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Abstract. A spectral element method coupled with the EVSS method
for computing viscoelastic flows is presented. The nonlinear rheological
model, Oldroyd-B, is chosen to simulate the flow of a viscoelastic fluid
based on a planar four-to-one abrupt contraction benchmark problem.
Numerical results agree well with those in the previous publications.
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1 Introduction

Non-Newtonian fluids, such as multi-grade oils, liquid detergents, polymer melts
and molten plastics, are becoming more and more important in many indus-
trial fluids applications. Viscoelastic fluids are non-Newtonian fluids that possess
memory. That is, the stress of the fluid depends not only on the stresses actually
impressed on them at present, but also on all the stresses to which they have
been subjected during their previous deformation history. These fluids are special
case of non-Newtonian fluids that lie somewhere in between elastic materials and
standard Newtonian fluids. The numerical simulation of such viscoelastic fluids
is becoming an effective technique to predict the fluid performance in a wide
range of engineering applications.

Most mathematical problems that arise in modeling viscoelastic flows in-
volve the solutions of non-linear partial differential, integro-differential or in-
tegral equations. In general, these equations cannot be solved analytically, so
numerical methods are required to obtain solutions. The rapid growth in the
power and availability of computers has led to the development of many algo-
rithms for solving these equations. Recently, the spectral element method has
emerged in the viscoelastic context as a powerful alternative to more traditional
methods in predicting flow behaviour in complex fluids. In this paper we mainly
focus on the development of an efficient spectral element technique to simulate
a viscoelastic flow in a contraction channel.

Contraction flows of viscoelastic fluids are of importance in fundamental flow
property measurements as well as in many industrial applications [1]. The the-
oretical prediction of entry-flow for non-Newtonian fluids still is a difficult task.
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The difficulty comes from two aspects. One is the constitutive equations that
are used to express the relationship between the stress tensor and the velocity
gradient and describe the rheological behaviour of viscoelastic fluids which have
memory effects and contain nonlinear terms that add to the complexity of the
problem; the other one is a geometrical singularity at the re-entrant corner. The
research has been dominated by the study of the high Weissenberg numbers and
continues to be a benchmark problem in the computational rheology.

In recent years, successful numerical methods have emerged. These include
the Hermitian finite element method [7], the 4×4 subelement method [8], the ex-
plicitly elliptic momentum equation formulation (EEME) [5], the elastic viscous
split stress formulation (EVSS) [10], the consistent streamline upwind Petrov-
Galerkin method (SUPG) [4] and the discontinuous Galerkin (DG) method [3].
In this paper, we will present a spectral element formulation to solve the Oldroyd-
B viscoelastic flow based on a four-to-one contraction benchmark problem. In
section 2, the full set of governing equations for the viscoelastic flow model is pre-
sented. The spectral element method is described in section 3, numerical results
and discussion are presented in the last section.

2 Mathematical Modeling

The isothermal flow of an incompressible viscoelastic fluid is governed by a set
of conservation and constitutive equations. In the absence of body force, the
momentum and mass equations can be written as follows

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+ ∇ · τ , (2.1)

∇ · u = 0, (2.2)

where ρ is the fluid density, p is the pressure, u is the velocity vector, and τ
is the extra-stress tensor field. Equations (2.1) and (2.2) must be closed with a
constitutive model. In this paper, the Oldroyd-B model is used and defined as

τ + λ1
∇
τ= 2η(D + λ2

∇
D), (2.3)

where λ1 is the relaxation time, λ2 is the retardation time and η is the shear rate
viscosity. D and

∇
τ are the rate of deformation tensor and the upper-convected

derivative of the viscoelastic extra-stress, respectively. They are defined as

D =
1
2
(∇u + (∇u)T ),

∇
τ =

∂τ

∂t
+ u · ∇τ − τ · (∇u) − (∇u)T · τ .

Note that equation (2.3) reduces to the upper-convected Maxwell (UCM) model
if λ2 = 0 and to a Newtonian liquid with viscosity η if λ1 = λ2. The viscoelastic
stress tensor can be split into

τ = τ 1 + τ 2, (2.4)
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where τ 1 denotes the elastic part of the viscoelastic stress defined as

τ 1 + λ
∇
τ 1 = 2η1D,

and τ 2 represents the purely viscous component defined as

τ 2 = 2η2D.

in these equations η1 is the viscosity of the viscoelastic contribution and η2 is
the viscosity of the Newtonian contribution.

Substituting (2.4) into (2.3), we obtain the Oldroyd-B constitutive equation

τ 1 + λ1

(
∂τ 1

∂t
+ u · ∇τ 1 − τ 1 · (∇u) − (∇u)T · τ 1

)
= η1(∇u + (∇u)T ). (2.5)

Let d be an additional unknown

d = D =
1
2

(∇u + (∇u)T),

and replace τ 1 by τ , we obtain (u, p, τ ,d) in the EVSS formulation

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+ ∇ · τ − 2η1∇ · d + 2η∇ · D, (2.6)

∇ · u = 0, (2.7)

τ + λ1
∇
τ = 2η1D, (2.8)

d = D. (2.9)

Although we add the same quantity in the right hand side of the momentum
equation, the real modification will be appear when we consider different repre-
sentations for d and D in the discrete form of the above system of equations.
Furthermore, a dimensionless system of equations can be written as

Re

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − ∂p

∂xj
+
∂τij
∂xj

− 2 (1 − β)
∂dij

∂xj
+
∂2ui

∂x2
j

, (2.10)

∂ui

∂xi
= 0, (2.11)

τij +We

(
∂τij
∂t

+ ul
∂τij
∂xl

)
= (1 − β)

(
∂ui

∂xj
+
∂uj

∂xi

)
+We

(
τil
∂uj

∂xl
+ τjl

∂ui

∂xl

)
,

(2.12)

dij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
, ∀ i, j, l = 1, 2, (2.13)

where Re = ρUL
η is the Reynolds number, We = λ1U

L is the Weissenberg number,
and β = λ2

λ1
, which determines the characteristics of the Oldroyd-B fluid.
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3 The Spectral Element Discretization

The spectral element method is a high-order weighted-residual technique for
partial differential equations that combines the rapid convergence rate of the p-
type spectral method with the geometric flexibility of the h-type finite element
technique. In the spectral element discretization, the computational domain is
broken into macro-spectral elements, and the dependent and independent vari-
ables are represented as high-order orthogonal polynomial expansions within
the individual subdomains. Variational projection operators and Gauss-Lobatto
Legendre numerical quadratures are used to generate the discrete equations,
which are then solved by direct or iterative procedures using tensor-product
sum-factorization techniques [6].

In order to obtain a weak formulation which is equivalent to the equations
(2.10) − (2.13), we introduce the following function spaces:

H1
0 (Ω) = {φ : φ ∈ H1(Ω), φ = 0 on ∂Ω}, L2

0(Ω) = {v : v ∈ L2(Ω), v = 0 on ∂Ω},

where H1(Ω) is Soblev space, L2(Ω) is the space of square integrable functions.
The scalar product can be defined as

(φ, ψ) =
∫

Ω

φ(x)ψ(x)dx, ∀φ, ψ ∈ H1(Ω).

The spectral element discretization proceeds by breaking up the compu-
tational domain Ω into K non-overlapping sub-domains denoted by Ωk, (k =
1, ...,K) such that Ω = ∪Ωk,∀k, l, k 6= l, Ωk ∩ Ωl = ∅. Each physical element
is mapped onto the parent element χ2 = [−1, 1] × [−1, 1], on which a Gauss-
Lobatto-Legendre grid is used. We further define

Xh = {u : u|Ω ∈ PN (Ω)} ∩H1
0 (Ω), Mh = {p : p|Ω ∈ PN−2(Ω)} ∩ L2

0(Ω),

where PN (Ω) denotes the space of all polynomials of degree N or less. It is well
known that a choice for the velocity in Xh and the pressure in Mh above avoids
spurious pressure nodes and satisfies generalized the Brezzi-Babuska condition
[2]. In addition, the second compatibility condition needs to be satisfied for
the stress and the rate of deformation tensor spaces. In this paper, we choose
Th = Xh and Dh = Mh in order to have a well-posed solution. Then the spectral
element discretization is:
Find ui,h ∈ Xh, ph ∈ Mh, τij,h ∈ Th and dij,h ∈ Dh such that

(
∂ui,h

∂xj
,
∂ūi

∂xj

)
h,GL

+Re

(
∂ui,h

∂t
, ūi

)
h,GL

−
(
ph,

∂ūi

∂xj

)
h,GL

=
(
∂τij,h
∂xj

, ūi

)
h,GL

−2(1 − β)
(
∂dij,h

∂xj
, ūi

)
h,GL

−Re

(
uj,h

∂ui,h

∂xj
, ūi

)
h,GL

, (3.1)

(
∂ui,h

∂xi
, q

)
h,GL

= 0, (3.2)
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We

(
∂τij,h
∂t

+ ul,h
∂τij,h
∂xl

, τ̄ij

)
h,GL

−We

(
τil,h

∂uj,h

∂xl
+ τjl,h

∂ui,h

∂xl
, τ̄ij

)
h,GL

+ (τij,h, τ̄ij)h,GL = (1 − β)
(
∂ui,h

∂xj
+
∂uj,h

∂xi
, τ̄ij

)
h,GL

, (3.3)

(
dij,h, d̄ij

)
h,GL

=
1
2

(
∂ui,h

∂xj
+
∂uj,h

∂xi
, d̄ij

)
h,GL

, (3.4)

∀ūi ∈ Xh, ∀q ∈ Mh, ∀τ̄ij ∈ Xh, ∀d̄ij ∈ Mh, ∀i, j, l = 1, 2,

where (∗, ∗)h,GL refers to Gauss-Lobatto quadrature which is defined as

(f, g)h,GL =
K∑

k=1

M∑
m=0

N∑
n=0

ρmρnf(ξk
m, φ

k
n)g(ξk

m, φ
k
n)Jk,

where ξk
m, φk

n are the locations of the local nodes {m; k}, {n; k} respectively,
ξm, φn are the Gauss-Lobatto-Legendre quadrature points, and ρm, φn are the
Gauss-Lobatto-Legendre quadrature weights, Jk is the transformation Jacobian
on each element.

In this paper we use the Gauss-Lobatto-Legendre polynomials as a basis to
span the approximation space Xh and Th, which is defined as

hi(ξ) = − 1
N(N + 1)LN (ξi)

(1 − ξ2)L
′
N (ξ)

ξ − ξi
, ξ ∈ [−1, 1], ∀i ∈ {0, ..., N},

where LN is the Legendre polynomial of orderN , the points ξi are the collocation
points on the Gauss-Lobatto-Legendre grid. Therefore, the velocity and the stress
tensor approximations in the parent element corresponding to element Ωk are

uk
h(ξ, φ) =

M∑
p=0

N∑
q=0

uk
pqhp(ξ)hq(φ), (3.5)

τk
h (ξ, φ) =

M∑
p=0

N∑
q=0

τk
pqhp(ξ)hq(φ), (3.6)

where uk
pq = u(ξk

p , φ
k
q ), τk

pq = τ(ξk
p , φ

k
q ). If we consider the velocity-pressure for-

mulation, it is well known that the mixed interpolations must satisfy a compat-
ibility condition. The framework of the spectral element method [6] has shown
that a suitable choice for the pressure approximation space is Mh when the
velocity is Xh. Therefore, in this paper, we choose the pressure function in the
space Mh and expand it on the interior Gauss-Lobatto-Legendre points as shown
in Fig. 1. Thus the pressure approximation can be written as

pk
h(ξ, φ) =

M−1∑
p=1

N−1∑
q=1

pk
pqh̄p(ξ)h̄q(φ), (3.7)
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Fig. 1. Spectral element configurations (K = 4, M = N = 5). (a) Interior Gauss-
Lobatto-Legendre collocation points for the pressure and the deformation tensor. (b)
Gauss-Lobatto-Legendre collocation points for the velocity and the stress.

where pk
pq = p(ξk

p , φ
k
q ), h̄p is defined as

h̄p = − (1 − ξ2p)L
′
N (ξ)

N(N + 1)LN (ξp)(ξ − ξp)
, ξ ∈ [−1, 1], ∀p ∈ {1, ..., N − 1}.

Similarly, we define the approximation of the deformation tensor as

dk
h(ξ, φ) =

M−1∑
p=1

N−1∑
q=1

dk
pqh̄p(ξ)h̄q(φ), (3.8)

where dk
pq = d(ξk

p , φ
k
q ).

The velocity, pressure, stress and deformation tensor expansions (3.5)− (3.8)
are now inserted into equations (3.1) − (3.4) and the discrete equations are
generated by choosing appropriate test functions ū and τ̄ in Xh whose values at
a point (ξp, φq) are unity and zero at all other Gauss-Lobatto-Legendre points,
and test functions q and d̄ in Mh whose values are unity at point (ξp, φq) and
zero at all other interior Gauss-Lobatto-Legendre points. In this way we obtain
the system of algebraic equations

Au −BT p = f,

−B · u = 0,

Cτ = g,

Ed = h,

where A is the discrete Helmholtz operator, B is the discrete gradient operator,
C is the stress tensor matrix, E is the deformation tensor matrix, f, g, h are the
right hand side vectors, which are incorporated with boundary conditions.

4 The Decoupling Algorithm

Now for each time step, the algorithm consists of the following steps: Given an
initial approximation (u0

i , p
0, τ0

ij , d
0
ij),
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Fig. 2. The four-to-one planar contraction flow geometry.
Step 1: calculate the pressure pn from the conservation equation by the Uzawa

method [6].
Step 2: calculate the velocity un from the momentum equation using the

stress τn−1 obtained from a previous iteration.
Step 3: calculate the stress τn from the constitutive equation using un.
Setp 4: calculate the deformation tensor dn using the velocity field un.
Step 5: check the convergence and return to step 1 if necessary.

5 Numerical Results

In this section, numerical results are presented for a four-to-one abrupt planar
contraction. We adopt the ratio β = 1

9 in order to compare with already pub-
lished results. The difficulty of the four-to-one planar contraction problem is the
existence of a singular solution which is caused by the geometric singularity at
the re-entrant corner. The singularity in the viscoelatic flow is stronger than in
the Newtonian flow.

Since the geometry is assumed to be symmetric about the central line, we
need only consider the lower half of the channel. Fig. 2 shows the flow geometry.
The height of the inflow half channel is taken as unity and the height of outflow
channel is taken to be a = 1

4 . The length of inflow channel is taken to be 16 as is
the length of outflow channel. Define U = 1 and L = 1, where U is the average
velocity in the downstream half channel and L is the width of the downstream
half channel, which gives We = λ1.

We assume the fully developed Poiseuille flow at the inlet and outlet, the
no-slip condition, u = v = 0, is applied on the solid boundaries, and v = 0 and
∂u
∂y = 0 on the axis of symmetry. The boundary conditions for the stresses along
the solid boundaries and inlet are derived from the steady state constitutive
equations. At the exit we have Neumann boundary conditions for the stress
variables

∂τxx

∂x
=
∂τyy

∂x
=
∂τxy

∂x
= 0.

Two different meshes depicted in Fig. 3 were used in the numerical simu-
lations. Mesh1 consists of 5 elements, on each element there are 12 collocation
points in the x-direction and 4 collocation points in the y-direction. Mesh2 has
3 elements, there are 18 collocation points in the x-direction and 6 collocation
points in the y-direction on each element. We can see that the meshes created by
the spectral element method are non-uniform, being refined near the re-entrant
corner singularity.
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(a) (b)

Fig. 3. Meshes for the four-to-one planar contraction problem: (a) Mesh1; (b) Mesh2.

The numerical stability has been tested for the Newtonian flow (λ1 = 0)
based on a (u, p, τ ,d) formulation and numerical results agree well with the cor-
responding calculation by the velocity-pressure formulation. Fig. 4 shows con-
tours of the stream function and the velocity profiles.

Now we consider the calculations in the viscoelastic case. The results on
all the meshes have been computed with ∆t = 0.001 and Re = 1. The length
of the salient corner vortex L1, the width of the salient corner vortex L2 and
the maximum value of the stream function ϕmax are shown in Table 1 for We
from 0.1 to 1.2. We found that when We increases from 0 to 0.6, the length of
the corner vortex, L1, is constant, while the width of the corner vortex, L2, is
increased. But when We increases from 0.7 to 1.2, L1 decreases slightly, and L2
remains constant. The size of corner vortex compares well quantitatively with
the results of [9,11]. Contour plots of vorticity for We = 0.1, 0.4, 0.8, 1.0 in Mesh1
are shown in Fig. 5. These vorticity plots show that our numerical results are in
good agreement with those obtained by [11].

The streamlines are plotted in Fig. 6 for We = 0.1, 0.4, 0.8, 1.0. In Fig. 7 the
values of total stress components τxy, τxx and τyy along the line y = −1 are given
for We = 0.1, 0.4, 0.8, 1.0. The maximum values of τxy and τyy at the corner are
slightly increased when the value of We is increased. A huge increase occurs in
the value of τxx from approximately 4.5 when We = 0.1, to approximately 49
when We = 1.0.

All accurate results have been presented up to We = 1.2. Since for high We
number, it becomes more difficult to obtain fully developed velocity and stress
fields, further work needs to be done in this area.

Table 1. Values of L1, L2 and ϕmax for various We number with Mesh1.

We L1 L2 ϕmax

0.1 1.3093 1.086 1.0010672
0.2 1.3093 1.108 1.0010955
0.3 1.3093 1.129 1.0011469
0.4 1.3093 1.140 1.0011860
0.5 1.3093 1.151 1.0012160
0.6 1.3093 1.151 1.0012207
0.7 1.229 1.162 1.0012093
0.8 1.229 1.173 1.0012238
0.9 1.229 1.173 1.0012011
1.0 1.229 1.173 1.0011356
1.1 1.176 1.173 1.0010624
1.2 1.176 1.173 1.0009739
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(a) (b)

(c) (d)

Fig. 4. Numerical stability for the Newtonian flow: (a) streamlines with Mesh1; (b)
streamlines with Mesh2; (c) velocity profile in the x-direction with Mesh2; (d) velocity
profile in the y-direction with Mesh2.

(a) (b)

(c) (d)

Fig. 5. Vorticity plots for increasing values of We for the viscoelastic flow problem with
Mesh1: (a) We = 0.1; (b) We = 0.4; (c) We = 0.8; (d) We = 1.0.

(a) (b)

(c) (d)

Fig. 6. Streamlines for increasing values of We for the viscoelastic flow problem with
Mesh1: (a) We = 0.1; (b) We = 0.4; (c) We = 0.8; (d) We = 1.0.



A Spectral Element Method for Oldroyd-B Fluid 861

−20 −15 −10 −5 0 5 10 15 20
−2

0

2

4

6

t
xy

−20 −15 −10 −5 0 5 10 15 20
−2

0

2

4

6

t
xx

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

1

1.5

t
yy

−20 −15 −10 −5 0 5 10 15 20
−2

0

2

4

6

t
xy

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

t
xx

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

1

1.5

t
yy

(a) (b)

−20 −15 −10 −5 0 5 10 15 20
−2

0

2

4

6

t
xy

−20 −15 −10 −5 0 5 10 15 20
−20

0

20

40

60

t
xx

−20 −15 −10 −5 0 5 10 15 20
−1

0

1

2

t
yy

−20 −15 −10 −5 0 5 10 15 20
−2

0

2

4

6

t
xy

−20 −15 −10 −5 0 5 10 15 20
−20

0

20

40

60

t
xx

−20 −15 −10 −5 0 5 10 15 20
−1

0

1

2

t
yy

(c) (d)

Fig. 7. The values of τxy, τxx and τyy along the line y = −1 for increasing values of
We for the viscoelastic flow problem with Mesh1: (a) We = 0.1; (b) We = 0.4; (c)
We = 0.8; (d) We = 1.0.
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