
Performance Tradeoffs in Multi-tier Formulation
of a Finite Difference Method

Scott B. Baden1 and Daniel Shalit1

University of California, San Diego
Department of Computer Science and Engineering
9500 Gilman Drive, La Jolla, CA 92093-0114 USA

baden@cs.ucsd.edu,dshalit@cs.ucsd.edu
http://www.cse.ucsd.edu/users/{baden,dshalit}

Abstract. Multi-tier platforms are hierarchically organized multicom-
puters with multiprocessor nodes. Compared with previous-generation
single-tier systems based on uniprocessor nodes, they present a more
complex array of performance tradeoffs. We describe performance pro-
gramming techniques targeted to finite difference methods running on
two large scale multi-tier computers manufactured by IBM: NPACI’s
Blue Horizon and ASCI Blue-Pacific Combined Technology Refresh. Our
techniques resulted in performance improvements ranging from 10% to
17% over a traditional single-tier SPMD implementation.

1 Introduction

Multi-tier computers are hierarchically organized multicomputers with enhanced
processing nodes built from multiprocessors [13]. They offer the benefit of in-
creased computational capacity while conserving a costly component: the switch.
As a result, multi-tier platforms offer potentially unprecedented levels of perfor-
mance, but increase the opportunity cost of communication [8,1,4]

We have previously described multi-tier programming techniques that utilize
knowledge of the hierarchical hardware organization to improve performance [2].
These results were obtained on SMP clusters with tens of processors and hence
did not demonstrate scalability. In this paper, we extend our techniques to larger-
scale multi-tier parallelism involving hundreds of processors, and to deeper mem-
ory hierarchies. We describe architecture-cognizant policies needed to deliver
high performance in a 3D iterative finite difference method for solving elliptic
partial differential equations. 3D Elliptic solvers are particularly challenging ow-
ing to their high memory bandwidth requirements. We were able to improve
performance over a traditional SPMD implementation by 10% to 17%.

The contribution of this paper is a methodology for realizing overlap on
large-scale multi-tier platforms with deep memory hierarchies. We find that uni-
form partitionings traditionally employed for iterative methods are ineffective,
and that irregular, multi-level decompositions are needed instead. Moreover,
when reformulating an algorithm to overlap communication with computation,
we must avoid even small amounts of load imbalance. These can limit the ability
to realize overlap.

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2073, pp. 785–794, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



786 S.B. Baden and D. Shalit

2 Motivating Application

2.1 A Finite Difference Method

Our motivating application solves a partial differential equation–Poisson’s equa-
tion in three dimensions. The solver discretizes the equation using a 7-point sten-
cil, and solves the discrete equation on a 3-d mesh using Gauss-Seidel’s method
with red-black ordering. We will refer to this application as RedBlack3D.

We assume a hierarchically constructed multicomputer with N processing
nodes. Each node is a shared memory multiprocessor with p processors. When
p = 1 our machine reduces the degenerate case of a single-tier computer with a
flattened communication structure. For p > 1 we have a multi-tier computer.

Our strategy for parallelizing an iterative method is to employ a blocked
hierarchical decomposition, reflecting the hierarchical construction of the hard-
ware [1,2]. Fig. 1 shows hierarchical decomposition. The first-level subdivision
(Fig. 1a) splits the computational domain into N uniform, disjoint blocks or
subdomains. The second level (Fig. 1b) subdivides each of the N blocks into
p disjoint sub-blocks. Each first-level block is buffered by a surrounding ghost
region holding off-processor values.

The calculation consists of successive steps that compute and then communi-
cate to fill the ghost cells. After communication of ghost cells completes, control
flow proceeds in hierarchical fashion, passing successively to node-level and then
processor-level execution.

Each node sweeps over its assigned mesh, enabling its processors to execute
over a unique sub-block. Once the processors finish computing, control flow lifts
back up to the node level: each node synchronizes its processors at a barrier,
and the cycle repeats until convergence.

Under this hierarchical model, nodes communicate by passing messages on
behalf of their processors. Since ghost cells are associated with nodes rather than
processors, processors on different nodes do not communicate directly.

2.2 Overlap

Communication delays are long on a multi-tier computer because multiple pro-
cessors share a communication port to the interconnection network. To cope
with long communication delays, we reformulate the iterative method to overlap
communication with computation by pre-fetching the ghost cells [14].

As illustrated in Fig. 1(b), we peel an annular region from surface of each
node’s assigned subdomain, and defer execution on this annulus until the ghost
cells have arrived. We initiate communication asynchronously on the ghost cells,
and then compute on the interior of the subdomain, excluding the annular region.
This is shown in Fig. 1(b). After computation finishes, we wait for communica-
tion to complete. Finally, we compute over the annular region.

We now have the basis for building an efficient iterative method on a multi-
tier computer. We next discuss the performance programming techniques re-
quired to implement the strategy.



Performance Tradeo�s in Multi-tier Formulation 787

4

1

2

3

0
5 3

4

1

2

a) b)

Fig. 1. (a) Cross section of a 3D problem partitioned across 4 nodes, showing the halo
region; and (b) the node-level partitioning on dual-processor nodes. The halo is shaded
in this depiction. The annular region abuts the halo, and is subdivided into pieces
labeled 2 through 5. Points on the interior are labeled 0 and 1. This decomposition is
duplicated on each node.

3 Testbeds

3.1 Hardware

We ran on two platforms, both developed by IBM: NPACI’s Blue Horizon sys-
tem1, located at the San Diego Supercomputer Center, and the ASCI Blue Pacific
Combined Technology Refresh (CTR)2, located at Lawrence Livermore National
Laboratory. The two platforms differ significantly in their respective on-node
memory hierarchies. Blue Horizon provides significantly lower node bisection
bandwidth than CTR relative to processor performance. The nodes are over an
order of magnitude more powerful and have twice the number of processors. Blue
Horizon’s shared memory is multi-ported and employs a cross-bar interconnect
rather than a bus. The cache lines are longer.

Blue Horizon contains 144 POWER3 SMP High Nodes (model number 9076-
260) interconnected with a “Colony” switch. Each node is an 8-way way Sym-
metric Multiprocessor (SMP) based on 375 MHz Power-3 processors, sharing
4 Gigabytes of memory, and running AIX 4.3. Each processor has 1.5 GB/sec
bandwidth to memory, an 8 MB 4-way set associative L2 cache, and 64 KB of
128-way set associative L1 cache. Both caches have a 128 byte line size.

Blue Pacific contains 320 nodes. Each node is a model number 9076-WCN 4-
way SMP based on 332 MHz Power PC 604e processors sharing 1.5 GB memory
and running AIX 4.3.1. Each processor has 1.33 GB/sec of bandwidth to memory,
a 32 KB 4-way set associative L1 data cache with a 32 byte line size, and a 256KB
direct-mapped, unified L2 cache with a 64 byte line size.

We used KAI’s C++ and Fortran 77 compilers. These compilers are trans-
lators, and employ native IBM compilers to generate object code. C++
code was compiled kai mpCC r, with compiler options --exceptions -O2

1 http://www.npaci.edu/BlueHorizon/
2 http://www.llnl.gov/asci/platforms/bluepac/



788 S.B. Baden and D. Shalit

-qmaxmem=-1 -qarch=auto -qtune=auto --no implicit include. Fortran 77
was compiled using guidef77, version 3.9, with compiler options -O3 -qstrict
-u -qarch=pwr3 -qtune=pwr3.3

3.2 Performance Measurement Technique

We collected timings in batch mode: Distributed Production Control System
(DPCS) on ASCI Blue Pacific, loadleveler on NPACI Blue Horizon. We re-
port wall-clock times obtained with read real time() on Blue Pacific, and
MPI Wtime() on Blue Horizon.

The timed computation was repeated for a sufficient number of iterations to
ensure that the entire run lasted for tens of seconds. Times were reported as
the average of 20 runs, with occasional outliers removed. We define an outlier
as running at least 25% more slowly than the average time of the other runs. In
practice, we encountered outliers once or twice in each batch of twenty runs.

3.3 KeLP Software Testbed

The applications were written in a mix of C++ and Fortran 77 and used a multi-
tier prototype of the KeLP infrastructure [1,2,4]. KeLP calls were made from
C++, and all numerical computation was carried out in Fortran. A discussion of
the KeLP API is out of the scope of this paper. The interested reader is referred
to the above references for more information.

KeLP employs POSIX threads [7] to manage parallelism on node, and MPI [6]
to handle communication between nodes. A typical KeLP program runs with one
MPI process per node, and unfolds a user-selectable number of threads within
each process. The total number of threads per node is generally equal to the
number of processors.

KeLP employs a persistent communication object called a Mover [5] to move
data between nodes. A distinguished master thread in each process is in charge
of invoking the Mover, which logically runs as a separate task. Mover provides
two entries for managing communication asynchronously: start() and wait().

KeLP provides two implementation policies for supporting asynchronous,
non-blocking communication in the Mover. The Mover may either run as a
proxy [12] within a separate thread, or it may be invoked directly by the mas-
ter thread. In the latter case, asynchronous non-blocking MPI calls MPI Isend()
and MPI Irecv() are relied on to provide overlap. However, we found that IBM’s
MPI implementation cannot realize communication overlap non-blocking asyn-
chronous communication. Thus, we use only the proxy to realize overlap.

4 Results

4.1 Variant Policies

We implemented several variant policies, which are summarized in Table 1. The
simplest variant, Hand, is hand-coded in MPI. This variant is typical of how
3 On Blue Pacific we compiled with options -qarch=auto -qtune=auto in lieu of pwr3.



Performance Tradeoffs in Multi-tier Formulation 789

most users would implement RedBlack3D, and execution is single-tiered. All
other variants were written in KeLP, and used the identical numerical Fortran
77 kernel.

Table 1. A synopsis of the policy variants used in the paper.

The next variant is MT(p). It supports multi-tier execution using p compu-
tation threads per node. With p = 1, we flatten out the hierarchical machine
interconnection structure. Thus, MT(1) reduces to single-tier execution, running
1 process per processor. When p > 1, we obtain a family of multi-tier variants.

We compose the overlap variant with MT(p). As discussed previously, we
use a proxy to overlap communication with computation. To signify this overlap
variant, we concatenate the policy Xtra using the + sign to indicate variant
concatenation. Thus, the policy MT(p)+Olap+Xtra employs multi-tier exe-
cution with p compute threads, and supports communication overlap using an
extra thread running a proxy. We will use the variant !Olap to indicate when
we do not employ overlap.

4.2 Experimentation

We first present results for Blue Pacific CTR and then for Blue Horizon. We re-
port all performance figures as the average number of milliseconds per iteration,
and ran for 80 iterations. As noted previously, we report the average of 20 runs,
ignoring outliers. On Blue Pacific CTR, we ran with a 4803 domain on 64 nodes
(256 processors). On Blue Horizon, we ran with 8 and 27 nodes (64 and 216
processors, respectively), keeping the problem size constant with the number of
processors.

Establishing a Baseline. To establish the operating overheads of KeLP, we
compare Hand against MT(1)+!Olap. An iteration of MT(1)+!Olap com-
pletes in 245 ms., including 116 ms of communication wait time. By comparison,
Hand completes in 229 ms., including 99.3 ms of communication wait time.
KeLP overheads are modest and incurred primarily in communication (15%).



790 S.B. Baden and D. Shalit

Overall, the application runs just 7% more slowly in KeLP than in MPI. Having
determined that KeLP’s overheads are low, we will use the single-tier variant
written in KeLP, MT(1)+!Olap, as our baseline for assessing the benefits of
multi-tier execution.

Multi-tier execution. We next run with MT(p) using Olap and !Olap
variants.4 To peform these runs, we employed the following AIX environ-
ment variable settings: MP SINGLE THREAD=yes;AIXTHREAD SCOPE=S. Addition-
ally, the Olap variant ran with MP CSS INTERRUPT=yes. The !Olap variant ran
with
MP CSS INTERRUPT=no; MP POLLING INTERVAL=2000000000.

Compared with MT(1), MT(4)+ !Olap reduces the running time slightly
from 245 ms to 234 ms. Computation time is virtually unchanged. Communica-
tion time drops about 15%. We attribute the difference to the use of the shared
memory cache-coherence protocol to manage interprocessor communication in
lieu of message passing. Although Blue Pacific uses shared memory to resolve
message passing on-node, communication bandwidth is about 80 Megabytes/sec
regardless of whether or not the communicating processors are on the same node.
As noted previously, bandwidth to memory is more than an order of magnitude
higher: 1.33 GB/sec per processor. We are now running at about the same speed
as hand-coded MPI. Our next variant will improve performance beyond the
HAND variant.

Overlap. We next ran MT(3)+Olap+Xtra. Performance improves by about
11% over MT(4)+ !Olap: execution time drops to 209 ms. We are now running
17% faster than the single-tier variant. Communication wait time drops to 29.6
ms–a reduction of a factor of three. The proxy is doing its job, overlapping most
of the communication. Since the proxy displaces one computational thread, we
expect an increase in computation time. Indeed, computation time increases
from 139 ms to 184 ms. This slowdown forms the ratio of 3:4, which is precisely
the increase in workload that results results from displacing one computational
thread by the proxy.

Although communication wait time has dropped significantly, it is still non-
zero. Proxy utilization is only about 25% so this is not at issue. Part of the
loss results from thread synchronization overhead. But load imbalance is also
a significant factor. It arises in the computation over the inner annular region.
The annulus is divided into six faces, and each face is assigned to one thread.
(Faces that abut a physical boundary have 3, 4, or 5 faces.) Because faces have
different strides–depending on their spatial orientation– the computation over
the annulus completes at different times on different nodes. The resulting im-
balances delay communication at the start of the next iteration. The time lag
compounds over successive iterations, causing a phase shift in communication.
When this phase shift is sufficiently long, there is not sufficient time for com-
4 We did not run MT(1)+Olap since the p extra proxy threads would interfere use-

lessly with one another.



Performance Tradeoffs in Multi-tier Formulation 791

munication to complete prior to the end of computation. We estimate that this
phase shift accounts for 1/3 to 1/2 of the total wait time.

Tab. 2 summarizes performance of variants of HAND, MT(1)+!Olap,
MT(4)+!Olap, and MT(3)+Olap+Xtra.

Table 2. Execution time break-down for variants of redblack3D running on 64 nodes of
ASCI Blue Pacific CTR. Times are reported in milliseconds per iteration. The column
labeled ‘Wait’ reports the time spent waiting for communication to complete. The
times reported are the maximum reported from all nodes; thus, the local computation
and communication times do not add up exactly to the total time.

Variant Total Wait Comp
HAND 229 99.3 147
MT(1) + !Olap 245 116 142
MT(4) + !Olap 234 100 139
MT(3) + Olap + Xtra 209 29.6 184

Blue Horizon. Blue Horizon has has a “Colony switch,” that provides about
400 MB/sec of message bandwidth under MPI for off-node communication, and
500 MB/sec on-node. We used AIX environment variables recommended by
SDSC and IBM. For non-overlapped runs we used
#@ Environment = COPY ALL; MP EUILIB=us; MP PULSE=0;
MP CPU USAGE=unique; MP SHARED MEMORY=YES; AIXTHREAD SCOPE=S;
RT GRQ=ON; MP INTRDELAY=100; for overlapped runs we added the settings
MP POLLING INTERVAL=2000000000; AIXTHREAD MNRATIO=8:8. With single-tier
runs, the load leveler variable tasks per node=8. For MT(p) , p > 1, we used
a value of 1. The number of nodes equals the number of MPI processes.

We ran on 8 and 27 nodes, 64 and 216 processors, respectively. We maintained
a constant workload per node, running with a 8003 mesh on 8 nodes, and a 12003

mesh 27 nodes. This problem size was chosen to utilize 1/4 of the nodes’ 4GB
of memory. In practice, we would have many more than the 2 arrays used in
RedBlack3D (solution and right hand side), and would not likely be able to run
with a larger value of N. Tab. 3 summarizes performance.

We first verify that KeLP overheads are small. Indeed, the KeLP
(MT(1)+!Olap) and Hand variants run in nearly the identical amount of time.
The multi-tier variant MT(8)+ !Olap reduces the running time from 732 ms
to 713 ms on 8 nodes. Curiously the running time increases on 27 nodes, from
773 ms to 824 ms. The increase is in communication time–computation time
is virtually unchanged. Possibly, external communication interference increases
with a larger number of nodes, and is affecting communication performance. We
are currently investigating this effect.

The benefits of multi-tier parallelism come with the next variant: commu-
nication overlap. MT(7) + Olap runs faster than MT(1) + !Olap, reducing



792 S.B. Baden and D. Shalit

Table 3. Execution time break-down for variants of redblack3D running on 8 and
64 nodes of NPACI Blue Horizon, with N=800 and 1200, respectively. The legend is
the same as the previous table. Threads were unbound except for MT(7) + Olap +
Xtra + Irr(44:50). We were unable to run the HAND variant on 8 nodes due to a
limitation in the code. We were unable to get speedups in the Irr variant on 27 nodes.

execution time to 655 ms on 8 nodes, and 693 on 27 nodes. Overlap significantly
reduces the wait time on communication, which drops from 141 ms to 20.5 ms
on 8 nodes, and from 230 ms to 42.5 ms on 27 nodes. Our multi-tier overlapped
variant MT(7) + Olap is about 10% faster than the single-tier variant MT(1)
+ !Olap. Although our strategy increases computation time, more significantly,
it reduces the length of the critical path: communication.

An additional level of the memory hierarchy. Although we have reduced
communication time significantly, there is still room for improvement. Upon
closer examination, the workload carried by the computational threads on the
interior of the domain is imbalanced. This imbalance is in addition to the im-
balance within the annulus, which was discussed above.

The reason why is that the Power3 high node’s shared memory is organized
into groups of four processors and each group has one port to memory. Thus,
when we run with seven compute threads, four of the threads sharing one port of
memory see less per-CPU bandwidth than the other three threads sharing the
other port. The uniform partitionings we used are designed to divide floating
point operations evenly, but not memory bandwidth requirements.

The thread scheduler does a good job of mitigating the load imbalance, but at
a cost of increased overheads. We can reduce running time further by explicitly
load balancing the threads’ workload assignments according the available per-
processor bandwith. We use an irregular hierarchical partitioning. The first level
divides the inner computational domain into two parts, such that the relative
sizes of the two parts correspond to an equal amount of bandwidth per processor.
We determined experimentally that a ratio of 44:50 worked best. That is, 44/94
of the 504 planes in the domain were assigned contiguously to 4 processors, and
the remainder to the other 3 processors.

The irregular hierarchical improve performance, cutting the communication
wait time in half to 9.2 ms. Overall computation time drops to 626 ms. We have
now improved performance by 14.4% relative to the single-tier implementation.



Performance Tradeoffs in Multi-tier Formulation 793

As with ASCI Blue, it appears that the remaining losses result from thread
synchronization overheads and from load imbalances arising within the annulus
computation. The latter effect is more severe on Blue Horizon, which has 8
way nodes, than with Blue Pacific CTR, which has only 4-way nodes. To avoid
large memory access strides in the annulus computation, we were limited to
two-dimensional data decompositions. (Long strides, comprising thousands of
bytes, penalize computation severely on unfavorably oriented faces–by a factor
of 20!) No node received more than 4 annular faces. We can only utilize about
half the 7 processors on Blue Horizon when computing on the annulus. The load
imbalance due to the annulus computation introduces a phase lag of about 3%
into the iteration cycle. Communication within the proxy consumes about 18%.
Thus, after about 25 iterations, we can no longer overlap communication. Our
runs were 40 cycles long.

5 Conclusions and Related Work

We have presented a set of performance programming techniques that are ca-
pable of reducing communication delays significantly on multi-tier architectures
that employ a hierarchical organization using multiprocessor nodes. We realized
improvements in the range of 10% to 17% for a 3D elliptic solver. A drawback
of our approach–and others that employ hybrid programming–is to introduce a
more complicated hierarchical programming model and a more complicated set
of performance tradeoffs. This model has a steeper learning curve than tradi-
tional SPMD programming models, but is appropriate when performance is at
a premium. Our data decompositions were highly irregular, and we were con-
stantly fighting load imbalance problems. We suspect that dynamic workload
sharing on the node would be easier to program and more effective in dealing
with the wide range of architectural choices faced by users of multi-tier systems.

Other have incorporated hierarchical abstractions into programming lan-
guages. Crandall et. al [10] report experiences with dual-level parallel programs
on an SMP cluster. Cedar Fortran [9] included storage classes and looping con-
structs to express multiple levels of parallelism and locality for the Cedar ma-
chine. The pSather language is based on a cluster machine model for specifying
locality [11], and implements a two-level shared address space.

Acknowledgments

The authors wish to thank John May and Bronis de Supinski, with the Center for
Applied Scientific Computing at Lawrence Livermore National Laboratory, for
the many illuminating discussions about the ASCI Blue-Pacific machine and with
Dr. Bill Tuel, and David Klepacki, both with IBM, for explaining the subtleties
of performance tuning in IBM SP systems.

KeLP was the thesis topic of Stephen J. Fink (Ph.D. 1998), who was sup-
ported by the DOE Computational Science Graduate Fellowship Program. Scott
Baden is supported in part by NSF contract ACI-9876923 and in part by NSF



794 S.B. Baden and D. Shalit

contract ACI-9619020, “National Partnership for Advanced Computational In-
frastructure.” Work on the ASCI Blue-Pacific CTR machine was performed un-
der the auspices of the US Dept of Energy by Lawrence Livermore National
Laboratory Under Contract W07405-Eng-48.

References

1. Fink, S. J.: Hierarchical Programming for Block–Structured Scientific Calculations.
Doctor dissertation, Dept. of Computer Science and Engineering, Univ. of Calif.,
San Diego (1998)

2. Baden, S.B. and Fink, S. J.: Communication Overlap in Multi-tier Parallel Algo-
rithms. In Proc. SC ’98, IEEE Computer Society Press (1998)

3. Fink, S. J. and Baden, S.B. Runtime Support for Multi-tier Programming of Block-
Structured Applications on SMP Clusters. In: Ishikawa, Y., Oldehoeft, R, Reyn-
ders, J.V.W., and Tholburn, M. (eds.): Scientific Computing in Object-Oriented
Parallel Environments. Lecture Notes in Computer Sci., Vol. 1343. Springer-Verlag,
New York (1997) pp. 1–8

4. Fink, S. J. and Baden, S.B. A Programming Methodology for Dual-tier Multicom-
puters. IEEE Trans. on Software Eng., 26(3), March 2000, pp. 212–26

5. Baden, S.B. and Fink, S. J., and Kohn, S. R. Efficient Run-Time Support for
Irregular Block-Structured Applications. J. Parallel Distrib. Comput., Vol 50, 1998,
pp. 61–82

6. MPI Forum: The Message Passing Interface (MPI) Standard.
http://www-unix.mcs.anl.gov/mpi/index.html, 1995

7. IEEE: IEEE Guide to the POSIX Open System Environment. New York, NY, 1995
8. Gropp, W.W. and Lusk, E. L. A Taxonomy of Programming Models for Symmetric

Multiprocessors and SMP Clusters. In Giloi, W. K. and Jahnichen, S., and Shriver,
B. D. (eds.): Programming Models for Massively Parallel Computers. IEEE Com-
puter Society Press, 1995, pp. 2–7

9. Eigenmann, R., Hoeflinger, J., Jaxson,G., and Padua, D. Cedar Fortran and its
Compiler, CONPAR 90-VAPP IV, Joint Int. Conf. on Vector and Parallel Proc.,
1990, pp. 288–299

10. Crandall, P. E., Sumithasri, E. V., Leichtl, J., and Clement, M. A. A Taxonomy
for Dual-Level Parallelism in Cluster Computing, Tech. Rep., Univ. Connecticut,
Mansfield, Dept. Computer Science and Engineering, 1998

11. Murer, S., Feldman, J., Lim, C.-C., and Seidel, M.-M. pSather: Layered Extensions
to an Object-Oriented Language for Efficient Parallel Computation, Tech. Rep.
TR-93-028, Computer Sci. Div., U.C. Berkeley, Dec. 1993

12. Lim, B.-H., Heidelberger, P., Pattnaik, P., and Snir, M. Message Proxies for Ef-
ficient, Protected Communication on SMP Clusters, in Proc. Third Int’l Symp.
on High-Performance Computer Architecture, San Antonio, TX, Feb. 1997, IEEE
Computer Society Press, pp. 116–27.

13. Woodward, P.R.. Perspectives on Supercomputing: Three Decades of Change,
IEEE Computer, Vol. 29, Oct. 1996, pp. 99–111.

14. Sawdey, A. C., O’Keefe, M.T., and Jones, W.B. A General Programming Model
for Developing Scalable Ocean Circulation Applications, Proc. ECMWF Workshop
on the Use of Parallel Processors in Meteorology, Jan. 1997.

15. Somani, A. K. and Sansano, A. M. Minimizing Overhead in Parallel Algo-
rithms through Overlapping Communication/Computation, Tech. Rep. 97-8, NASA
ICASE, Langley, VA., Feb. 1997


	Introduction
	Motivating Application
	A Finite Difference Method
	Overlap

	Testbeds
	Hardware
	Performance Measurement Technique
	KeLP Software Testbed

	Results
	Variant Policies
	Experimentation

	Conclusions and Related Work

