Reachability on a region bounded by two attached squares

Ali Mohades
mohades@cic.aku.ac.ir
AmirKabir University of Tech., Math. and Computer Sc. Dept.

Mohammadreza Razzazi
razzazi@ce.aku.ac.ir
AmirKabir University of Tech., Computer Eng. Dept.

Abstract

This paper considers a region bounded by two attached squares and a linkage confined within it. By introducing a new movement called mot, presents a quadratic time algorithm for reaching a point inside the region by the end of the linkage. It is shown that the algorithm works when a certain condition is satisfied.

keywords: Multi-link arm, reachability, motion planning, concave region, robot arms.

1 Introduction

This paper considers the movement of a linkage in a two-dimensional bounded region and introduces a new algorithm to reach a given point by the end of the linkage. The region considered is the one obtained by two attached squares.

Several papers have been written on reachability problems mainly, on convex region. Hopcroft, Joseph and Whitesides in [1] studied the reconfiguration and reachability problems for a linkage. In [2], they gave a polynomial time algorithm for moving a linkage confined within a circle from one given configuration to another, and proved that the reachability problem for a planar arm constrained by an arbitrary polygon, is NP-hard. Joseph and Plantings [3] proved that the reachability problem for a chain moving within a certain non-convex constraining environment is PSPACE hard.

In [4] and [5], Kantabutra presented a linear time algorithm for reconfiguring certain chains inside squares. He considered an unanchored n-linkage robot arm confined inside a square with side length at least as long as the longest arm link and found a necessary and sufficient condition for reachability in this square. His algorithm requires $\mathrm{O}(\mathrm{n})$ time.

This paper extends the previous results by providing a quadratic time algorithm to solve the reachability problem in a special concave region. The
region is bounded by the union of two squares attached via one edge. In the next section of the paper some preliminaries and useful definitions are given. In section 3 a new movement, by which a linkage moves in a concave corner is formulated and finally in section 4 present the reachability algorithm and the related properties are presented.

2 Preliminaries

An n-linkage $\Gamma[0,1, \ldots \mathrm{n}]$ is a collection of n rigid rods or links, $\left\{A_{i-1} A_{i}\right\}_{i=1, \ldots n}$, consecutively joined together at their end points, about which they may rotate freely. Links may cross over one another and none of end points of the linkage are fixed.

We denote the length of links of $\Gamma[0,1, \ldots \mathrm{n}]$ by $l_{1}, l_{2}, \ldots l_{n}$, where l_{i} is the length of link with end points A_{i-1} and A_{i} and $\|\Gamma\|=\max _{1 \leq i \leq n} l_{i}$. For $1 \leq i \leq n-1$ the angle obtained by turning clockwise about A_{i} from A_{i-1} to A_{i+1} is denoted by α_{i}. We say that a linkage Γ is bounded by b if $\|\Gamma\|<$ b , i.e no link has a length greater than or equal to b .

For a region P, by Reaching a given point $p \in P$ by A_{n}, the end point of Γ, we mean Γ can move within P from its given initial position to a final position so that A_{n} reaches p.

For a linkage Γ confined inside a convex region P with boundary denoted by ∂P, we define two special configurations as follows (Figure 1):

We say that Γ is in Rim Normal Form (denoted RNF), if all its joints lie on $\partial \mathrm{P}$.

We say that Γ is in Ordered Normal Form (denoted ONF), if:

1. Γ is in RNF.
2. Moving from A_{0} toward A_{n} along Γ is always either clockwise or counterclockwise around the boundary polygon.

Algorithms for the reconfiguration of an n-linkage usually break up the motions for the whole reconfiguration into simple motions, in which only a few joints are moved simultaneously (see [2], [6] and [7]). We allow the following type of simple motions:

- No angle at joints changes, but the linkage may translate and rotate as a rigid object.
- At most four angles change simultaneously and the other joints do not change their positions.

3 Movement in a concave environment

In this section we introduce a new movement for a linkage to reach a point inside a certain concave region.

Figure 1: An n-linkage in (a): Rim Normal Form, (b): Ordered Normal Form.

Theorem 1. Suppose that S is a region where its boundary polygon ∂S, is a square with side length $\mathrm{s}, \Gamma[0,1, \ldots n]$ is an n-linkage confined within S and $\|\Gamma\|<\mathrm{s}$. Then Γ can be brought to ONF using $\mathrm{O}(\mathrm{n})$ simple motions.

Proof: See [5].
Lemma 2. If ∂S, the boundary polygon of the region S , is a square with side length s and $\Gamma[0,1, \ldots n]$ is an n-linkage with $\|\Gamma\|<\mathrm{s}$ confined within S , initially in ONF. Then any joint of Γ can be moved along $\partial \mathrm{S}$ in either direction, in such a manner that the linkage always remain in ONF. This can be done with $O(n)$ simple motions.

Proof: See [5].
To understand our new movement, it helps to first consider a special case of 2-linkage $\Gamma[1,2,3]$ consisting of joints A_{1}, A_{2} and A_{3}. We define a movement for $\Gamma[1,2,3]$ from its initial configuration to a specified final configuration in which, A_{1} gets the position of A_{2}, and A_{3} moves forward in a given path (Figure 2).

Unless otherwise specified, by $\angle A_{1} A_{2} A_{3}\left(\angle \gamma_{1} \gamma_{2}\right.$, which γ_{1} and γ_{2} are two crossing line segments), we mean the angle obtained by turning clockwise from A_{1} to A_{3} about A_{2} (from γ_{1} to γ_{2}).

Circumstances: Consider two line segments γ_{1} and γ_{2} which intersect at q and $\angle \gamma_{1} \gamma_{2}$ is in $[\pi, 2 \pi]$. Let ρ be the line segment which starts at q and divides the angle $\angle \gamma_{1} \gamma_{2}$ into two angles $\angle \gamma_{1} \rho$ and $\angle \rho \gamma_{2}$ in such a way that $\angle \gamma_{1} \rho$ is in $[\pi / 2, \pi]$. Initial configuration of $\Gamma[1,2,3]$ is defined as follows: Let A_{1} be at point p on line segment γ_{1}, A_{2} at q and A_{3} at point r on line segment γ_{2} (Figure 2-a). By this assumption we can define our movement in a concave region.

Figure 2: (a): Initial configuration of $\Gamma[1,2,3]$, (b): middle-joint$\operatorname{up}\left(A_{1}, A_{2}, A_{3}, \rho\right)$ motion, (c): front-link-forward $\left(A_{1}, A_{2}, A_{3}, \rho\right)$ motion, (d): final configuration of $\Gamma[1,2,3]$.

Definition 3. The $\operatorname{mot}\left(A_{1}, A_{2}, A_{3}, \rho\right)$ movement changes the initial configuration of $\Gamma[1,2,3]$ to a final configuration by which Γ lies on γ_{2}. This is done by two consecutive motions:

- Middle-joint-up $\left(A_{1}, A_{2}, A_{3}, \rho\right)$: moves A_{2} along ρ away from q until A_{1} reaches q. During the movement A_{1} remains on γ_{1}, and A_{3} remains on γ_{2} as much as possible.
- Front-link-forward $\left(A_{1}, A_{2}, A_{3}, \rho\right)$: fixes A_{1} at q and brings down A_{3} on γ_{2} (if not already there). To straighten Γ, it moves A_{3} along γ_{2} away from q.

We show the $\operatorname{mot}\left(A_{1}, A_{2}, A_{3}, \rho\right)$ movement can be done in finite number of simple motions.

Assume Γ is in the initial configuration. We show how each of the middle-joint-up motion and front-link-forward motion is done in finite number of simple motions.

Middle-joint-up $\left(A_{1}, A_{2}, A_{3}, \rho\right)$:
Move A_{2} along ρ away from q (Figure 2-b). If $\angle \rho \gamma_{2} \geq \pi / 2$, during the movement, A_{1} and A_{3} approach q, while staying on lines γ_{1} and γ_{2} respectively.

If $\angle \rho \gamma_{2}<\pi / 2$, during the movement, A_{3} moves away from q and it is possible that $A_{2} A_{3}$ becomes perpendicular to γ_{2}. If this happens, first turn $A_{2} A_{3}$ about A_{2} until q $A_{2} A_{3}$ folds, then if needed, move $A_{2} A_{3}$ along ρ away from q in a way that α_{2} increases until $A_{1} A_{2} A_{3}$ folds and A_{1} reaches q . This requires a finite number of simple motions.

Front-link-forward $\left(A_{1}, A_{2}, A_{3}, \rho\right)$:
If during middle-joint-up motion A_{1} reaches q first, for applying front-linkforward motion, it is enough to keep A_{1} at q fixed, and move A_{3} along γ_{2} until Γ straightens.

If A_{3} reaches q first and A_{1} arrives later, for applying front-link-forward motion, turn $A_{2} A_{3}$ about A_{2} in a way that α_{2} decreases, until A_{3} hits γ_{2} or $\alpha_{2}=3 \pi / 2$. If $\alpha_{2}=3 \pi / 2$ before A_{3} hits γ_{2}, rotate Γ about A_{1} in a way that $\angle A_{2} A_{1} r$ decreases until A_{3} reaches γ_{2}, then keep A_{1} fixed at q and move A_{3} along γ_{2} away from q so that Γ straightens. This requires a finite number of simple motions (Figure 2-c).

If A_{3} hits γ_{2} first, keep A_{1} fixed at q and move A_{3} along γ_{2} away from q so that Γ straightens.

Figure 3: γ_{1} can be a convex path instead of a line segment.
In the definition 3 , during $\operatorname{mot}\left(A_{1}, A_{2}, A_{3}, \rho\right)$ movement, A_{1} moves along the line segment γ_{1}. The line segment γ_{1} can be replaced by a composition of two line segments in such a way that the path where A_{1} belongs to is convex. See figure 3.

In our algorithm, to reach p we have to apply $\operatorname{mot}\left(A_{i-1}, A_{i}, A_{i+1}, \rho\right)$ movement several times. At the end, possibly p can be reached by A_{n} somewhere during one of the middle-joint-up or the front-link-forward. It means that algorithm stops before the last $\operatorname{mot}\left(A_{i-1}, A_{i}, A_{i+1}, \rho\right)$ movement is terminated. Such a movement is called $\operatorname{partial-mot}\left(A_{i-1}, A_{i}, A_{i+1}, \rho\right)$ movement. This is a movement in according with the $\operatorname{mot}\left(A_{i-1}, A_{i}, A_{i+1}, \rho\right)$ movement, the movement stops somewhere during one of the middle-jointup or the front-link-forward motion in such a way that A_{3} remains on γ_{2}.

4 The reachability algorithm

In this section, we study reachability in a region bounded by two squares in which the whole or a part of a side of one square coincides with a part of a side of the other.

Assume S_{1} and S_{2} are two regions bounded by squares ∂S_{1} and ∂S_{2} with side lengths s_{1} and s_{2} respectively. Let squares ∂S_{1} and ∂S_{2} be attached via one side (the whole or a part of a side) and $\mathrm{S}=S_{1} \cup S_{2}$. Let $\Gamma=[0,1, \ldots n]$ be an n-linkage confined within S_{1} (Figure $4-\mathrm{a}$). In the following theorem we explain how A_{n}, the end of Γ, can reach a point $\mathrm{p} \in S_{2}$.

Let ρ be the line segment shared by S_{1} and S_{2} and let v_{1} and v_{2} be two end points of ρ, where v_{1} is the farthest point of ρ from p (Figure 4 -b).

The following theorem presents sufficient condition for reachability of a given point in S by the end of a linkage confined within S.

Figure 4: Γ confined within S_{1} and $p \in S_{2}$.
Theorem 4. Suppose $p \in S_{2}, \Gamma$ confined within $S_{1},\|\Gamma\|<\operatorname{Min}\left\{\frac{\sqrt{2}}{2} s_{1},\|\rho\|\right\}$, then with $\mathrm{O}\left(n^{2}\right)$ simple motions - in the worst case -p can be reached by A_{n}.

Proof: We introduce an algorithm to bring A_{n} to p using $\mathrm{O}\left(n^{2}\right)$ simple motions, in the worst case.

Assume that ω is the line including $v_{1} \mathrm{p}$, and moving from v_{2} to v_{1} on the side of ∂S_{1} which includes v_{2} and v_{1} is clockwise. At the beginning we bring Γ to ONF in S_{1}. By theorem 1, this is done in $\mathrm{O}(\mathrm{n})$ simple motions. Without loss of generality we assume that Γ is placed on ∂S in counterclockwise order of indices of links'joints. Then Γ is moved along ∂S_{1} counterclockwise until A_{n} reaches v_{1}. This can be done while no joint of Γ leaves ∂S_{1}.

We consider two cases: $d\left(p, v_{1}\right) \geq\left\|A_{n-1} A_{n}\right\|$ and $d\left(p, v_{1}\right)<\left\|A_{n-1} A_{n}\right\|$.
Case 1: $d\left(p, v_{1}\right) \geq\left\|A_{n-1} A_{n}\right\|$. The algorithm consists of three steps. In the first step A_{n} is brought into S_{2}. In the second step Γ is moved so that $\Gamma\left[0, k_{0}\right]$ takes ONF in $S_{1}\left(k_{0}\right.$ will be defined in step 2$)$, $A_{k_{0}}$ coincides with v_{1}, and $\Gamma\left[k_{0}, n\right] \subset \omega$, and finally, in the last step A_{n} reaches p.

Step 1: Move Γ along ∂S_{1} counterclockwise until A_{n-1} reaches v_{1}, because $\|\Gamma\|<\|\rho\|, A_{n}$ doesn't pass v_{2}, this takes $\mathrm{O}(\mathrm{n})$ (Figure 5 -a). Then rotate A_{n} clockwise about $A_{n-1}=v_{1}$ toward ω until A_{n} lies on ω. If $d\left(p, v_{1}\right)=\left\|A_{n-1} A_{n}\right\|, A_{n}$ reaches p and we are done. If not, we pass to the second step. This step takes $\mathrm{O}(\mathrm{n})$.

Step 2: We define $k_{0}=\min \left\{\mathrm{k} \mid d\left(p, v_{1}\right) \geq \sum_{i=k+1}^{n} l_{i}\right\}$. Since $d\left(p, v_{1}\right) \geq$ l_{n}, then $k_{0} \leq n-1$. Suppose that, for $j>k_{0}, \Gamma[j, n] \subset \omega$ is straight, A_{j} coincides with v_{1}, and $\Gamma[1, j]$ gets ONF in S_{1}, by using $\operatorname{mot}\left(A_{j-1}, A_{j}, A_{j+1}, \rho\right)$,

Figure 5: (a): $d\left(p, v_{1}\right)>\left\|A_{n-1} A_{n}\right\|,(b): d\left(p, v_{1}\right)<\left\|A_{n-1} A_{n}\right\|$ and $v_{1}=W$
Γ is moved to a configuration in which $\Gamma[j-1, n] \subset \omega$ straightens, A_{j-1} coincides with v_{1}, and $\Gamma[1, j-1]$ is in ONF in S_{1}.

By repeating this process, Γ can move to a configuration in which, $\Gamma\left[1, k_{0}\right]$ gets ONF, $A_{k_{0}}$ coincides with v_{1}, and $\Gamma\left[k_{0}, n\right] \subset \omega$.

If $k_{0}>0$, since $\sum_{i=k_{0}}^{n} l_{i}>d\left(p, v_{1}\right)>\sum_{i=k_{0}+1}^{n} l_{i}, A_{n}$ reaches p during $\operatorname{mot}\left(A_{k_{0}-1}, A_{k_{0}}, A_{k_{0}+1}, \rho\right)$. Therefore we move Γ according to partial-$\operatorname{mot}\left(A_{k_{0}-1} A_{k_{0}}, A_{k_{0}+1}, \rho\right)$, depending on values of $\angle v_{2} v_{1} p, l_{k_{0}}$ and $d\left(p, v_{1}\right)$, A_{n} reaches p during one of the middle-joint-up motion or the front-linkforward motion. This step takes $\mathrm{O}\left(k_{0} \mathrm{n}\right)$ and is $\mathrm{O}\left(n^{2}\right)$ in the worst case.

If $k_{0}=0, A_{n}$ doesn't reach p during this step and we pass to step 3 .
Step 3: In the case of $k_{0}=0$, i.e. $\sum_{i=1}^{n} l_{i}<d\left(p, v_{1}\right)$, by step $2, \Gamma$ may move to a configuration in which, A_{0} coincides with v_{1} and $\Gamma \subset \omega$ straightens. It is enough to move Γ along ω toward p until A_{n} reaches p. This step takes $\mathrm{O}(1)$.

Case 2: $d\left(p, v_{1}\right)<\left\|A_{n-1} A_{n}\right\|$. Assume that ω intersects ∂S_{1} at w (it is possible that w may coincides with v_{1} (Figure 5-b)). Let the circle $C\left(v_{1},\left\|p v_{1}\right\|\right)$ intersect $v_{1} v_{2}$ at q . To reach p , move Γ counterclockwise along ∂S_{1} until A_{n} reaches q. Depending on the position of A_{n-1} on ∂S_{1} one of the three following subcases occurs.

Subcase 2.1: A_{n-1} resides on the side of ∂S_{1} containing $v_{1} v_{2}$. In this situation v_{1} belongs to the link $A_{n-1} A_{n}$ and $C\left(p, l_{n}\right)$ intersects the line segment ω at point g. Rotate $A_{n-1} A_{n}$ clockwise about v_{1} toward p. Because $\|\Gamma\|<\frac{\sqrt{2}}{2} s_{1}, C\left(g, l_{n-1}\right)$ cannot contain S_{1} i.e. A_{n-2} does not need to exit S_{1}. Continue rotation until A_{n-1} reaches g and A_{n} reaches p. During rotation, A_{n-1} exits ∂S_{1} and if $C\left(g, l_{n-1}\right)$ intersects $\partial S_{1}, A_{n-2}$ can be stayed on ∂S_{1} and $\Gamma[0 \ldots n-2]$ remains in ONF (Figure 6-a).

Otherwise if $C\left(g, l_{n-1}\right)$ does not intersect ∂S_{1}, consider the largest $0<k_{0}$ in such a way $C\left(g, l_{n-1} \ldots+l_{k_{0}}\right)$ intersects ∂S_{1}, otherwise let $k_{0}=1$. During rotation we let $A_{n-1}, \ldots, A_{k_{0}}$ exit ∂S_{1} while making $\alpha_{n-1}=\ldots=\alpha_{k_{0}+1}=\pi$, keeping $\Gamma\left[k_{0} \ldots n-1\right]$ straight and remaining $\Gamma\left[0 \ldots k_{0}\right]$ in ONF.

Subcase 2.2: A_{n-1} resides on the side of ∂S_{1} adjacent to the side containing $v_{1} v_{2}$, and ω intersects link $A_{n} A_{n-1}$. To reach p , first fix $\Gamma[0,1, \ldots n-1]$ and rotate $A_{n-1} A_{n}$ about A_{n-1} toward p until link $A_{n-1} A_{n}$ reaches v_{1}. Then rotate $A_{n-1} A_{n}$ about v_{1} toward ω until A_{n} hits ω. During rotation A_{n} does not hit ∂S_{1}. Finally slip $A_{n-1} A_{n}$ on ω until A_{n} reaches p. During the move-

Figure 6: (a): A_{n-1} belongs to the same edge as $v_{1},(b): A_{n}$ and A_{n-1} are in both sides of $\omega,(c): A_{n}$ and A_{n-1} are in the same side of ω
ment, one of the possibilities similar to the previous situation will happen, which can be treated accordingly (Figure 6-b).

Subcase 2.3: Like case 2.2 , but ω does not intersect link $A_{n} A_{n-1}$. Suppose that $C\left(p, l_{n}\right)$ intersects ∂S_{1} at g. i.e. p is visible from g . To reach p, first fix $\Gamma[0,1, \ldots n-1]$ and rotate $A_{n-1} A_{n}$ about A_{n-1} toward ω until A_{n} reaches ω. Then, move A_{n} along ω toward p. During movement $\Gamma[0,1, \ldots n-$ 1] does not exit ∂S_{1} and A_{n} gets to p while A_{n-1} reaches g. Refer to Figure 6 -c.

Each of these subcases takes $\mathrm{O}(\mathrm{n})$.

References

[1] J. Hopcroft, D. Joseph and S. Whitesides. Movement problems for 2dimensional linkages. SIAM J. Compt., 13: pp. 610-629, 1984.
[2] J. Hopcroft, D. Joseph and S. Whitesides. On the movement of robot arms in 2-dimensional bounded regions. SIAM J. Compt., 14: pp. 315333, 1985.
[3] D. Joseph and W.H. Plantings. On the complexity of reachability and motion planing questions. Proc. of the symposium on computational geometry. ACM, June 1985.
[4] V. Kantabutra. Motions of a short-linked robot arm in a square. Discrete and Compt. Geom., 7:pp. 69-76, 1992.
[5] V. Kantabutra. Reaching a point with an unanchored robot arm in a square. International jou. of comp. geo. \& app., 7(6):pp. 539-549, 1997.
[6] W.J. Lenhart and S.H. Whitesides. Reconfiguration using line tracking motions. Proc. 4th Canadian Conf. on computational geometry, pp. 198-203, 1992.
[7] M. van Krevel, J. Snoeyink and S. Whitesides. Folding rulers inside triangles. Discrete Compt. Geom., 15:pp. 265-285, 1996.

