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Abstract. We prove a new theorem for orthogonal art galleries in which
the guards must guard one another in addition to guarding the polygonal
gallery. A set of points G in a polygon Pn is a k-guarded guard set for
Pn provided that (i) for every point x in Pn there exists a point w in G
such that x is visible from w ; and (ii) every point in G is visible from at
least k other points in G. The polygon Pn is orthogonal provided each
interior angle is 90◦ or 270◦. We prove that for k ≥ 1 and n ≥ 6 every
orthogonal polygon with n sides has a k-guarded guard set of cardinality
kbn/6c+b(n+2)/6c; this bound is best possible. This result extends our
recent theorem that treats the case k = 1.

1 Introduction

Throughout this paper Pn denotes a simple closed polygon with n sides, together
with its interior. A point x in Pn is visible from point w provided the line segment
wx does not intersect the exterior of Pn. (Every point in Pn is visible from itself.)
The set of points G is a guard set for Pn provided that for every point x in Pn

there exists a point w in G such that x is visible from w. Let g(Pn) denote the
minimum cardinality of a guard set for Pn.

A guard set for Pn gives the positions of stationary guards who can watch over
an art gallery with shape Pn, and g(Pn) is the minimum number of guards needed
to prevent theft from the gallery. Chvátal’s celebrated Art Gallery Theorem [1]
asserts that among all polygons with n sides (n ≥ 3), the maximum value of
g(Pn) is bn/3c.

Over the years numerous “art gallery problems” have been proposed and
studied, in which different restrictions are placed on the shape of the gal-
leries or the powers and responsibilities of the guards. (See the monograph by
O’Rourke [7] and the survey by Shermer [8].) For instance, in an orthogonal
polygon Pn each interior angle is 90◦ or 270◦, and thus the sides occur in two
perpendicular orientations, say, horizontal and vertical. An orthogonal polygon
must have an even number of sides. For even n ≥ 4 we define

g⊥(n) = max{g(Pn) : Pn is an orthogonal polygon with n sides}.
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Kahn, Klawe, and Kleitman [3] gave a formula for g⊥(n) :

Orthogonal Art Gallery Theorem For n ≥ 4 we have g⊥(n) = bn/4c.
A set of points G in a polygon Pn is a k-guarded guard set for Pn provided

that

(i) for every point x in Pn there exists a point w in G such that x is visible from
w, i.e., G is a guard set for Pn; and

(ii) for every point w in G there are k points in G different from w from which
w is visible.

In our art gallery scenario a k-guarded guard set prevents theft from the gallery
and prevents the ambush of an insufficiently protected guard. We define the
parameter

gg(Pn, k) = min{|G| : G is a k-guarded guard set for Pn}.

Liaw, Huang, and Lee [4], [5] refer to a 1-guarded guard set for a polygon Pn as
a weakly cooperative guard set and show that the computation of gg(Pn, 1) is an
NP-hard problem. Let

gg⊥(n, k) = max{gg(Pn, k) : Pn is an orthogonal polygon with n sides}.

The authors [6] have recently determined the function gg⊥(n, 1).

Proposition 1. For n ≥ 6 we have gg⊥(n, 1) = bn/3c.
In this paper we extend Proposition 1 to the “multiply guarded” situations

with k ≥ 2. Here is our main result.

Theorem 1. For k ≥ 1 and n ≥ 6 we have

gg⊥(n, k) = k

⌊
n

6

⌋
+

⌊
n + 2

6

⌋
. (1)

When k = 1, the expression in (1) simplifies to bn/3c in accordance with
Proposition 1.

If k is large, and we require that the guards be posted at vertices of the
polygon Pn, then some vertex must contain more than one guard, that is, the
k-guarded guard set is actually a multiset. In our proof of Theorem 1 it is
convenient to first allow multiple guards at the same vertex (§5), and then show
that the guards can always be moved to distinct points (§6).

2 A Construction

We begin our proof of Theorem 1 by constructing extremal polygons. Let Pn

denote the orthogonal polygon of “waves” in Figure 1. The full polygon is used in
case n ≡ 0 (mod 6), while the broken lines indicate the boundaries of a partial
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wave when n ≡ 2, 4 (mod 6). Let G be a k-guarded guard set for Pn. Each
complete wave of Pn uses six sides and forces k + 1 distinct points in G. Also,
when n ≡ 4 (mod 6), the partial wave forces one additional point. Thus |G| ≥
(k + 1)bn/6c for n 6≡ 4 (mod 6), and |G| ≥ (k + 1)bn/6c + 1 for n ≡ 4 (mod 6).
It follows from some algebraic manipulation that gg⊥(k, n) ≥ |G| ≥ kbn/6c +
b(n + 2)/6c for n ≥ 6.

Fig. 1. Orthogonal polygon Pn for which gg(Pn, k) is maximum

3 Galleries, Guards, and Graphs

Let Pn be a simple polygon with n sides. It is well known that diagonals may be
inserted in the polygon Pn to produce a triangulation, that is, a decomposition
of Pn into triangles. Diagonals may intersect only at their endpoints. The edge
set in a triangulation graph Tn consists of pairs of consecutive vertices in Pn

(the boundary edges) together with the pairs of vertices joined by diagonals (the
interior edges) in a fixed triangulation. One readily shows that a triangulation
graph is 3-colorable, that is, there exists a map from the vertex set to the color
set {1, 2, 3} such that adjacent vertices receive different colors.

Similarly, a quadrangulation Qn of the polygon Pn is a decomposition of Pn

into quadrilaterals by means of diagonals. We refer to Qn as a convex quadran-
gulation provided each quadrilateral is convex. We also view Qn as a quadran-
gulation graph in the expected manner. Note that Qn is a plane bipartite graph
with an even number of vertices. The (weak) planar dual of Qn is a graph with
a vertex for each bounded face of Qn, where two vertices are adjacent provided
the corresponding faces share an edge. The planar dual of a quadrangulation
graph is a tree.

Let Gn = (V, E) be a triangulation or quadrangulation graph on n vertices.
We say that a set G of vertices is guard set of Gn provided every bounded face of
Gn contains a vertex in G. If, in addition, every vertex in G occurs in a bounded
face with another vertex in G, then G is a guarded guard set for Gn. We let g(Gn)
and gg(Gn) denote the minimum cardinality of a guard set and guarded guard
set, respectively, for the graph Gn.

4 The Proof of Proposition 1: Guarded Guards

Our proof of Theorem 1 relies on elements contained in our proof [6] of Propo-
sition 1, which we review in this section. The strategy is to employ a coloring
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argument in a triangulation graph as Fisk [2] did in his elegant proof Chvátal’s
Art Gallery Theorem. Our proof also depends on the following result, which was
an important ingredient in the original proof [3] of the Orthogonal Art Gallery
Theorem.

Proposition 2. Every orthogonal polygon has a convex quadrangulation.
The quadrangulation in Proposition 2 may always be selected so that each

quadrilateral has positive area, (i.e., its four vertices do not fall on a line), and
we shall always do so. However, quadrilaterals with three points on a line are
sometimes unavoidable; these degenerate quadrilaterals are an issue in §6.

The proof of Proposition 1 relies on the following graph-theoretic result.
Proposition 3. We have gg(Qn) ≤ bn/3c for each quadrangulation graph Qn

on n ≥ 6 vertices.
Proof Outline. The proof is illustrated in Figure 2. Let Pn be an orthogonal
polygon with n sides, and let Qn be the quadrangulation graph for the convex
quadrangulation of Pn guaranteed by Proposition 2.

We construct a set G of vertices in Qn that satisfies (i) |G| ≤ bn/3c; (ii) every
quadrilateral of Qn contains a vertex of G; (iii) every vertex in G is contained in
a quadrilateral with another vertex in G. Here is our strategy:

• We triangulate Qn by inserting a diagonal in each bounded face to obtain a
triangulation graph Tn with special properties.

• We 3-color the vertices of Tn. The least frequently used color gives us a set
of vertices G′ that satisfies conditions (i) and (ii).

• We shift some vertices of G′ along edges of Tn to produce a set G that also
satisfies condition (iii).

Triangulate: The graph Qn and its planar dual are both bipartite, and hence
we have the vertex biparition V = V + ∪ V − and the face bipartition F+ ∪ F−

as indicated in Figure 2(a). Each edge of Qn joins a vertex in V + and a vertex
in V −. Each face f of Qn contains two vertices in V + and two vertices in V −. If
f ∈ F+, then we join the two vertices of f in V + by an edge, while if f ∈ F−,
we join the two vertices of f in V − by an edge. The resulting graph is our
triangulation Tn. (See Figure 2(b).) Let Ediag denote the set of edges added to
Qn by inserting a diagonal in each face in our triangulation process. Thus our
triangulation graph is Tn = (V, E ∪ Ediag).

3-Color: We 3-color the triangulation graph Tn. Let G′ be the set of vertices
of Tn in a color that occurs least frequently. Then |G′| ≤ bn/3c; condition (ii)
also holds. However, condition (iii) may fail, as in Figure 2(c).

Shift: Let Y denote the set of vertices in G′ with degree 3 in Tn, and let X be
the complement of Y in G′. Then for each y ∈ Y there is a unique “conjugate”
vertex y∗ such that [y, y∗] ∈ Ediag. Let Y ∗ = {y∗ : y ∈ Y } and define the set
G = X ∪ Y ∗.

In [6] we prove that the set G satisfies conditions (i)-(iii). Thus G is a guarded
guard set for the quadrangulation graph Qn, and |G| ≤ bn/3c. ut
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Fig. 2. The proof of Proposition 1 (a) The quadrangulation graph Qn with vertex and
face bipartitions indicated by + and − (b) The triangulation graph Tn and a 3-coloring
(c) The guard set G′; guards in G′ at vertices of degree 3 are shifted along the indicated
edges (d) The final guarded guard set G of Qn

Now suppose that Pn is an orthogonal polygon. Then Pn has a convex quad-
rangulation Qn by Proposition 2. The convexity of the quadrilateral faces implies
that the guarded guard set G in Proposition 3 is a 1-guarded guard set for the
orthogonal polygon Pn. Thus gg(Pn, 1) ≤ bn/3c. We constructed polygons to
establish the reverse inequality in Figure 1. This completes the outline of our
proof of Proposition 1. ut

5 Proof of Theorem 1

Proposition 1 establishes Theorem 1 for k = 1. The proof for k ≥ 2 is illustrated
in Figure 3. Let Pn be an orthogonal polygon, and let Qn be a convex quad-
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Fig. 3. The proof of Theorem 1 (a) The guarded guard set G of the quadrangulation
graph Qn from Figure 2 and the graph G(G) (b) A spanning forest of stars F (G) and
a set of centers G+ (c) Selection of multiple guards at vertices in G+ (d) Separation of
multiple guards for k = 3

rangulation of Pn. Let G denote the guarded guard set for the quadrangulation
graph Qn produced in the proof of Proposition 1. Now define a graph G(G)
whose vertex set is G with two vertices joined by an edge provided they are both
contained in a quadrilateral face of Qn. (See Figure 3(a).) No vertex of G(G) is
isolated because G is a guarded guard set of the graph Qn. Therefore G(G) has
a spanning forest F (G), where each component is a star. (See Figure 3(b).) Let
G+ be the set of the centers of the stars. (Select either vertex as the center of a
star with one edge.) Now |G+| ≤ b|G|/2c. We insert k − 1 additional guards at
each vertex in G+ to obtain a multiset G∗ of vertices of Qn. Vertices may appear
more than once in G∗, but this is unavoidable if k is large and we require the
guards to be placed at vertices of Qn. Now each vertex of Qn is visible from at
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least k others. By Proposition 1 the cardinality of the multiset G∗ satisfies

|G∗| = |G| + (k − 1)|G+| ≤
⌊

n

3

⌋
+ (k − 1)

⌊bn/3c
2

⌋
= k

⌊
n

6

⌋
+

⌊
n + 2

6

⌋
.

By the convexity of the quadrilateral faces of the orthogonal polygon Pn, each
point in Pn is certainly visible from at least one guard, and so we have produced
a k-guarded guard multiset G∗ for Pn.

6 Separation of Guards and Degenerate Quadrilaterals

The k-guarded guard multiset G∗ constructed in the previous section is satis-
factory graph-theoretically, but not geometrically. With the same notation as in
the previous section, we now prove that the k guards at each vertex w in G+

can always be separated to obtain a k-guarded guard set of points for Pn, as in
Figure 3(d). This is a consequence of the following lemma.

Lemma 1. Let Qn be a convex quadrangulation of the orthogonal polygon Pn,
and let w be a vertex of Pn. Then there exists a region Rw of points in Pn such
that any vertex in the graph G(G) adjacent to w is visible from every point in
Rw.

w
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Fig. 4. The quadrilaterals q1, q2, . . . , qh at vertex w are all visible from each point in a
triangular region Rw for both (a) nondegenerate and (b) degenerate quadrilaterals

Proof. The main idea is depicted in Figure 4. If there are no degenerate
quadrilaterals at w, then a small right triangular region in the “interior quad-
rant” at w serves as Rw. When degenerate quadrilaterals are present (with three
points on a line), our proof is more complicated, and an acute triangular region
serves as Rw.
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If there is a 90◦ angle at w, one may readily show that there are no degenerate
quadrilaterals at w. We now treat the case in which there is a 270◦ angle at w.
Without loss of generality w is at the origin in the Cartesian plane, and Pn has
edges along the negative x- and y-axes. We order the quadrilaterals q1, q2, . . . , qh

that contain w in a counterclockwise manner, as shown in Figure 4. Let w, x, y, z
be the vertices in counterclockwise order of a quadrilateral q containing w; the
interior of q lies to the left as the edges of q are traversed in order. There are
three types of quadrilaterals. (See Figure 4.)

Type 0: Neither x nor z lies on segment wy.

Type 1: Point x lies on segment wy.

Type 2: Point z lies on segment wy.

Observation 1: If the point p in Pn is in the angle determined by the rays
yx and yz, then every point in quadrilateral q is visible from p.

Now Observation 1 implies that if p is any point in Quadrant I that is suffi-
ciently close to w, then every point in a quadrilateral of type 0 is visible from p.
The degenerate quadrilaterals of types 1 and 2 place further restrictions on our
desired set Rw, which are captured by the following observation.

Observation 2: There exists a nonempty region Rw with the desired vis-
ibility property provided every quadrilateral of type 1 occurs before the first
quadrilateral of type 2 in the list q1, q2, . . . , qh.

We now show that no quadrilateral of type 2 precedes a quadrilateral of
type 1, which will complete the proof of the lemma and of Theorem 1. Parti-
tion the vertices of Pn into the alternating sets V + and V −, as in the proof of
Proposition 1. Without loss of generality w ∈ V +.

Observation 3: In a counterclockwise traversal of the boundary of the polygon
Pn each vertex in V + is entered horizontally and exited vertically, while each
vertex in V − is entered vertically and exited horizontally.

Claim 1: The line segment wy cannot have negative slope in a quadrilateral
q of type 1 or 2. For suppose that vertex y is in Quadrant IV and q is of type 1,
as shown in Figure 5(a). Then x ∈ V −, and hence x is entered vertically and is
exited horizontally along the boundary of Pn. But then the interior angle at x
must be greater than 270◦, which is impossible. The argument is similar when q
is of type 2 and when y is in Quadrant II.
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Fig. 5. (a) The proof of Claim 1 (b) The proof of Claim 2
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Claim 2: Vertices z and y cannot be on the positive x-axis in a quadrilateral
of type 2. For suppose we have such a quadrilateral, as in Figure 5(b). Then
z ∈ V −, and it follows that z is entered from above and is exited to the left. Let
z′ be the point in V − along segment wz that is closest to w. Then z′w must be a
boundary edge of Qn, and so w meets three boundary edges, which is impossible.

In a similar manner one shows that x and y cannot be on the positive y-axis
in a quadrilateral of type 1.
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Fig. 6. (a) A quadrilateral of type 2 cannot precede a quadrilateral of type 1 (b) The
proof of Lemma 2

Now assume that a quadrilateral of type 2 with vertices w, x2, y2, z2 precedes
a quadrilateral of type 1 with vertices w, x1, y1, z1 in the list q1, q2, . . . , qh. Then
our claims imply that points y1 and y2 are both in the interior of Quadrant I and
that segment wy1 is above segment wy2, as in Figure 6(a). Also, Observation 3
implies that in a counterclockwise traversal of Pn vertex x1 must be entered from
below and exited to the right, and vertex z2 must be entered from above and
exited to the left. Now the diagonals wx1 and wz2 partition Pn into three poly-
gons, each of which has a convex quadrangulation. Let Pm denote the polygon
that has x1, w, and z2 as consecutive vertices. Then the angles at x1, w, and z2
in Pm must be acute. Thus Pm has a convex quadrangulation and each interior
angle is either 90◦ or 270◦, except for the three consecutive acute angles at x1, w,
and z2. The following lemma proves that such a polygon does not exist. ut

Lemma 2. Let Pm be a polygon with each interior angle equal to 90◦ or 270◦,
except for three consecutive acute angles. Then Pm does not have a convex quad-
rangulation.

Proof. Assume that Pm does have a convex quadrangulation. We obtain a con-
tradiction by induction. Note that m must be even. Suppose that m = 4. Then
the one non-acute angle of Pm must equal 270◦, rather than 90◦, for the sum of
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the four angles to equal 360◦. A quadrilateral with a 270◦ angle does not have a
convex quadrangulation.

Now suppose that m ≥ 6. We continue the notation from Lemma 1 and let
the three acute angles be at vertices x1, w, and z2, as in Figure 6(b). We claim
that the sum a of these three acute angles must be 90◦. For let Pm contain r
angles equal to 270◦. Then 180(m − 2) = 270r + (m − 3 − r)90 + a, and thus
a = 90(m − 2r − 1). We know that m is even and that a < 270. The only
possibility is a = 90.

We partition the vertices of Pm into two alternating sets V + and V −, as
before, with w ∈ V +, and we orient the edges of Pm counterclockwise so that
the interior of Pm lies to the left of each edge. Each vertex in V − is exited
horizontally (except for x1) and is entered vertically (except for z2). Now let
the convex quadrilateral q containing side x1w of Pm have vertices w, u, v, x1 in
counterclockwise order. The sum of the angles in q is 360◦, and the angles in q
at w and x1 sum to less than 90◦. Neither of the angles in q at u and v can be
greater than 180◦. It follows that the angles in q at u and v must be greater than
90◦, and therefore the angles at u and v in the polygon Pm must equal 270◦.

Now u ∈ V − and u 6∈ {x1, z2}. Therefore u is entered vertically and is exited
horizontally in a counterclockwise traversal of the boundary of Pm. The only
possibility is that u is entered from below and is exited to the right. Now the
diagonal wu partitions Pm into two smaller polygons each of which has a convex
quadrangulation. One of these smaller polygons contains three consecutive acute
angles at u, w, and z2, with all other angles equal to 90◦ or 270◦. This contradicts
the inductive hypothesis. ut
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