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Abstract. This paper studies the multiplicatively weighted crystal-
growth Voronoi diagram, which describes the partition of the plane into
crystals with different growth speeds. This type of the Voronoi diagram is
defined, and its basic properties are investigated. An approximation algo-
rithm is proposed. This algorithm is based on a finite difference method,
called a fast marching method, for solving a special type of a partial
differential equation. The proposed algorithm is applied to the planning
of a collision-free path for a robot avoiding enemy attacks.

1 Introduction

Suppose that various types of crystals grow from different start points in the
plane with different speeds. When two crystal regions meet, they stop growing in
that direction. Then, the plane is partitioned into individual crystal regions; this
partition is called the multiplicatively weighted crystal-growth Voronoi diagram,
which is the topic of this paper.

A number of types of generalized Voronoi diagrams have been proposed on the
basis of different types of weighted distances, including the additively weighted
Voronoi diagrams, the multiplicatively weighted Voronoi diagrams, and the com-
poundly weighted Voronoi diagrams [2,3]. However, the multiplicatively weighted
crystal-growth Voronoi diagram is quite different from the others, because a crys-
tal cannot enter into the area which is already occupied by another crystal. A
crystal with a high speed should grow around avoiding slowly growing crystals.
Hence, the “distance” between two points at a given time should be measured
by the length of the shortest path that avoids crystal regions generated by that
time. In this sense, the computation of this Voronoi diagram is very hard.

The concept of the multiplicatively weighted crystal-growth Voronoi diagram
was first proposed by Schaudt and Drysdale [1]. They presented an O(n3) ap-
proximation algorithm for n crystals.

This paper studies this Voronoi diagram from various points of view. First, we
present a new approximation algorithm for constructing this Voronoi diagram.
Secondly, we apply this Voronoi diagram to the search of the shortest path for
a robot that moves among enemy robots.
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The structure of the paper is the following. In Section 2, we review defini-
tions and fundamental properties of Voronoi diagrams. In Section 3, we construct
a new algorithm for approximately computing the multiplicatively weighted
crystal-growth Voronoi diagram, and in Section 4, it is applied to the collision-
free path planning for robots. In Section 5, we give the conclusion.

2 Multiplicatively Weighted Crystal-Growth Voronoi
Diagram

2.1 Ordinary Voronoi Diagram

Let S = {P1,P2, · · · ,Pn} be a set of n points in the plane. For each Pi, let
R(S; Pi) be the set of points that are nearer to Pi than to other Pj ’s (j 6= i),
that is,

R(S; Pi) = {P | ‖P − Pi‖ < ‖P − Pj‖, j 6= i}, (1)

where ‖P−Q‖ denotes the Euclidean distance between the two points P and Q.
The plane is partitioned into R(S; P1), R(S; P2), · · · , R(S; Pn) and their bound-
aries. This partition is called the Voronoi diagram for S, and the elements of S
are called the generators of the Voronoi diagram. The region R(S; Pi) is called
the Voronoi region of Pi, and the boundary lines of the Voronoi diagram are
called Voronoi edges.

In the following subsections we generalize the concept of the Voronoi diagram.
In order to avoid confusion, the above-defined Voronoi diagram is sometimes
called the ordinary Voronoi diagram.

2.2 Multiplicatively Weighted Voronoi Diagram

Let S = {P1,P2, · · · ,Pn} be the set of points in the plane, and vi be a positive
real assigned to Pi for i = 1, 2, · · · , n. For any point P, we call ‖P − Pi‖/vi

the multiplicatively weighted distance, and call vi the weight assigned to Pi. We
define region Rm(S; Pi) by

Rm(S; Pi) = {P | ‖P − Pi‖/vi < ‖P − Pj‖/vj , j 6= i}, (2)

that is, Rm(S; Pi) denotes the set of points that is closer to Pi than to any
other Pj in terms of the multiplicatively weighted distance. The plane is par-
titioned into Rm(S; P1), Rm(S; P2), · · · , Rm(S; Pn). This partition is called the
multiplicatively weighted Voronoi diagram [2,5].

A boundary of two Voronoi regions is a part of a circle, which is known as
the Apollonius circle [6].

Fig. 1 shows an example of a multiplicatively weighted Voronoi diagram; the
numbers in the parentheses represent the weights of the generators.
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Fig. 1. Multiplicatively weighted Voronoi dia-
gram

Fig. 2. Multiplicatively
weighted crystal Voronoi
diagram

2.3 Multiplicatively Weighted Crystal-Growth Voronoi Diagram

As in previous subsections, let S = {P1,P2, · · · ,Pn} be the set of generators in
the plane and vi be the weight assigned to Pi. Suppose that for each i, the i-th
crystal grows from Pi by its own speed vi. The crystals can grow only in empty
areas; they cannot intrude into those areas that are already occupied by other
crystals. Hence, a faster crystal must go around slower crystals. Thus, unlike
the multiplicatively weighted distance, the time required for the i-th crystal to
reach P is not determined by P and Pi only; it depends also on the locations
and speeds of other crystals.

In this sense, the resulting crystal pattern is different from the multiplica-
tively weighted Voronoi diagram. This crystal pattern is called the multiplica-
tively weighted crystal-growth Voronoi diagram, or the crystal Voronoi diagram
for short.

In the crystal Voronoi diagram, each crystal behaves as an obstacle against
other crystals. Hence, for a point P in the i-th crystal region the distance from
Pi to P should be measured along the shortest path completely included in the
crystal.

Fig. 2 shows the crystal Voronoi diagram for two generators, P1, P2, with
weights 1 and 2.

If all the growth speed vi are the same, the crystal Voronoi diagram coincides
with the ordinary Voronoi diagram.

Note that, unlike the multiplicatively weighted Voronoi diagram, the Voronoi
region of a crystal Voronoi diagram is always connected. This is because a crystal
cannot go through other crystals in the process of growing.

3 Simulation of the Crystal Growth

We can obtain the boundary for two crystals in the analytic form. But for three or
more crystals, the calculation becomes difficult and complicated. In this section
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we consider a method for computing the boundary curves approximately. For
this purpose we employ the fast marching method for solving a certain type of
a partial differential equation.

3.1 Fast Marching Method

Eikonal Equation. Let Ω ⊂ R2 be a bounded region in the plane, and Γ be
its boundary. Let F (x) be a real-valued functions satisfying F (x) > 0 for any
x ∈ Ω. Furthermore, let g(x) be a function on Γ . We consider a nonlinear partial
differential equation

|∇u(x)| = F (x) in Ω (3)

with a boundary condition

u(x) = g(x) on Γ, (4)

where F (x) and g(x) are known and u(x) is unknown. The equations (3) is
called the Eikonal equation.

Assume that 1/F (x) represents the speed of a moving object at point x
in Ω, and that g(x) = 0 on Γ . Then, the solution u(x) of the above Eikonal
equation can be interpreted as the shortest time required for the object initially
on the boundary Γ to reach the point x. Therefore, we can use this equation to
represent the behavior of the growth of a crystal. In particular, if F (x) = ∞ in
some area, this area behaves as an obstacle because the speed (i.e., 1/F (x)) in
this area is considered 0. This property is suitable to our purpose, because the
areas occupied by crystals behave as obstacles to other crystals. In what follows,
we assume that g(x) = 0 on Γ .

To solve the equation (3) together with the boundary condition (4), Sethian
[4] proposed a finite-difference method, called the fast marching method. In the
finite-difference method, the unknown continuous function u(x) = u(x, y) is
replaced by a finite set of values at discretized points

ui,j = u(i∆x, j∆y), (5)

where ∆x and ∆y are small values representing the interval for discretization
in the x and y directions. We set the values of ui,j ’s on Γ being 0, and starting
with these boundary points, we compute the values of the other ui,j ’s in the
increasing order.

Apparently similar techniques have already been used in digital picture pro-
cessing; they are called distance-transformation methods [7]. But usually the
obtained distance is either L1-distance or L∞-distance, which is different from
what we want to obtain, i.e., the Euclidean distance. Algorithms for obtaining
the Euclidean distance are also proposed in digital image processing [8,9], but
they cannot treat the obstacles, and hence cannot be applied to our purpose.
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Finite-Difference Equation in the First Marching Method. Using the
discretized value ui,j , Sethian proposed finite-difference approximations of the
equation (3). The most basic approximation is the first-order finite-difference
equation defined by

[max(D−x
i,j u, −D+x

i,j u, 0)2+max(D−y
i,j u, −D+y

i,j u, 0)2]1/2 = Fi,j , (6)

where

D−x
i,j u =

ui,j − ui−1,j

∆x
, D+x

i,j u =
ui+1,j − ui,j

∆x
,

D−y
i,j u =

ui,j − ui,j−1

∆y
, D+y

i,j u =
ui,j+1 − ui,j

∆y
,

Fi,j = F (i∆x, j∆y). (7)

Eq. (6) is used to compute the unknown value ui,j from given u values at the
upwind neighbor points and given Fi,j [4].

Sethian also proposed the second-order approximation of eq. (3) by




max[[D−x
i,j u + switch−x

i,j
∆x
2 (D−x

i,j )2u],
−[D+x

i,j u + switch+x
i,j

∆x
2 (D+x

i,j )2u], 0]2

+
max[[D−y

i,j u + switch−y
i,j

∆y
2 (D−y

i,j )2u],
−[D+y

i,j u + switch+y
i,j

∆y
2 (D+y

i,j )2u], 0]2




1
2

= Fi,j , (8)

where

switch±x
i,j =

{
1, if ui±2,j and ui±1,j are known and ui±2,j ≤ ui±1,j ,
0, otherwise

(9)
and switch±y

i,j is defined similarly.
The coefficient switch in eq. (8) is necessary, because F (x) depends on x so

that the shortest path might be curved, and consequently ui−2,j , for example,
might not be known even if the upwind-neighbor value ui−1,j is known.

For our purpose of computing the crystal Voronoi diagram, we use the first-
order approximations to choose the upwind neighbors, and use the second-order
approximation to compute the value of ui,j .

Original Fast Marching Algorithm. The original fast marching algorithm
proposed by Sethian is as follows.

Algorithm 1 (Fast marching method)
Step 1 (Initialization). Cover the region Ω with grid points (i∆x, j∆y).

Initialize Known to be the set of all grid points on the boundary Γ , and Trial
to be the set of all points that are one-grid far from Known, and Far to be
the set of all the other points. Initialize the value ui,j as ui,j = 0 for points in
Known, ui,j = inf for points in Far, and determine the value of ui,j according
to eq. (8) for points in Trial.
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Step 2 (Main loop). Repeat Steps 2.1 to 2.5.
2.1. From Trial choose and delete the point, say Q, with the smallest u

value, and add it to Known.
2.2. For each of the four neighbors of Q that is in Far, move it from Far to

Trial.
2.3. For each of the four neighbors of Q that are in Trial, compute the u

value using eq. (8). (If the point already has the u value, update it only if the
new u value is smaller than the old one.)

2.4. If Trial is empty, stop. Otherwise go to 2.1.

If we use a heap for representing and manipulating the set Trial, this algo-
rithm runs in O(N log N) time for N grid points. Refer to [4] for the details of
this algorithm.

3.2 Computation of the Crystal Voronoi Diagram

We apply the fast marching method to the simulation of the growth of crys-
tals. We discretize the region in which we want to compute the crystal struc-
ture into grid points, and assign the generators to the nearest grid points, say
P1,P2, · · · ,Pn. Let N be the total number of the grid points. We assign sequen-
tial numbers to all the grid points, and name them as Q1,Q2, · · · ,QN . Basically
we follow Algorithm 1, but in several points we change it in the following way.

First, for each grid point Qj , we assign the “crystal name” Cname[Qj ], which
represents the ordinal number of the crystal to which Qj belongs. The value of
Cname[Qj ] is either an integer from 1 to n or “None”. At the initial stage, we
set Cname[Pk] = k for all the generators Pk, k = 1, 2, · · · , n, set Cname[Qj ] = k
for grid point Qj that is one-grid far from Pk, and set Cname[Qj ] =None for the
other grid points. Whenever the k-th crystal reaches Qj , Cname[Qj ] is changed
to k.

Secondly, at the initial stage, we set Known to be the set {P1,P2, · · · ,Pn}
of the generators.

Thirdly, for the computation of the u value of a four-neighbor point, say Qj ,
in Trial of the point Q in Step 1 or in Step 2.3 in Algorithm 1, we slightly
modify the procedure in the following way.

(i) We read the crystal name k =Cname[Q], and use the growth speed of
the k-th crystal, that is, we substitute Fi,j = 1/vk to eq. (8).

(ii) We use the u values of only those points Ql that are included in the k-th
crystal, i.e., Cname[Ql] = k, in solving eq. (8).

(iii) Because of the above modifications (i) and (ii), the resulting u value is
not necessary smaller than the previous value. Hence, only when the recomputed
u value is smaller than the present value, we update the u value, and change
Cname[Qj ] to k.

The output of the fast marching method modified as described above can be
interpreted as the crystal Voronoi diagram in the sense that each grid point Qj

belongs to the crystal Cname[Qj ].
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(a)  t  = 30 (b)  t  = 100 (c) Crystal Voronoi diagram

Fig. 3. Simulation of crystal Voronoi diagram by the fast marching method (t means
the radius of the fastest growing crystal when the width between grids is one)

Fig. 3 shows the behavior of the algorithm. Here, the square region was
replaced by 400 × 400 grid points and 15 generators were placed. Fig. 3 (a) and
(b) show the frontiers of the crystals at the stage where the fastest crystal grows
30 times the grid distance and 100 times the grid distance, respectively. Fig. 3
(c) shows the final result.

4 Application to Path Planning

4.1 Fast Marching Method for Collision-Free Path

Sethian applied the fast marching method to the collision-free path among
static obstacles [4]. Here, we extend his idea, and propose a method for find-
ing a collision-free path among moving competitive robots. First, let us review
Sethian’s idea [4].

The Eikonal equation (3) can be written in the integral form as

u(x) = min
γ

∫ x

A

F (γ(τ))dτ, (10)

where A is a start point, γ is a path from A to x in Ω. Thus, u(x) represents
the shortest time in which a robot can move from A to x. Suppose that we get
u(x) for every point x in Ω using the fast marching method. Next, for any point
B in Ω, the solution X(t) of equation

X(t) = −∇u, X(0) = B (11)

gives the shortest path from A to B.
This idea can be extended to the case where the robot has its own shape

instead of just a point. Suppose, for example, that a moving robot is a rectangle.
Let (x, y) be the location of the center of the robot and θ be the angle of the
longer edge of the rectangle with respect to the positive x direction; we measure
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  robot

obstacle

Fig. 4. The area where the robot’s center
cannot enter when it rotates at an angle of
θ

x

y

-

0

Fig. 5. 3-dimensional space of fast
marching method for robot naviga-
tion

the angle counterclockwise. Thus the position and the posture of the robot can
be represented by a point (x, y, θ) in a three-dimensional parameter space.

Next for each θ, we find the region in which the robot cannot enter without
colliding the obstacle, as shown by the shaded area in Fig. 4. The boundary of this
region can be obtained as the trajectory of the center of the robot that moves
around keeping in contact with the obstacle. For this fixed θ, to consider the
rectangular robot moving around the original obstacle is equivalent to consider
a point robot moving around the extended region. Thus, we can reduce the
problem of the moving robot among the obstacles to the problem of a moving
point among the enlarged obstacles.

However, this reduction should be done for each value of θ. Hence, we dis-
cretize θ as well as x and y, and construct the three-dimensional grid structure
as shown in Fig. 5. A fixed value of θ corresponds to a horizontal plane, in which
we extend the obstacles.

Sethian used the fast marching method to solve the Eikonal equation[(
∂u

∂x

)2

+
(

∂u

∂y

)2

+ α

(
∂u

∂θ

)2
]1/2

= 1 (12)

in the three-dimensional (x, y, θ) space. The partial derivatives ∂u/∂x and ∂u/∂y
represent the inverses of x and y components of the velocity while ∂u/∂θ repre-
sents the inverse of the angular velocity. The coefficient α represents the ratio of
the time to translate the robot by unit length over the time to rotate the robot
by unit angle.

4.2 Extension to Competitive Robots

Here we consider the situation where our robot moves among enemy robots.
Suppose that our robot has an arbitrary shape while the enemy robots are circles,
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Fig. 6. Optimal answers of the robot navigation problems.

Fig. 7. Optimal answers of the robot navigation problems for other robot velocities

and each robot has its own velocity. Our robot wants to move avoiding enemies
from the start point to the goal as fast as possible, while the enemy robots try
to attack it. In this situation we want to find the worst-case optimal path from
the start point to the goal.

For this purpose, we can apply the first marching method. The only difference
from Sethian’s path planning is that the obstacles are not static; they move with
the intention to attack our robot. Hence, as we extended Sethian’s fast marching
method to the crystals, we treat the enemy robots as if they are crystals growing
isotropically in every direction; these crystal regions represent the maximum area
that the enemy robot can reach.

Fig. 6 shows an example of the collision-free path found by our method. The
five enemy robots, starting with the initial circles representing the sizes of the
robots, grow their regions by their own speed. Our robot, on the other hand, is
a rectangle that can translate and rotate. In Fig. 6, (a), (b) and (c) show the
status at some instants, while (d) shows the whole path of the robot to reach
the goal. Fig. 7 (a) shows the generated path for the case that our robot can
move faster than in Fig. 6, while Fig. 7 (b) shows the case that our robot moves
more slowly than in Fig. 6.
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5 Concluding Remarks

This paper studied the crystal Voronoi diagram from the computational point
of view. First, we presented a method for computing the approximated diagram,
where we modified the fast marching method to solve the Eikonal equation.

The approximation method proposed by Schaudt and Drysdale [1] requires
O(n3) time for n crystals, whereas our new method runs in O(N log N) time for
N grid points. This time complexity does not depend on the number of crystals.

Furthermore, we applied the crystal Voronoi diagram to the collision-free
path planning among enemy robots, and evaluated our method by computational
experiments.

One of the main problems for future is to raise the efficiency of the method.
We might decrease the computational cost by using a course grid together with
interpolation techniques. We might also decrease the memory cost by discarding
the u values except around the frontiers of the crystals.

In our application to the path planning among competitive robots, we as-
sumed that the enemy robots are circles. To generalize our method for arbitrary
enemy shapes is another important problem for future.
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