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Abstract. This paper presents a Bayesian approach, using parallel Monte Carlo
modelling algorithms for combining expert judgements when there is inherent
variability amongst these judgements. The proposed model accounts for the
situation when the derivative method for finding the maximum likelihood
breaks down

Introduction

An expert is deemed to mean a person with specialised knowledge about a given
subject area or matter of interest. This paper concerns itself with the situation where
we are interested in an uncertain quantity or event and expert opinion is sort out by a
decision-maker. The question then arises as to how a decision-maker should then
make optimal use of the expert opinion available to them. Moreover, how does a
decision-maker make optimal use of expert opinion when several experts are available
to them and further resolve conflicting opinions amongst the group of experts. The
opinions of an expert may come in many ways: a point estimate, parameters of
uncertainty distribution or a “best guess” with upper and lower bounds. The challenge
for the decision-maker is to correctly take full advantage of the data provided.

Formally uncertainty can be represented in terms of probability and the ultimate aim
is to reach a consensus to arrive at a probability distribution for the uncertain quantity
of interest. This distribution should fully reflect the information provided by the
experts.

Various consensus procedures for the pooling of experts' opinions and probability
distributions have been suggested, encompassing merely the simple averaging of
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expert probability distributions through to a formal Bayesian approach. Bayesian
methods have been favoured by a number of researchers. Reviews of the available
literature being provided by French1, Cooke2 together with Genest and Zidek3. The
models proposed include those by Lindley4-6,Morris7,8,Winkler9,10 and Mosley11  This
paper examines two different methods that allow the decision-maker to make the
optimum decision based on available expert opinion. The methods are:

• Derivative Method
• Monte Carlo

Making the optimal decision based on the derivative method means that the function
must be differentiable. We note there are other methods, discussed in Zacks,12 to
address this situation.  If the function is not differentiable then we must employ a
numerical method (in our case Monte Carlo) to arrive at an estimate of the quantity of
interest. We further make use of parallel architectures using MIMD methods to
increase the efficiency of the Monte Carlo method in situations where we may have a
large body of expert opinion available.

Uncertainty Modelling of Expert Opinion

Suppose we have a parameter θ  = (θ1, θ2,........ θn) and to obtain the best decision

about θ  we have to use some expert opinion given by },.......,,{ **
2

*
1 NxxxE =

where xi is the estimate of the ith expert for an unknown quantity x, with the
recognition that the particular value being estimated by that expert may be different
from that being estimated by another expert.
The quantity of interest may be a fixed parameter but its exact value is unknown such
as the height of a building or it may be an inherently variable quantity such as the IQ’s
of individual members of a group of people.

The situation arises, for example, when experts provide estimates based on experience
with sub-populations of a non-homogeneous population. The objective is to develop
an estimate of the distribution representing the variability of x in light of the evidence
presented.

We attempt to aggregate these expert opinions to reach the "best" decision based on

the estimation of θ .

For simplification we restrict ourselves to the situation when θ  comprises one or two

elements. We then provide a general solution for θ  dependent on N elements. For
formalisation of this discussion we consider the Bayesian approach to probability.

Let us consider the following definition of Bayes’s Theorem

)()|()|( 0
1 µπµµπ ELkE −=
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Where:
 θ ≡ The value of interest to the decision maker,
E ≡ the set of experts’ opinions about the value of θ, the decision-maker treats this set
of opinions as evidence/data,
π0(θ) ≡ the decision maker’s prior state of knowledge on θ,
π(µ|E) ≡ the decision maker’s posterior state of knowledge on θ,
L(E|θ) ≡ the likelihood of observing the evidence E, given that the true value of the
unknown quantity is θ,
k ≡ P(E), the normalisation factor that makes π(θ|E) a probability distribution.

The problem of expert opinion is thus reduced to the assessment of the prior, π0, and
the likelihood, L, by the decision-maker. The key element in this approach is the
likelihood. The likelihood function is the decision maker’s tool to measure the
accuracy of the expert’s estimate after considering the expert’s level of pertinent
experience, calibration as an assessor, any known bias, and dependence to other
experts.

In this section of the paper we summarise how we can receive )|( E
∧
θπ  i.e. with

regard to experience, what is the best decision depends on E. Since every *
ix  is just

some information concerning xi we consider f(xi|θ) as the actual distribution of the

quantity of  interest, x. We consider )|( * θixL  is the probability density that the

experts’ estimate is *
ix  if the decision maker believes that the ith expert is perfect then

)|( * θixL  = f(xi|θ).

Since the experts are considered independent then we have

)|()|,........,,()|(
1

***
2

*
1 θθθ ∏

=

==
n

i
in xLxxxLEL

(1)

Moreover, )()|,.......,(),.......,,|( 0
**

2
*
1

1**
2

*
1 θπθθπ nN xxxLkxxx −= . In this

method we should first obtain k such that ),......,|( **
2

*
1 nxxxθπ is the conditional

distribution. Suppose Pi= Pi( ii xx |* ), (this Pi is one, if and only if, the expert is

considered to be perfect) is the probability that the ith expert says *
ix  when in fact the

true value is xi. The quantity Pi is the decision maker’s probability density that the

expert’s estimate is *
ix  when he is attempting to estimate xi.

We should note that xi is one possible value of x and x is distributes according to
f(x|θ). Then
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For the best decision based on the evidence, E, we can use the derivative method if
the derivative exists i.e.

njxxx n
j

,...,2,10),......,|( **
2
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1 ==

∂
∂ θπ
θ

(4)

These systems named normal equations, and receive jj

∧
= θθ  and for the maximum

of L must be
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Example:

Suppose the decision-maker is interested   in assessing the probability distribution of a
random variable that takes only two values i.e. let

X = {x1, x2}. (6)
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A discrete distribution of X is completely known if we know P, where
θ ≡ Pr[X= x1]   and 1- θ ≡ Pr[X= x2] ,         0 ≤ θ ≤ 1.
Suppose now the decision-maker asks the opinion of N experts on whether X =x1 or

whether X =x2. Let E, defined as },.......,,{ **
2

*
1 NxxxE =  be the set of expert

responses where *
ix , the ith response can be either  X =x1 or X =x2. Then we have

)()|()|( 0
1 θπθθπ ELkE −= where
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Where Pr( ji xx |* ), is the probability that the ith expert says *
ix  when in fact X = xj .

These values represent how good the decision-maker thinks the experts are. For
example, let us assume that the decision-maker consults two experts who he believes
to be perfect and independent. For simplicity we assume a uniform prior in the closed
interval [0,1], i.e. π0(θ) = 1, and consider the following two cases.

Case (i)

The two experts have opposing opinions, e.g. 1
*
1 xx =  and 2

*
2 xx = . Then, the

likelihood is

∏
=

−==
n

i
ii xLL

1

)1()|( θθθ
(9)

and the posterior will be:

)1(6),|( 21 θθθπ −=xx (10)
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With regard to equation (9) we have )1()|( 1 θθθπ −= −kE  since π(θ|E) should

be a conditional distribution then

∫ =⇒= −
1

0

1

6
1)|( kkdE θθπ

(11)

Then we have

1066)1(6),.......,|( 2**
2

*
1 ≤≤−=−= θθθθθθπ nxxx (12)

Now, with regards to derivative tests for finding the extreme points we have

2
10126 =⇒=−=

∂
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θθ
θ
π (13)
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∂
∂

=θθ
π (14)

This represents the distribution of all possible distributions of X. The most probable
distribution (i.e. the mode of the posterior π(θ|x1,x2)) is given by θ=1/2. It means that
starting from complete lack of knowledge about the distribution of X, the opposing
opinions of two independent experts have caused the decision maker to think most
probably X= x1 and X= x2 are equally likely.

Case (ii)

The two experts have the same opinion; that is, for example, 1
*
1 xx =  and 1

*
2 xx = .

The posterior in this case will be

2
21 3),|( θθπ =xx (15)

We leave the proof of the second case as it is essentially the same operation of case i.
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The main idea of this paper is when the situation arises when we wish to arrive at the
optimum decision when there is no derivative, Zacks,12. In this situation we can use
the finite difference gradient algorithm.

)|(1 Eiii θπαθθ
∧

+ ∇+=
(16)
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In this case we can consider a Monte Carlo random search algorithm to estimate the
optimum decision for θ.

Random Search

We choose the random search double trial algorithm, Rubinstein14.

( ) ( )[ ] iiiiiii
i

i
ii ttt .

21 θθπθθπ
θ

αθθ ∆−−∆+
∆

+=+

(19)

where αi and ∆θ1 are greater than 0. This estimation θ̂  of  θ, converges to θ in
quadratic mean, in probability, and with probability one, Halton13.
This algorithm may be performed by generating the random vector ti continuously
distributed on the n-dimensional unit sphere.
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For this algorithm, if π is a real function which depends on ),,...,,( 21 mθθθθ =

then we can use ),.....,( 21 iniii tttt =
→

, i = 1,...,m, and use n random vectors, in this

situation we have a lot of random samples and we can try by parallel processing
methods in a MIMD environment to obtain θi by the ith processor, in a small time
interval.

If     ),,...,,( 21 mθθθθ =  we generate (i = 1,...,m) ),,,( 21 iniii tttt �=  m

random vectors and
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for distribution to processors 1, 2, ......, m  respectively, enabling us to obtain the

result iθ̂  from the ith processor. We will then have ),...,( 1 n

∧∧∧
= θθθ  such that 

∧
θ  is

an estimate for θ.
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Algorithm 1

1. Set Sum = 0

2. Do N times

3. Generate ),,,( 21 imiii tttt �=  sampling from 
→

iz0

4. Do until convergence
5. Set

( ) ( )[ ] iiiiiii
i

i
ii ttt .

21 θθπθθπ
θ

αθθ ∆−−∆+
∆

+=+

6. Set Sum = Sum + θI+1

7. Goto 3.

8. Goto 2.

9. Set Sum = Sum/N

10. Set nθθ =
∧

.

Algorithm 2

1. Get the parameter θ  =  ),...,( 1 mθθ , and )|( Eθπ .

2. Generate the random vector z  = ),...,,( 11211 nzzz  for i = 1,2,...,m.
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4. Send 01z , 02z ,..., mz0  to processors 1, 2, ...,m.

5. Algorithm 1.

6. Get 
∧∧∧

mθθθ ,.......,, 21  i.e. the Monte Carlo estimates of θi.
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7. Consider ),...,,( 21 m

∧∧∧∧
= θθθθ , as an estimation of θ such as )|( E

∧
θπ  is

an optimal estimate of  )|( Eθπ  without the need to resort to the derivative

method.

Conclusion

This approach allows a solution to be obtained when there is no derivative. Further by
virtue of parallel processing it allows complex models containing many experts to be
calibrated. It is intended to consider the problems of dependencies amongst experts in
a further paper where the computational demands are considered to be excessive.
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