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Abstract. Matrix factorization algorithms such as LU, QR, and
Cholesky, are the most widely used methods for solving dense linear sys-
tems of equations, and have been extensively studied and implemented on
vector and parallel computers. In this paper, we present parallel LU, QR,
and Cholesky factorization routines with an “algorithmic blocking” on
2-dimensional block cyclic data distribution. With the algorithmic block-
ing, it is possible to obtain the near optimal performance irrespective of
the physical block size. The routines are implemented on the SGI/Cray
T3E and compared with the corresponding ScaLAPACK factorization
routines.

1 Introduction

In many linear algebra algorithms the distribution of work may become uneven
as the algorithm proceeds, for example as in LU factorization algorithm [7], in
which rows and columns are successively eliminated from the computation. The
way in which a matrix is distributed over the processors has a major impact on
the load balance and communication characteristics of a parallel algorithm, and
hence largely determines its performance and scalability.

The two-dimensional block cyclic data distribution [9], in which matrix blocks
separated by a fixed stride in the row and column directions are assigned to
the same processor, has been used as a general purpose basic data distribution
for parallel linear algebra software libraries because of its scalability and load
balance properties. And most of the parallel version of algorithms have been
implemented on the two-dimensional block cyclic data distribution [5,13].

Since parallel computers have different performance ratios of computation
and communication, the optimal computational block sizes are different from
one another to generate the maximum performance of an algorithm. The data
matrix should be distributed with the machine specific optimal block size before
the computation. Too small or large a block size makes getting good performance
on a machine nearly impossible. In such case, getting a better performance may
require a complete redistribution of the data matrix.

The matrix multiplication, C ⇐ C + A · B, might be the most fundamen-
tal operation in linear algebra. Several parallel matrix multiplication algorithms
have been proposed on the two-dimensional block-cyclic data distribution [1,6,
8,12]. High performance, scalability, and simplicity of the parallel matrix mul-
tiplication schemes using rank-K updates has been demonstrated [1,12]. It is
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assumed that the data matrices are distributed on the two-dimensional block
cyclic data distribution and the column block size of A and the row block size of
B are K. However getting a good performance when the block size is very small
or very large is difficult, since the computation are not effectively overlapped
with the communication. The LCM (Least Common Multiple) concept has been
introduced to DIMMA [6] to use a computationally optimal block size irrespec-
tive of the physically distributed block size for the parallel matrix multiplication.
In DIMMA, if the physical block size is smaller than the optimal block size, the
small blocks are combined into a larger block. And if the physical block size is
larger than the optimal block size, the block is divided into smaller pieces. This
is the “algorithmic blocking” strategy.

There have been several efforts to develop parallel factorization algorithms
with the algorithmic blocking on distributed-memory concurrent computers.
Lichtenstein and Johnsson [11] developed and implemented block-cyclic order
elimination algorithms for LU and QR factorization on the Connection Machine
CM-200. They used a cyclic order elimination on a block data distribution, the
only scheme that the Connection Machine system compilers supported.

P. Bangalore [3] has tried to develop a data distribution-independent LU
factorization algorithm. He recomposed computational panels to obtain a com-
putationally optimal block size, but followed the original matrix ordering. Ac-
cording to the results, the performance is superior to the other case, in which
the matrix is redistributed when the block size is very small. He used a tree-type
communication scheme to make computational panels from several columns of
processors. However, using a pipelined communication scheme, if possible, which
overlaps communication and computation effectively, would be more efficient.

The actual algorithm which is selected at runtime depending on input data
and machine parameters is called “polyalgorithms” [4]. We are developing “Po-
LAPACK” (Poly LAPACK) factorization routines, in which computers select the
optimal block size at run time according to machine characteristics and size of
data matrix. In this paper, we expanded and generalized the idea in [11]. We de-
veloped and implemented parallel LU, QR, and Cholesky factorization routines
with the algorithmic blocking on the 2-dimensional block cyclic data distribution.
With PoLAPACK, it is always possible to have the near optimal performance of
LU, QR, and Cholesky factorization routines on distributed-memory computers
irrespective of the physical data-distribution on distributed-memory concurrent
computers if all of the processors have the same size of submatrices.

The PoLAPACK LU, QR, and Cholesky factorization routines are imple-
mented on the SGI/Cray T3E at KISTI Supercomputing Center, Korea. And
their performance is compared with that of the corresponding ScaLAPACK fac-
torization routines.

2 PoLAPACK LU Factorization Algorithm

The basic LU factorization routine is to find the solution vector x after apply-
ing LU factorization to A from the following linear equation, A x = b. After
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converting A to P · A = L · U , compute y from L y = b0, where U · x = y and
P · b = b0. And compute x.

Most of the LU factorization algorithms including LAPACK [2] and ScaLA-
PACK [7] find the solution vector x after computing the factorization of P ·A =
L · U . And in the ScaLAPACK factorization routines, a column of processors
performs a factorization on its own column of blocks, and broadcasts it to oth-
ers. Then all of processors update the rest of the data matrix. The basic unit of
the computation is the physical size of the block, with which the data matrix is
already distributed over processors.

We measured the performance the ScaLAPACK LU factorization routine
and its solution routine with various block sizes on the SGI/Cray T3E. Figure 1
shows the performance on an 8 × 8 processor grid from N = 1, 000 to 20,000
with block sizes of Nb = 1, 6, 24, 36, and 60. It shows that the near optimal
performance is obtained when Nb = 60, and almost the same but slightly slower
when Nb = 36 or 24. The performance deteriorated by 40% when Nb = 6 and
85% when Nb = 1. If the data matrix is distributed with Nb = 1, it may be much
more efficient to perform the factorization after redistributing the data matrix
with the optimal block size.
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Fig. 1. Performance of ScaLAPACK LU factorization routine on an 8 × 8 SGI/Cray
T3E

In ScaLAPACK, the performance of the algorithm is greatly affected by
the block size. However the PoLAPACK LU factorization is implemented with
the concept of algorithmic blocking and always shows the best performance of
Nopt = 60 irrespective of physical block sizes.

If a data matrix A is decomposed over 2-dimensional p×q processors with the
block cyclic data distribution, it may be possible to regard the matrix A being
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decomposed along the row and column directions of processors. Then the new
decomposition along the row and column directions are the same as applying
permutation matrices from the left and the right, respectively. One step further.
If we want to compute a matrix with a different block size, we may need to
redistribute the matrix, and we can assume that the redistributed matrix is of
the form Pp · A · PT

q , where Pp and Pq are permutation matrices. It may be
possible to avoid redistributing the matrix physically if the new computation
doesn’t follow the given ordering of the matrix A. That is, by assuming that the
given matrix A is redistributed with a new optimal block size and the resulting
matrix is Pp · A · PT

q , it is now possible to apply the factorization to A with
the optimal block size for the computation. And this factorization will show the
same performance regardless of the physical block sizes if each processor gets
the same size of the submatrix of A. These statements are illustrated with the
following equations,

(Pp A PT
q ) · (Pqx) = Pp · b. (1)

Let A1 = Pp A PT
q , and x1 = Pq x. After factorizing P1A1 = P1 ·

(PpAPT
q ) = L1 ·U1, then we compute the solution vector x. The above equation

Eq. 1 is transformed as follows:

L1 · U1 · (Pqx) = L1 · U1 · x1 = P1 · (Ppb) = b1.

Then, y1 is computed from

L1 · y1 = b1, (2)

and x1 is computed from

U1 · x1 = y1. (3)

Finally the solution vector x is computed from

Pq · x = x1. (4)

The computations are performed with A and b in place with the optimal
block size, and x is computed with Pq as in Eq. 4. But we want Pp · x rather
than x in order to make x have the same physical data distribution as b. That
is, it is required to compute

Pp · x = Pp · PT
q · x1. (5)
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(a) 12 x 12 blocks on 2 x 3 processes (b) 9 x 9 blocks on 2 x 3 processes
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Fig. 2. Computational Procedure in PoLAPACK. Matrices of 12× 12 and 9× 9 blocks
are distributed on 2 × 3 processors with Nopt = Nb and Nopt = 2 · Nb, respectively.

3 Implementation of PoLAPACK LU Factorization

Figure 2 shows the computational procedure of the PoLAPACK LU factoriza-
tion. It is assumed that a matrix A of 12 × 12 blocks is distributed over a 2 × 3
processor grid as in Figure 2(a), and the LU routine computes 2 blocks at a
time (imagine Nb = 4 but Nopt = 8). Since the routine follows the 2-D block
cyclic ordering, the positions of the diagonal blocks are regularly changed by in-
crementing one column and one row of processors at each step. However, if A is
9×9 blocks as in Figure 2(b), the next diagonal block of A(5, 6) on p(3) is A(7, 7)
on p(4), not on p(1). Then the next block is A(8, 8) on p(2). The computational
procedure of the PoLAPACK is very complicated.

We implemented the Li and Coleman’s algorithm [10] on a two dimensional
processor grid for the PoLAPACK routines. But the implementation is much
more complicated since the diagonal block may not be located regularly if p is
not equal to q as in Figure 2.

Though p is equal to q, the implementation is still complicated. Figure 3(a)
shows a snapshot of the Li and Coleman’s algorithm from the processors point-
of-view, where 9× 9 blocks of an upper triangular matrix T are distributed over
a 3 × 3 processor grid with Nb = Nopt = 1. Let’s look over the details of the
algorithm to solve x = T \ b.

At first, the last block at p(8) computes x(9) from T (9, 9) and b(9). Processors
in the last column update 2 blocks - actually p(2) and p(5) update b(7) and b(8),
respectively - and send them to their left processors. The rest of b (b(1 : 6)) is
updated later. At the second step, p(4) computes x(8) from T (8, 8) and b(8), the
latter is received from p(5). While p(1) receives b(7) from p(2), updates it, and
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Fig. 3. A snapshot of PoLAPACK solver. A matrix T of 9 × 9 blocks is distributed on
3×3 processors with Nb = 1 and Nb = 4, respectively, while the optimal computational
block size for both cases is Nopt = 1.

sends it to p(0), p(7) updates a temporal b(6) and sends it to p(6).
Figure 3(b) shows the same size of the matrix distribution T with Nb = 4, but

it is assumed that the matrix T is derived with an optimal block size Nopt = 1. So
the solution routine has to solve the triangular equations of Eq. 2 and Eq. 3 with
Nopt = 1. The first two rows and the first two columns of processors have 4 rows
and 4 columns of T , respectively, while the last row and the last column have
1 row and 1 column, respectively. Since Nopt = 1, the computation starts from
p(4), which computes x(9). Then p(1) and p(4) update b(8) and b(7), respectively,
and send them to their left. The rest of b (b(1 : 6)) is updated later. At the
next step, p(0) computes x(8) from T (8, 8) and b(8), the latter is received from
p(1). While p(3) receives b(7) from p(4), updates it, and sends it to the left p(5),
p(0) updates a temporal b(6) and sends it to its left p(2). However p(2) and p(5)
don’t have their own data to update or compute at the current step, and hand
them over to their left without touching the data. The PoLAPACK solver has
to comply with this kind of all abnormal cases.

It may be necessary to redistribute the solution vector x to Pp · PT
q · x as

in Eq. 5. However, if p is equal to q, then Pp becomes Pq, and Pp · PT
q · x = x,

therefore, the redistribution is not necessary. But if p is not equal to q, the
redistribution of x is required to get the solution with the same data distribution
as the right hand vector b. And if p and q are relatively prime, then the problem
is changed to all-to-all personalized communication.

Figure 4 shows a case of the physical block size Nb = 1 and the optimal block
size Nopt = 2 on a 2 × 3 processor grid. Originally the vector b is distributed
with Nb = 1 as the ordering on the left of Figure 4. But the solution vector x
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Fig. 4. A snapshot of PoLAPACK solver. A matrix T of 9 × 9 blocks is distributed on
3×3 processors with Nb = 1 and Nb = 4, respectively, while the optimal computational
block size for both cases is Nopt = 1.

is distributed as the ordering on the right after the computation with Nopt = 2.
The result is the same as a vector on the left is transposed twice – at first
transposed with Nb = 1 to the vector on the top, then later transposed with
Nopt = 2 to the vector on the right.

We implemented the PoLAPACK LU factorization routine and measured its
performance on an 8 × 8 processor grid of the SGI/Cray T3E. Figure 5 shows
the performance of the routine with the physical block sizes of Nb = 1, 6, 24, 36,
and 60, but the optimal block size of Nopt = 60. The performance lines are
very close to the others and always show nearly the maximum performance
irrespective of the physical block sizes. Since all processors don’t have the same
size of the submatrices of A with various block sizes, some processors have more
data to compute than others, which causes computational load imbalance among
processors and slight performance degradation.

4 PoLAPACK QR and Cholesky Factorization

The PoLAPACK QR factorization and its solution of the factored matrix equa-
tions are performed in a manner analogous to the PoLAPACK LU factorization
and the solution of the triangular systems.

Figure 6 shows the performance of the ScaLAPACK and PoLAPACK QR
factorizations and their solution on an 8 × 8 processor grid of the SGI/Cray
T3E. Performance of the ScaLAPACK QR factorization routine depends on
the physical block size, and the best performance is obtained when Nb = 24
on a SGI/Cray T3E. However the PoLAPACK QR factorization routine, which
computes with the optimal block size of Nopt, always shows nearly the maximum
performance independent of physical block sizes.
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Fig. 5. Performance of PoLAPACK LU on an 8 × 8 SGI/Cray T3E

The Cholesky factorization factors an N × N , symmetric, positive-definite
matrix A into the product of a lower triangular matrix L and its transpose, i.e.,
A = LLT (or A = UT U , where U is upper triangular).

Though A is symmetric, PpAPT
q is not symmetric if p 6= q. That is, if PpAPT

q

is not symmetric, it is impossible to exploit the algorithmic blocking technique
to the Cholesky factorization routine as used in the PoLAPACK LU and QR
factorization. If p 6= q, the PoLAPACK Cholesky computes the factorization
with the physical block size. That is, it computes the factorization as the same
way of the ScaLAPACK Cholesky routine. However, it is possible to obtain the
benefit of algorithmic blocking for the limited case of p = q.

Figure 7 shows the performance of the ScaLAPACK and the PoLAPACK
Cholesky factorization and their solution on an 8 × 8 processor grid of the
SGI/Cray T3E. Similarly, the performance of the ScaLAPACK Cholesky fac-
torization routine depends on the physical block size. However the PoLAPACK
Cholesky factorization routine, which computes with the optimal block size of
Nopt = 60, always shows the maximum performance.

5 Conclusions

Generally in most parallel factorization algorithms, a column of processors per-
forms the factorization on a column of blocks of A at a time, whose block size
is already fixed, and then the other processors update the rest of the matrix. If
the block size is very small or very large, then the processors can’t show their
optimal performance, and the data matrix may be redistributed for a better
performance. The computation follows the original ordering of the matrix.

It may be faster and more efficient to perform the computation, if possible,
by combining several columns of blocks if the block size is small, or by splitting
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Fig. 6. Performance of ScaLAPACK QR and PoLAPACK QR on an 8 × 8 SGI/Cray
T3E
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Fig. 7. Performance of ScaLAPACK and PoLAPACK Cholesky on an 8 × 8 SGI/Cray
T3E

a large column of blocks if the block size is large. This is the main concept of
algorithmic blocking. The PoLAPACK factorization routines rearrange the or-
dering of the computation. They compute PpAPT

q instead of directly computing
A. The computation proceeds with the optimal block size without physically
redistributing A. And the solution vector x is computed by solving triangular
systems, then converting x to PpP

T
q x. The final rearrangement of the solution

vector can be omitted if p = q or Nb = Nopt.

According to the results of the ScaLAPACK and the PoLAPACK LU, QR,
and Cholesky factorization routines on the SGI/Cray T3E, the ScaLAPACK
factorization routines have a large performance difference with different values of
Nb, however the PoLAPACK factorizations always show a steady performance,
which is the near optimal, irrespective of the values of Nb. The routines we
presented in this paper are developed based on the block cyclic data distribution.
This simple idea can be easily applied to the other data distributions. But it is
required to develop specific algorithms to rearrange the solution vector for each
distribution.
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