstrated the validity and efficiency of the algorithm
by applying the theory to the computation of Voronoi diagram of circles.

We expect that the idea presented in this paper can extend to all Apollonius
Problems to solve them in a single general framework, as far as the circumcircle is
concerned.
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