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Abstract

This paper considers a region bounded by two attached squares and
a linkage confined within it. By introducing a new movement called
mot, presents a quadratic time algorithm for reaching a point inside
the region by the end of the linkage. It is shown that the algorithm
works when a certain condition is satisfied.
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1 Introduction

This paper considers the movement of a linkage in a two-dimensional bounded
region and introduces a new algorithm to reach a given point by the end
of the linkage. The region considered is the one obtained by two attached
squares.

Several papers have been written on reachability problems mainly, on
convex region. Hopcroft, Joseph and Whitesides in [1] studied the reconfig-
uration and reachability problems for a linkage. In [2], they gave a polyno-
mial time algorithm for moving a linkage confined within a circle from one
given configuration to another, and proved that the reachability problem for
a planar arm constrained by an arbitrary polygon, is NP-hard. Joseph and
Plantings [3] proved that the reachability problem for a chain moving within
a certain non-convex constraining environment is PSPACE hard.

In [4] and [5], Kantabutra presented a linear time algorithm for reconfig-
uring certain chains inside squares. He considered an unanchored n-linkage
robot arm confined inside a square with side length at least as long as the
longest arm link and found a necessary and sufficient condition for reacha-
bility in this square. His algorithm requires O(n) time.

This paper extends the previous results by providing a quadratic time
algorithm to solve the reachability problem in a special concave region. The
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region is bounded by the union of two squares attached via one edge. In the
next section of the paper some preliminaries and useful definitions are given.
In section 3 a new movement, by which a linkage moves in a concave corner
is formulated and finally in section 4 present the reachability algorithm and
the related properties are presented.

2 Preliminaries

An n-linkage Γ[0,1,...n] is a collection of n rigid rods or links, {Ai−1Ai}i=1,...n,
consecutively joined together at their end points, about which they may
rotate freely. Links may cross over one another and none of end points of
the linkage are fixed.

We denote the length of links of Γ[0,1,...n] by l1, l2, ...ln, where li is the
length of link with end points Ai−1 and Ai and ||Γ|| = max1≤i≤nli. For
1 ≤ i ≤ n− 1 the angle obtained by turning clockwise about Ai from Ai−1

to Ai+1 is denoted by αi. We say that a linkage Γ is bounded by b if ||Γ|| <
b, i.e no link has a length greater than or equal to b.

For a region P, by Reaching a given point p ∈P by An, the end point of
Γ, we mean Γ can move within P from its given initial position to a final
position so that An reaches p.

For a linkage Γ confined inside a convex region P with boundary denoted
by ∂P , we define two special configurations as follows (Figure 1):

We say that Γ is in Rim Normal Form (denoted RNF), if all its joints
lie on ∂P.

We say that Γ is in Ordered Normal Form (denoted ONF), if:

1. Γ is in RNF.

2. Moving from A0 toward An along Γ is always either clockwise or coun-
terclockwise around the boundary polygon.

Algorithms for the reconfiguration of an n-linkage usually break up the
motions for the whole reconfiguration into simple motions, in which only
a few joints are moved simultaneously (see [2], [6] and [7]). We allow the
following type of simple motions:

• No angle at joints changes, but the linkage may translate and rotate
as a rigid object.

• At most four angles change simultaneously and the other joints do not
change their positions.

3 Movement in a concave environment

In this section we introduce a new movement for a linkage to reach a point
inside a certain concave region.
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Figure 1: An n-linkage in (a): Rim Normal Form, (b): Ordered Normal
Form.

Theorem 1. Suppose that S is a region where its boundary polygon
∂S, is a square with side length s, Γ[0, 1, ...n] is an n-linkage confined within
S and ‖Γ‖ < s. Then Γ can be brought to ONF using O(n) simple motions.

Proof: See [5].

Lemma 2. If ∂S, the boundary polygon of the region S, is a square with
side length s and Γ[0, 1, ...n] is an n-linkage with ‖Γ‖ < s confined within
S, initially in ONF. Then any joint of Γ can be moved along ∂S in either
direction, in such a manner that the linkage always remain in ONF. This
can be done with O(n) simple motions.

Proof: See [5].

To understand our new movement, it helps to first consider a special
case of 2-linkage Γ[1, 2, 3] consisting of joints A1, A2 and A3. We define
a movement for Γ[1, 2, 3] from its initial configuration to a specified final
configuration in which, A1 gets the position of A2, and A3 moves forward in
a given path (Figure 2).

Unless otherwise specified, by 6 A1A2A3 (6 γ1γ2, which γ1 and γ2 are two
crossing line segments), we mean the angle obtained by turning clockwise
from A1 to A3 about A2 (from γ1 to γ2).

Circumstances: Consider two line segments γ1 and γ2 which intersect
at q and 6 γ1γ2 is in [π, 2π]. Let ρ be the line segment which starts at q
and divides the angle 6 γ1γ2 into two angles 6 γ1ρ and 6 ργ2 in such a way
that 6 γ1ρ is in [π/2, π]. Initial configuration of Γ[1,2,3] is defined as follows:
Let A1 be at point p on line segment γ1, A2 at q and A3 at point r on line
segment γ2 (Figure 2-a). By this assumption we can define our movement
in a concave region.
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Figure 2: (a): Initial configuration of Γ[1, 2, 3], (b): middle-joint-
up(A1, A2, A3, ρ) motion, (c): front-link-forward(A1, A2, A3, ρ) motion, (d):
final configuration of Γ[1, 2, 3].

Definition 3. The mot(A1, A2, A3, ρ) movement changes the initial con-
figuration of Γ[1, 2, 3] to a final configuration by which Γ lies on γ2. This is
done by two consecutive motions:

• Middle-joint-up(A1, A2, A3, ρ): moves A2 along ρ away from q until A1

reaches q. During the movement A1 remains on γ1, and A3 remains
on γ2 as much as possible.

• Front-link-forward(A1, A2, A3, ρ): fixes A1 at q and brings down A3 on
γ2 (if not already there). To straighten Γ, it moves A3 along γ2 away
from q.

We show the mot(A1, A2, A3, ρ) movement can be done in finite number
of simple motions.

Assume Γ is in the initial configuration. We show how each of the middle-
joint-up motion and front-link-forward motion is done in finite number of
simple motions.

Middle-joint-up(A1, A2, A3, ρ):
Move A2 along ρ away from q (Figure 2-b). If 6 ργ2 ≥ π/2, during the move-
ment, A1 and A3 approach q, while staying on lines γ1 and γ2 respectively.

If 6 ργ2 < π/2, during the movement, A3 moves away from q and it is
possible that A2A3 becomes perpendicular to γ2. If this happens, first turn
A2A3 about A2 until qA2A3 folds, then if needed, move A2A3 along ρ away
from q in a way that α2 increases until A1A2A3 folds and A1 reaches q. This
requires a finite number of simple motions.
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Front-link-forward(A1 , A2, A3, ρ):
If during middle-joint-up motion A1 reaches q first, for applying front-link-
forward motion, it is enough to keep A1 at q fixed, and move A3 along γ2

until Γ straightens.
If A3 reaches q first and A1 arrives later, for applying front-link-forward

motion, turn A2A3 about A2 in a way that α2 decreases, until A3 hits γ2 or
α2 = 3π/2. If α2 = 3π/2 before A3 hits γ2, rotate Γ about A1 in a way that
6 A2A1r decreases until A3 reaches γ2, then keep A1 fixed at q and move A3

along γ2 away from q so that Γ straightens. This requires a finite number
of simple motions (Figure 2-c).

If A3 hits γ2 first, keep A1 fixed at q and move A3 along γ2 away from
q so that Γ straightens.

Figure 3: γ1 can be a convex path instead of a line segment.

In the definition 3, during mot(A1, A2, A3, ρ) movement, A1 moves along
the line segment γ1. The line segment γ1 can be replaced by a composition
of two line segments in such a way that the path where A1 belongs to is
convex. See figure 3.

In our algorithm, to reach p we have to apply mot(Ai−1, Ai, Ai+1, ρ)
movement several times. At the end, possibly p can be reached by An some-
where during one of the middle-joint-up or the front-link-forward. It means
that algorithm stops before the last mot(Ai−1, Ai, Ai+1, ρ) movement is ter-
minated. Such a movement is called partial-mot(Ai−1, Ai, Ai+1, ρ) move-
ment. This is a movement in according with the mot(Ai−1, Ai, Ai+1, ρ)
movement, the movement stops somewhere during one of the middle-joint-
up or the front-link-forward motion in such a way that A3 remains on γ2.

4 The reachability algorithm

In this section, we study reachability in a region bounded by two squares in
which the whole or a part of a side of one square coincides with a part of a
side of the other.
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Assume S1 and S2 are two regions bounded by squares ∂S1 and ∂S2 with
side lengths s1 and s2 respectively. Let squares ∂S1 and ∂S2 be attached via
one side (the whole or a part of a side) and S = S1 ∪ S2. Let Γ = [0, 1, ...n]
be an n-linkage confined within S1 (Figure 4-a). In the following theorem
we explain how An, the end of Γ, can reach a point p ∈ S2.

Let ρ be the line segment shared by S1 and S2 and let v1 and v2 be two
end points of ρ, where v1 is the farthest point of ρ from p (Figure 4-b).

The following theorem presents sufficient condition for reachability of a
given point in S by the end of a linkage confined within S.

Figure 4: Γ confined within S1 and p ∈ S2.

Theorem 4. Suppose p ∈ S2, Γ confined within S1, ‖Γ‖ < Min{
√

2
2 s1,‖ρ‖},

then with O(n2) simple motions − in the worst case − p can be reached by
An.

Proof: We introduce an algorithm to bring An to p using O(n2) simple
motions, in the worst case.

Assume that ω is the line including v1p, and moving from v2 to v1 on the
side of ∂S1 which includes v2 and v1 is clockwise. At the beginning we bring
Γ to ONF in S1. By theorem 1, this is done in O(n) simple motions. Without
loss of generality we assume that Γ is placed on ∂S in counterclockwise order
of indices of links’joints. Then Γ is moved along ∂S1 counterclockwise until
An reaches v1. This can be done while no joint of Γ leaves ∂S1.

We consider two cases: d(p, v1) ≥ ||An−1An|| and d(p, v1) < ||An−1An||.
Case 1: d(p, v1) ≥ ||An−1An||. The algorithm consists of three steps. In

the first step An is brought into S2. In the second step Γ is moved so that
Γ[0, k0] takes ONF in S1 (k0 will be defined in step 2), Ak0 coincides with
v1, and Γ[k0, n] ⊂ ω, and finally, in the last step An reaches p.

Step 1: Move Γ along ∂S1 counterclockwise until An−1 reaches v1, be-
cause ‖Γ‖ < ‖ρ‖, An doesn’t pass v2, this takes O(n) (Figure 5-a). Then
rotate An clockwise about An−1 = v1 toward ω until An lies on ω. If
d(p, v1) = ||An−1An||, An reaches p and we are done. If not, we pass to
the second step. This step takes O(n).

Step 2: We define k0 = min {k |d(p, v1) ≥ ∑n
i=k+1 li}. Since d(p, v1) ≥

ln, then k0 ≤ n− 1. Suppose that, for j > k0, Γ[j, n] ⊂ ω is straight, Aj co-
incides with v1, and Γ[1, j] gets ONF in S1, by using mot(Aj−1, Aj , Aj+1, ρ),
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Figure 5: (a): d(p, v1) > ‖An−1An‖, (b): d(p, v1) < ‖An−1An‖ and v1 = w

Γ is moved to a configuration in which Γ[j − 1, n] ⊂ ω straightens, Aj−1

coincides with v1, and Γ[1, j − 1] is in ONF in S1.
By repeating this process, Γ can move to a configuration in which, Γ[1, k0]

gets ONF, Ak0 coincides with v1, and Γ[k0, n] ⊂ ω.
If k0 > 0, since

∑n
i=k0

li > d(p, v1) >
∑n

i=k0+1 li, An reaches p dur-
ing mot(Ak0−1, Ak0 , Ak0+1, ρ). Therefore we move Γ according to partial-
mot(Ak0−1Ak0 , Ak0+1, ρ), depending on values of 6 v2v1p, lk0 and d(p, v1),
An reaches p during one of the middle-joint-up motion or the front-link-
forward motion. This step takes O(k0n) and is O(n2) in the worst case.

If k0 = 0, An doesn’t reach p during this step and we pass to step 3.
Step 3: In the case of k0 = 0, i.e.

∑n
i=1 li < d(p, v1), by step2, Γ

may move to a configuration in which, A0 coincides with v1 and Γ ⊂ ω
straightens. It is enough to move Γ along ω toward p until An reaches p.
This step takes O(1).

Case 2: d(p, v1) < ‖An−1An‖. Assume that ω intersects ∂S1 at w
(it is possible that w may coincides with v1 (Figure 5-b)). Let the circle
C(v1, ‖pv1‖) intersect v1v2 at q. To reach p, move Γ counterclockwise along
∂S1 until An reaches q. Depending on the position of An−1 on ∂S1 one of
the three following subcases occurs.

Subcase 2.1: An−1 resides on the side of ∂S1 containing v1v2. In
this situation v1 belongs to the link An−1An and C(p, ln) intersects the line
segment ω at point g . Rotate An−1An clockwise about v1 toward p. Because

‖Γ‖ <
√

2
2 s1, C(g, ln−1) cannot contain S1 i.e. An−2 does not need to exit S1.

Continue rotation until An−1 reaches g and An reaches p. During rotation,
An−1 exits ∂S1 and if C(g, ln−1) intersects ∂S1, An−2 can be stayed on ∂S1

and Γ[0...n− 2] remains in ONF (Figure 6-a).
Otherwise if C(g, ln−1) does not intersect ∂S1, consider the largest 0 < k0

in such a way C(g, ln−1...+ lk0) intersects ∂S1, otherwise let k0 = 1. During
rotation we let An−1,...,Ak0 exit ∂S1 while making αn−1 = ... = αk0+1 = π,
keeping Γ[k0...n− 1] straight and remaining Γ[0...k0] in ONF.

Subcase 2.2: An−1 resides on the side of ∂S1 adjacent to the side con-
taining v1v2, and ω intersects linkAnAn−1. To reach p, first fix Γ[0, 1, ...n−1]
and rotate An−1An about An−1 toward p until linkAn−1An reaches v1. Then
rotate An−1An about v1 toward ω until An hits ω. During rotation An does
not hit ∂S1. Finally slip An−1An on ω until An reaches p. During the move-
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Figure 6: (a): An−1 belongs to the same edge as v1, (b): An and An−1 are
in both sides of ω, (c): An and An−1 are in the same side of ω

ment, one of the possibilities similar to the previous situation will happen,
which can be treated accordingly (Figure 6-b).

Subcase 2.3: Like case 2.2, but ω does not intersect link AnAn−1.
Suppose that C(p, ln) intersects ∂S1at g. i.e. p is visible from g. To reach
p, first fix Γ[0, 1, ...n− 1] and rotate An−1An about An−1 toward ω until An

reaches ω. Then, move An along ω toward p. During movement Γ[0, 1, ...n−
1] does not exit ∂S1 and An gets to p while An−1 reaches g. Refer to Figure
6-c.

Each of these subcases takes O(n).
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