
V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2073, pp. 862-873, 2001.
© Springer-Verlag Berlin Heidelberg 2001

SSE Based Parallel Solution for Power Systems Network
Equations

Y.F. Fung1, M. Fikret Ercan2 ,T.K. Ho1, and W.L. Cheung1

1 Dept. of Electrical Eng., The Hong Kong Polytechnic University,
Hong Kong SAR

{eeyffung, eetkho, eewlcheung}@polyu.edu.hk
2 School of Electrical and Electronic Eng., Singapore Polytechnic, Singapore

mfercan@sp.edu.sg

Abstract. Streaming SIMD Extensions (SSE) is a unique feature embedded in
the Pentium III class of microprocessors. By fully exploiting SSE, parallel algo-
rithms can be implemented on a standard personal computer and a theoretical
speedup of four can be achieved. In this paper, we demonstrate the implementa-
tion of a parallel LU matrix decomposition algorithm for solving power systems
network equations with SSE and discuss advantages and disadvantages of this
approach.

1 Introduction

Personal Computer (PC) or workstation is currently the most popular computing sys-
tem for solving various engineering problems. A major reason is the cost-effectiveness
of a PC. With the advanced integrated circuit manufacturing processes, the computing
power that can be delivered by a microprocessor is increasing. Currently, processor
with a working frequency of 1GHz is available. The computing performance of a
microprocessor is primarily dictated by two factors, namely the operating frequency
(or clock rate), and the internal architecture.

The Streaming SIMD Extensions (SSE) is a special feature available in the Intel
Pentium III class of microprocessors. As its name implies, the SSE enables the execu-
tion of SIMD (Single Instruction Multiple Data) operations inside the processor and
therefore, the overall performance of an algorithm can be improved significantly.

SSE Based Parallel Solution for Power Systems Network Equations 863

The power network problem is computationally intensive and in order to reduce the
computation time many researchers have proposed solutions [1,2] based on parallel
hardware systems. However, most of those hardware platforms are expensive and may
not be available to most researchers. On the other hand, the cost of a PC is low and
therefore, an improved solution to the power network problem utilizing SSE will bene-
fit to research in this area. In the next section, details of the SSE mechanism will be
described, followed by a discussion on the problem of power systems network solu-
tion. The parallel algorithm using SSE and its performance will be discussed consecu-
tively.

2 SSE Mechanism

The SSE can be considered as an extension of the MMX technology implemented by
the Intel Pentium processors [3]. It provides a set of 8 64-bit wide MMX registers and
57 instructions for manipulating packed data stored in the registers.

2.1 Register and Data Storage

The major difference between SSE and MMX is in the data-type that can be operated
upon in parallel. In MMX, special MMX registers are provided to hold different types
of data, however, it is limited to character, or integer values.

On the other hand, the SSE registers are 128-bit wide and they can store floating-
point values, as well as integers. There are eight SSE registers, each of which can be
directly addressed using the register names [4]. Utilization of the registers is straight-
forward with a suitable programming tool. In the case of integers, eight 16-bit integers
can be stored and processed in parallel. Similarly, four 32-bit floating-point values can
be manipulated. Therefore, when two vectors of four floating-point values have been
loaded into two SSE registers, as shown in Fig. 1, SIMD operations, such as add,
multiply, etc., can be applied to the two vectors in one single operation step. Applica-
tions relying heavily on floating-point operations, such as 3D geometry, and video
processing can be substantially accelerated [5]. Moreover, the support of floating-
point values in the SSE operations has tremendously widened its applications in other
problems including the power systems network problem described in this paper.

864 Y.F. Fung et a1.

A3 A2 A1 A0

B3 B2 B1 B0

+

A3+B3 A2+B2 A1+B1 A0+B0

4 32-bit floating-point values packed in a 128-bit word

4 addition results obtained using a SSE operation

Fig. 1. Parallelism based on SSE operation

2.2 Programming with SSE

Programming with the SSE can be achieved by two different approaches. The SSE
operations can be invoked by assembly codes included in a standard C/C++ programs.

In following, sample codes showing how to evaluate the value (x1) using assembly

codes are given.

float x, frcp;

__asm { movss xmm1,DWORD PTR x

movss xmm2,xmm1

rcpss xmm1,xmm1

movss xmm3,xmm1

mulss xmm1,xmm1

mulss xmm2,xmm1

addss xmm3,xmm3

subss xmm3,xmm2

movss DWORD PTR frcp, xmm3}

Alternatively, by utilizing the special data type we can develop a C/C++ program
without any assembly coding. The new data type designed for the manipulation of the
SSE operation is F32vec4 [4]. It represents a 128-bit storage, which can be applied to

SSE Based Parallel Solution for Power Systems Network Equations 865

store four 32-bit floating-point data. Similarly, there is also the type F32vec8, which is
used to store eight 16-bit values. These data types are defined as C++ classes and they
can be applied in a C/C++ program directly.

In addition to the new data types, operations are derived to load traditional data,
such as floating-point, into the new data structure. As an example, to load (or pack)
four floating-point values into a F32vec4, the function _mm_load_ps can be applied.
When using _mm_load_ps, it is assumed that the original data is 16-byte aligned (16-
byte aligned implies that the memory address of the data is a factor of 16) otherwise
the function _mm_loadu_ps should be used instead. Once data are stored into the 128-
bit data structure, functions that can manipulate the F32vec4 type data can be called.
This will result in parallel processing in two sets of four floating-point values. Source
codes demonstrating how to add elements stored in two arrays using the SSE features
are depicted as following:

Float array1[4];

Float array2[4];

Float result[4];

F32vec4 A1, A2, A3;

A1 = _mm_load_ps(array1);

A2 = _mm_load_ps(array2);

A3 = A1+A2;

_mm_store_ps(result, A3);

the variable A1 and A2 can be manipulated just like any standard data type. The func-
tion _mm_store_ps is used to convert (or unpack) the data from the F32vec4 type back
to floating-points and stored in an array.

3 Power System Network Equations

The power systems network equations usually involve identifying solutions for a set of
linear equations in the form of:

bAx = (1)

where A is an incidence symmetric sparse matrix of order n , b is a given inde-
pendent vector and x is an unknown solution vector. As discussed in the introduction,
the problem is computationally intensive. In addition, for some applications such as

866 Y.F. Fung et a1.

real-time power systems simulation, solution for equation (1) must be determined in a
short time-interval [5], e.g. 10 ms, this also demands a very fast computation.

A common procedure [6] for solving (1) is to factor A into lower and upper trian-
gular matrices L and U such that

bLUx = (2)

and this then followed by forward/backward substitution of the form

bxL =′ (3)

and

xUx ′= (4)

Forward substitution first identifies the intermediate results x′ and vector x is de-
termined by backward substitution.

A realistic power system network is comprising of a number of sub networks iA

connected via it -lines icA , as shown in Fig. 2, to a group of busbars known as cut-

Sub Network 1

Sub Network 2

Sub Network 4

Sub Network 3

Cut Nodes

Fig. 2. Block diagram of power systems networks

SSE Based Parallel Solution for Power Systems Network Equations 867

Fig. 3. Bordered block diagonal form for a power network system

nodes cA [5]. If the network admittance matrix is arranged to follow the sub network

configuration, it can be re-arranged into the Bordered Block Diagonal Form (BBDF)
as shown in Fig. 3.

The BBDF matrix can now be grouped into sub-matrices, as shown in Fig. 4. Each

matrix can be solved by LU decomposition. The solution for the cA (the cut-node

block) is determined by

∑
=

−=
n

i
icccc AAUL

1

(5)

Referring to Fig.4, the sub-matrix is now a dense matrix and therefore, traditional
dense matrix algorithm can be applied to determine the L , U triangular matrices. On
the other hand, the BBDF, which is a sparse matrix, should be solved by sparse matrix
solutions, such as the Choleski method [7].

868 Y.F. Fung et a1.

AcAc4Ac3Ac2Ac1

A4c

A3c

A2c

A1c

A4

A3

A2

A1

A1

Ac1

A2

Ac2

A3

Ac3

Fig. 4. Partitioning the BBDF matrix into sub-matrices

4 Parallel LU Decomposition Based on SSE

The calculation involved in LU decomposition can be explained by the following
equation:

kk

jkki
jiji a

aa
aa

ntokjFor

Do

ntokiFor

Do

ntokFor

,

,,
,,

11

11

20

×
−=

−+=

−+=

−= (6)

 In the above equation, jia , represents elements in the A matrix.

According to (6), elements in the matrix A are being processed along the diagonal
and on a row-by-row basis. Data stored in a row of the matrix map naturally into the
F32vec4 data and therefore, four elements in a row can be evaluated in one single
step.

SSE Based Parallel Solution for Power Systems Network Equations 869

Based on (6), the term
k,k

k,i

a

a
 is a constant when elements in row i are being proc-

essed. It can be, therefore, stored in a F32vec4 value with the command
_mm_load_ps1. The command loads a single 32-bit floating-point value, copying it
into all four words. The pseudo codes shown in following illustrate the steps per-
formed in order to implement equation (6) using SSE functions.

F32vec C, A1, A2; /* 128-bit values */

Float x;

For (k=0; k<n-2; k++)

For (i=k+1; i<n-1; i++) {x =
k,k

k,i

a

a
; _mm_load_ps1(C, x);

for (j=k+1; j<n-1; j+=4){

pack four values from a(k,j) to a(k,j+3) into A1;

pack four value from a(i,j) to a(i,j+3) into A2;

A2 = A2 – (A1*C); Unpack the results from A2 and store
in output matrix

}}

In forward substitution, the operations can be represented by:

ji

i

j
jii Lxbx ,

1

1

•′−=′ ∑
−

=

(7)

where []ix′ represents element in the []x′ matrix as shown in equation (4); ib repre-

sents elements in the][b matrix jiL , represents elements in the][L matrix. SSE

operations are applied in the operation jij Lx ,•′ . Four elements of jx′ and j,iL can

be stored in two different F32vec4 data and multiplied at a single operation.
In backward substitution, the operations are represented by

jj

m

jn
njnj

j U

Uxx

x
,

1
,∑

+=
•−′

=

(8)

870 Y.F. Fung et a1.

where jiU , are the elements in the Upper matrix][U ; m is the size of the vector

][x . Similar to forward substitution, the multiplication of n,jn Ux • can be executed

by SSE functions with four elements of nx and n,jU being operated on at the same

instead.

5 Experimental Results

In Sections 3 and 4, the processing requirements for the power system network equa-
tions and basic features of SSE have been described. In this section, results obtained
from the equation bAx = based on LU decomposition and forward and backward
substitutions are given. Processing time obtained for different dimensions of the ma-
trix A are given in Table 1. Three different cases are being compared, namely, (1)
conventional approach that is without using SSE, (2) solution obtained by SSE, (3)
solution obtained by SSE (but without the 16-bit alignment.) The speedup ratios, by
taking the processing time of the traditional approach as reference, are illustrated in
Fig. 5.

Table 1. Processing time for solution of bAx = in (ms)

Size of Matrix A
100 200 400

Traditional 9 58.83 525,2
SSE 6 40 417
SSE with align-
ment

5 36.83 367.8

Speedup ratio for different approaches

0

0.5

1

1.5

2

100 200 400
Size of matrix A

S
pe

ed
up

 r
at

io SSE

SSE(without
alignment)

Fig. 5. Speedup ratio for three different approaches

SSE Based Parallel Solution for Power Systems Network Equations 871

Referring to Fig. 5, the speedup ratio obtained in the case of using SSE is slightly
better than non-aligned case. For a better performance, data should be 16-byte aligned
form as described in Section 2.2. In order to maintain the 16-byte alignment, the size
of the matrix must be a multiple of 4. If this is not the case, then extra rows and col-
umns must be added into the matrix to get around the alignment problem.

The best result is obtained for a relatively smaller matrix of 100x100 where the
speedup rate is about 1.8. The performance of the SSE algorithms is affected by the
overhead due to additional steps required to convert data from standard floating-point
values to 128-bit F32vec4 data and vice-versa. Referring to pseudo code given in
section 4, three packing/unpacking functions are carried out when elements in a row

are being processed. Assuming that it takes the same time (pt) to execute a packing,

or unpacking function, then the overhead will be pt3 . And the time required to oper-

ate on four elements becomes mp tt +3 , where mt is the processing time for one mul-

tiplication, one subtraction, and one store operation with SSE. If we define

)3(mp tt + as sset , then the total processing time becomes ×sset (total number of

operations). In the case of SSE, the number of operations can be appropriated by

()()nn
N

n
∑ −
−

=

1

2
1

4

1 (9)

where N is the size of the vector x given in equation (1).

In the case of traditional algorithm, the total number of operations is

()
21

2
1∑ −

−

=

N

n
n

(10)

and the processing time per operation is mt ′ , which is the time taken to perform the

multiplication, subtraction and store with the standard programming approach. And

we can assume that the processing time for mt and mt ′ are the same.

The equation (9) does not include processing in the forward and backward substi-
tution. The forward and backward substitution only account for a very small portion
(about 1%) of the total processing, therefore it is neglected in the current model.

According to equations (9) and (10), the speedup ratios obtained for different sizes
of the matrix A can be approximated by a constant, provided that the values of

pt3 and mt are known. The values of pt3 and mt are being determined empirically

872 Y.F. Fung et a1.

and our result indicates that mp tt* ≈3 . The speedup ratios obtained by our model is

close to our experimental results and therefore, we can gauge the performance of the
SSE algorithm with different sizes of matrix A based on our model.

6 Conclusions

In this paper, we have presented the basic operations involved in utilizing the SSE
features of the Pentium III processors. In order to examine the effectiveness of SSE,
the power systems network equations problem was solved by applying SSE functions.
According to our results, a speedup ratio around 1.5 can be easily obtained. The results
are satisfactory and only minor modifications of the original program are needed in
order to utilize the SSE features. Most importantly, additional hardware is not required
for this performance enhancement. SSE is a valuable tool for improving the perform-
ance of computation intensive problems, and the power systems network equations
problem is one of the ideal applications.

In this paper, we have only considered the DC power systems, where computations
involve only real numbers. Currently, we are investigating AC systems that require
processing of complex numbers. Moreover, the applications of SSE in a dual-CPU
system will also be studied. These studies will lead to cost-effective high performance
computation of power system applications.

References

1. Taoka, H., Iyoda, I., and Noguchi, H.: Real-time Digital Simulator for Power System Analy-
sis on a Hybercube Computer. IEEE Trans. On Power Systems. 7 (1992) 1-10

2. Guo Y., Lee H.C., Wang X., and Ooi B.: A Multiprocessor Digital Signal Processing System
for Real-time Power Converter Applications, IEEE Trans. On Power Systems, 7 (1992) 805-
811

3. The Complete Guide to MMX Technology, Intel Corporation, McGraw-Hill (1997)
4. Conte G., Tommesani S., Zanichelli F.: The Long and Winding Road to High-performance

Image Processing with MMX/SSE, IEEE Int’l Workshop for Computer Architectures for
Machine Perception (2000), 302-310.

5. Wang K.C.P., and Zhang X.: Experimentation with a Host-based Parallel Algorithm for
Image Processing, Proc. 2nd Int’l conf on Traffic and Transportation Studies (2000) 736-742.

6. Intel C/C++ Compiler Class Libraries for SIMD Operations User's Guide (2000)
7. Chan K.W. and Snider, L.A.: Development of a Hybrid Real-time Fully Digital Simulator

for the Study and Control of Large Power Systems, Proc. of APSCOM 2000, Hong Kong,
(2000) 527-531

SSE Based Parallel Solution for Power Systems Network Equations 873

8. Wu J.Q., and Bose A.: Parallel Solution of Large Sparse Matrix Equations and Parallel
Power Flow, IEEE Trans. On Power Systems, 10 (1995) 1343-1349

9. Jess J.A., and Kees, G.H.: A Data Structure for Parallel LU Decomposition, IEEE Trans., C-
31 (1992) 231-239

	Introduction
	SSE Mechanism
	Register and Data Storage
	Programming with SSE

	Power System Network Equations
	Parallel LU Decomposition Based on SSE
	Experimental Results
	Conclusions
	References

