EHBT: An efficient protocol for group key
management*

Sandro Rafaeli, Laurent Mathy, and David Hutchison

Computing Department, Lancaster University, LA1 4YR, Lancaster, UK

Abstract. Several protocols have been proposed to deal with the group
key management problem. The most promising are those based on hi-
erarchical binary trees. A hierarchical binary tree of keys reduces the
size of the rekey messages, reducing also the storage and processing re-
quirements. In this paper, we describe a new efficient hierarchical binary
tree (EHBT) protocol. Using EHBT, a group manager can use keys al-
ready in the tree to derive new keys. Using previously known keys saves
information to be transmitted to members when a membership change
occurs and new keys have to be created or updated. EHBT can achieve
(I -log, n) message size (I is the size of a key index) for join operations
and (K -log, n) message size (K is the size of a key) for leave operations.
We also show that the EHBT protocol does not increase the storage and
processing requirements when compared to other HBT schemes.

1 Introduction

With TP multicast communication, a group message is transmitted to all mem-
bers of the group. Efficiency is clearly achieved as only one transmission is needed
to reach all members. The problems start because any machine can join a mul-
ticast group and start receiving the messages sent to the group without the
sender’s knowledge. This characteristic raises concerns about privacy and secu-
rity since not every sender wants to allow everyone to have access to its commu-
nication.

Cryptographic tools can be used to protect group communication. An en-
cryption algorithm takes input data (e.g. a group message) and performs some
transformations on it using a key (where the key is a randomly generated num-
ber). This process generates a ciphered message. There is no easy way to recover
the original message from the ciphered text other than by knowing the key [9].

When applying such technique, it is possible to run secure multicast sessions.
Group messages are protected by encryption using a chosen key (group key).
Only those who know the group key are able to recover the original message.
However, distributing the group key to valid members is a complex problem.
Although rekeying a group before the join of a new member is trivial (send the
new group key to the old group members encrypted with the old group key),

* The work presented here was done within the context of ShopAware - a research
project funded by the European Union in the Framework V IST Programme.

rekeying the group after a member leaves is far more complicated. The old key
cannot be used to distribute a new one, because the leaving member knows the
old key. A group manager must, therefore, provide other scalable mechanisms to
rekey the group.

Several researchers have studied the use of a hierarchical binary tree (HBT)
for the group key management problem. Using an HBT, the key distribution
centre (KDC) maintains a tree of keys, where the internal nodes of the tree hold
key encryption keys (KEKs) and the leaves correspond to group members. Each
leaf holds a KEK associated to that one member. Each member receives and
maintains a copy of the KEK associated to its leaf and the KEKSs correspondent
to each ancestor node in the path from its parent node to the root. All group
members share key held by the root of the tree. For a balanced tree, each member
stores log,m + 1 keys, where n is the number of members. This hierarchy is
explored to achieve better performance when updating keys.

In this paper, we propose a protocol to efficiently built an HBT, which we
call the EHBT protocol. The EHBT protocol achieves (I -log, n) message size for
addition operations and (K -log, n) message size for removal operations keeping
the storage and processing on both, client and server sides to a minimum. We
achieve these bounds using well-known techniques, such as a one—way function
and the xor operator.

2 Related Work

Wallner et al [13] were the first to propose the use of an HBT. In their approach,
every time the group membership changes, internal node keys (affected by the
membership change) are updated and every new key is encrypted with each of
its children’s keys and then multicast. A rekey message conveys 2 - log, n keys
for including or removing a member.

Caronni et al [12] proposed a very similar protocol to that of Wallner, but
they achieve a better performance regarding the size of multicast messages for
joining operations. We refer to this protocol as HBT+. Instead of encrypting
new key values with their respective children’s key, Caronni proposes to pass
those keys into a one—way function. Only the indexes of the refreshed keys need
to be multicast and an index size is smaller than the key size.

An improvement to the hierarchical binary tree approach is the one way
function tree (OFT) proposed by McGrew and Sherman [5]. The keys of a node’s
children are blinded using a one way function and then mixed together using
the xor operator. The result of this mixing is the KEK held by the node. The
improvement is due to the fact that when the key of a node changes, its blinded
version is only encrypted with the key of its sibling node. Thus, the rekey message
carries just log, n keys.

Canetti et al [3] proposed a slightly different approach that achieves the same
communication overhead. Their scheme uses a pseudo-random—-generator (PRG)
[9] to generate the new KEKs rather than a one—way function and it is applied
only on user removal.

Perrig et al proposed the efficient large group key (ELK) protocol [6]. The
ELK protocol is very similar to the OFT, but ELK uses pseudo random func-
tions (PRFs)' to build and manipulate the keys in the tree. ELK employs a
timely rekey, hence, at every time interval, the KDC refreshes the root key using
the PRF function and then uses it to update the whole key tree. By deriving all
keys, ELK does not require any multicast messages during a join operation. All
members can refresh their own keys, hence no rekey message is required. When
members are deleted, as in OFT, new keys are generated from both its children’s
keys.

3 Efficient Hierarchical Binary Tree Protocol

In the EHBT protocol, a KDC maintains a tree of keys. The internal nodes of the
tree hold KEKs and the leaves correspond to group members. Keys are indexed
by randomly chosen numbers. Each leaf holds a secret key that is associated to
that member. The root of the tree holds a common key to all members.

Ancestors of a node are those nodes in the path from its parent node to the
root. The set of ancestor of a node is called ancestor set. Each member knows
only its own key (associated to its leaf node) and keys correspondent to each
node in its ancestor set. For a balanced tree, each member stores log, n+ 1 keys,
where n is the number of members.

In order to guarantee backward and forward secrecy [11], the keys related to
joining members or leaving members should be changed every time the group
membership changes. The new keys in the ancestor set of an affected leaf are
generated upwards from the key held by the affected leaf’s sibling up to the root.
Using keys that are already in the tree can save information to be transmitted
to members when a membership occurs and new keys have to be created or
updated.

The formula F(z,y) = h(x & y) is used to generate keys from other keys,
where h is a one—way hash function and @ is a normal xor operator. The obvious
functionality of function h is to hide the original value of x and y into value z in
a way that if one knows only z he cannot find the original values = and y. The
functionality of & is to mix z and y and generate a new value.

We say that a key k; can be refreshed by doing k; = F(k;,4), where i is
the index (or identifier) of key k; or key k; can be updated by deriving one of
its children key by doing k; = f(kﬁefﬂ”ght, i), where ElefHmioht g the key of i’s

i

either left or right child. Appendix A describes the reason for using index i in
function F.

3.1 Rekey Message Format

A member can receive two types of information in a rekey message, one telling
him to refresh or update the value of a key, the other telling him the new value

! ELK uses the stream cipher RC5 [8] as the PRF.

of a key. In the former case, the member receives an id and in the latter case,
he receives a key value. After deriving a key, a member will try to derive all
other keys by himself (from that key up to the root) unless he receives another
information telling him something different. For example, if key Kj; is refreshed,
the KDC needs to send to K’s holders the identification of the key so that they
can perform the refresh operation themselves. Or, if a node n has its key updated
(K! = F(kr,n)), then it implies sending to member L the index n and to the
other child, namely R, the new key value K/, (because R does not know L’s key).

[5T [T~ [wax]

indexes and
commands

keys

Fig. 1. Example of a rekey message.

The rekey message that relays this information has two parts. The first part
carries commands and the second carries keys. Each piece of information is
indexed by a key index. Keys are encrypted with the key indicated by the key
index (see Figure 1), but commands are not encrypted because they do not carry
vital information. Based on commands and keys, members can find out which
keys they must refresh or update, or just substitute, because they have received
a new key value to a specific key.

Algorithm 1: Reading rekey message algorithm.
(1) receive rekey message

(2) set last command to "keep key”

(3) while there is a key to be derived

(4) get a key index from key-list

(5) search indexes part of rekey message for key index
(6) if there is a command

(7) execute the command on the specific key

(8) set last command to this command

9) else

(10) search keys part of the rekey message for key index
(11) if there is a key

(12) substitute it in the key list

(13) set last command to "update”

(14) if there is no command or key

(15) execute last command in current key

The algorithm to handle rekey messages starts with a member holding a list
of known keys (key—list). After executing the algorithm, a member will have all
his keys freshened up. A simplified version of this algorithm appears in Algorithm
1.

In the remainder of this paper, we use the following notation:

+i or —i or i | are commands to be applied on key ¢

R(k;) refresh k; applying F(k;, 1)
U(k;) update k; applying F(k;, j)
{z} encryption of z with k

j : command | command to key j’s holder
[commands, keys]| message containing commands and keys

4 Basic Operations

In this section, we describe the basic algorithms for join and leave operations for
single and multiple cases.

Fig. 2. User u» joins the tree. Fig. 3. Users us and us join the tree.

Single Member Join Algorithm. When a member joins the group, it is
associated to a leaf node n. The KDC assigns a randomly chosen key k,, to n.
Leaf n is then included in the tree at the parent of the shallowest leaf node s
(to keep the tree as short as possible). Leaf s is removed from the tree, and in
its place a new node p is inserted. Leaves s and n are inserted as p’s children.
We see an example in Figure 2: Member 2 is placed in leaf ns, which is inserted
at node ni2. Node njs becomes the new parent of leaves n; and ns. Leaf ny is
assigned key k.

In order to keep the backward secrecy, keys in ni’s ancestor set need to
receive new values. Key k; is refreshed (k] = R(k1)), K12 receives a value based
on ki (K12 = U(k})) and keys K14 and Kz are refreshed (K{, = R(K14) and
Kis = R(Ks)).

Note that during a join operation, keys, which were already in the tree, are
just refreshed. Members holding those keys only need to be told those keys’
indexes to be able to generate their new values, which means that these keys do
not have to be transmitted. In the same way, members that had their keys used
for generating new keys just have to be told the index of the new key and they
can generate that key by themselves.

The KDC generates unicast messages for member ny ([k2, K12, K14, K1g]) and
member ny ([+12]), and multicast message [14 : 14, 18 : x18].

Member us receives its unicast message and creates its key list. Member u;
receives its unicast message and derives key Ko, including it in its key list.
Members holding keys K74 and Kig refresh these keys.

Multiple Members Join Algorithm. Several new members are inserted
in the tree as in the single member join algorithm. They are associated to nodes
and the nodes are placed at the parent of the shallowest leaves. However, the
keys in the tree are modified in a slightly different manner. New nodes’ ancestor
sets converge at some point and all keys that are in more than one ancestor set
are modified only once.

See Figure 3 for an example. Members us and ug joined the group and have
been placed at nodes n15 and ny43, respectively. Following the single member join
algorithm, the keys in member uy’s ancestor set are changed: first, ki = R(k1),
and then, K1y = U(k}), K14 = R(K14), K{g = R(K1s). In the same way, keys in
member us’s ancestor set are changed: first, kjy = R(k4), and then, K43 = U(k}).
Keys K12 and K;g have already been changed because of member wuy, hence they
are not changed again.

The KDC generates unicast messages for member no ([ks, K12, K14, Kig)),
member ng ([ks, K43, K14, K1g]), member u; ([+12]) and member uy ([+43]), and
multicast message [14 : x14, 18 : x18].

Members uy and ug receive their unicast messages and create their respective
key—lists. Member u; receives the unicast message, derives key K15, and includes
it in its key—list. Member u4 does the same with key K43. Members holding keys
K14 and Kg refresh these keys.

Fig. 4. User u» leaves the tree. Fig. 5. Users u» and ug leave the tree.

Single Member Leave Algorithm. When a member w leaves or is removed
from the group, its sibling s replaces its parent p. Moreover, all keys known by
u should be updated to guarantee forward secrecy. For example, see Figure 4:
us leaves (or is removed from) the group and its node is removed from the tree.
Node nio is also removed and leaf n; is promoted to its place.

In order to keep the forward secrecy, keys in nq’s ancestor set need to receive
new values. Keys K4 and Kig have to be updated: k] = R(k1), K1, = U(k})
and Ky = U(K},).

Note that in removal operations, all keys in the removed member’s ancestor
set are updated. Those keys cannot be just refreshed because the removed mem-

ber knows their previous values and could easily calculate the new values. Since
the new values are all generated from the removed member’s sibling key, which
was not known by the removed member, the removed member cannot find the
new values.

The KDC generates multicast message [1: —12, {Ki4} . , {Kis} g,]-

Member n; refreshes k] and, because it has removed Ko, it updates Ki4
and Ki5. Members holding key K34 get new key K1, and then update key Kig.
Members holding key Ksg get new key Kig.

Multiple Members Leave Algorithm. This algorithm is handled simi-
larly to the single member leave algorithm. The leaving nodes are removed and
the tree shape is adjusted accordingly. As in the multiple join algorithm, there
can be several different path from removed nodes to the root, which means that
the root key can be updated by several nodes (see Figure 5).

In order to avoid several root key versions for the same operation, the KDC
chooses one of the paths and use it to update the root key. For example, in
Figure 5, no and ng leave the group and nodes n; and nj are promoted to their
respective parents’ places (n12 and nsg). Both are used to derive their new parent
keys K1, and Klg, but then they both cannot be used to update key Kig. In this
case, the KDC chooses one of them to update key K{g and the other will receive
the updated key. For instance, the KDC chooses node n; and then the keys are
updated as follows: k} = R(k1), K1, = U(k}), Ki3 = U(K],), ki = R(ks) and
Kl = U(KY).

The KDC generates multicast message [1: —12,5 : —56, {1(14},(34 ,{Kgg},{78 ,
{Kis}y |-

Member n; refreshes k] and, because it has removed Ko, it updates Kj,
and Kig. Key K34's holders recover K1, and update K{g. Member ns refreshes
kL and updates Klg, but since there is a new key encrypted with Klg, ns stops
updating its keys and just recovers Kig. Key K7g’s holders recover Ki; and,
since there is a key encrypted with it, they just recover Kig.

Rebalancing. The efficiency of the key tree depends crucially on whether
the tree remains balanced or not. A tree is said to be balanced if no leaf is much
further away from the root than any other leaf. In general, for a balanced binary
tree with n leaves, the distance from the root to any leaf is log, n, but if the
tree is unbalanced, the distance from the root to a leaf can become as high as
n. Therefore, it is desirable to keep a key tree as balanced as possible.

The rebalancing works by getting the shallowest and deepest internal nodes
and comparing their depths. If the depth gap is larger than two then it means
that the tree is unbalanced and needs to be levelled. For balancing the tree, the
deepest leaf node is removed, which makes its sibling to go one level up (similarly
to the removing algorithm), and inserted at the shallowest node (similarly to the
inserting algorithm). This procedure is repeated until the difference between the
depths of the shallowest and the deepest nodes is smaller than two.

In a rebalancing operation, the deepest node, which has been moved from
one position in the tree to another, requires that its old keys need to be updated
(as in a deletion operation) and it needs to have access to the keys in its new

path to the root (as in an insertion operation). Therefore, an insertion and a
deletion are performed simultaneously.

Fig. 6. Rebalancing the tree.

See Figure 6 for an example. The tree needs a rebalancing, so leaf ng is
deleted from its original position (ngg) and inserted into a new position (ngg).
The deletion starts a removal operation with leaf ng updating the new keys. At
the same time, leaf ng starts refreshing the keys on its path (as an insertion
requires). The new keys are calculated as follows: k§ = R(kg), Krg = U(ky),
Kly =U(K}y), kb = R(ks), K3s = U(k}) and Kig = R(K/g). Key K{4 does not
need to be changed.

The KDC generates unicast messages for member ng ([K3s, Kis] and member
uz ([+38]), and multicast message [9: —89,18 : ¥18, {K7o}, , { K50} . -

Member ng deletes all its known keys and replaces them by those just re-
ceived. Member ng updates its keys. Members n; and key ksg’s holders extract
their parts and update their keys. Member ns derives Kig. Key Kjg’s holders
refresh K.

5 Evaluation

In this section, we compare the properties of the EHBT algorithm with the other
algorithms introduced in section 2: PRGT? (Canetti et al.), HBT+ (Caronni et
al), OFT (McGrew and Sherman) and ELK (Perrig). We focus our criteria on
KDC computation, joined member computation (for insertions), sibling compu-
tation (sibling to the joining/leaving member), size of the multicast message,
size of the unicast messages and storage at both KDC and members.

The notations used in this section are:

2 Canetti does not specify the PRG function to use, hence we assume the same RC5H
algorithm used in ELK.

number of member in the group

height of the tree (for a balanced tree d = log, n)
size of a key index in bits

size of a key in bits

key generation

hash function execution

xor operation

encryption operation

D<= ~as

decryption operation

Table 1 summarizes the computation required from the KDC, joined mem-
ber and sibling to joined member, and message size of joining member’s unicast
message, sibling’s unicast message and multicast message during single join op-
erations.

Table 1. Single join operation equations.

Scheme/ Computation Message size

Resource KDC Join member Sib member |[Join unicast|Sib unicast|Multicast
EHBT | G+ (d+1)(X + H+ E) (d+1)D (d4+1)(X + H)| (d+ 1)K T dr
PRGT 2G 4+ dH + (d + 1)E (d+1)D D+ dH (d + 1)K I+ K dr
HBT+ 2G + dH + (d + 1)E (d+1)D D+ dH (d + 1)K I+ K dr
OFT G+ (d+1)H +dX +3dE [(d+1)D + d(H + X)|2D + d(H + X)| (d+ 1)K I+2K |(d+ 1)K
ELK |G + (4n — 2)E and (d + 3)E (d +1)D 2dE and 2E (d + 1)K 1 0

Table 2 summarises multiple join operation equations. The parameters anal-
ysed are the same parameters used in Table 1. The equations are valid for mul-
tiple joins when the original number of members is doubled after the mass join,
which means that every old member gets a new sibling (a new member) and all
the keys in the tree are affected. This represents the worst case possible for join
operations. For the sake of the equations in this table, n is the original number
of members in the group previously to the mass join, but d is the new height of
the tree after the mass join.

Table 2. Multiple join operation equations.

Scheme/ Computation Message size
Resource KDC Join member| Sib member | Join unicast | Sib unicast | Multicast
EHBT [nG + (3n — 1)(X + H) + n(d+ 1)E| (d4+ 1)D [(d+1)(X + H)| n: (d+ 1)K oI (n — 1)I
PRGT 2nG + (n — 1)H 4 n(d + 2)E (d+ 1)D D+ dH ni(d+ 1)K | n:IT+K | (n—1)I
HBT4 2nG 4 (n — 1)H 4 n(d 4+ 2)E (d+ 1)D D+ dH n:(d+ 1)K | n:T+K | (n—1)1
OFT nG + (4n — 2)(H + X)+ (d+1)D+ 2D+ n:(d+ 1)K |n:I+2K [(2n — 2)K
(nd + 5n —)E d(H + X) d(H + X)
ELK (8n — 2)E and nG + n(d + 3)E (d+ 1)D 2dE and 2E |[n : (d + 1)K n: T o

EHBT requires less computation than the other schemes, but it loses out
to ELK when comparing the message sizes. The reason for that is that ELK
employs a timed rekey, which means that the tree is completely refreshed at

intervals, despite membership changes, thus only the index of the new parent
inserted needs to be sent to the sibling of the joining member. However, this rises
two issues: first, at every interval the KDC has to refresh all its 2n-1 keys, which
implies unnecessary work for the KDC; second, this scheme does not support
rekey on membership changes (regarding join operations). Additionally, ELK
imposes some delay on the joining member before he receives the group key.

Table 3. Single leave operation equations.

Scheme/ Computation Multicast

Resource KDC Sib member

EHBT [d(X + H + E)| d(X + H) T+ dK
PRGT (2d + 1)E D+ dE I+ (d+ 1)K
HBT+ 2dE dD I+ 2dK
OFT |d(H+ X+ E)|D4+d(H+ X)| I+ (d+ 1)K
ELK 8dE dD 4+ 5dE |I +d(n1 + ng)

Table 3 summarizes the KDC computation, sibling computation and multi-
cast message size during single leave operations. We also analyse the equations
of multiple leave operations, and we show the results in Table 4. For mass leav-
ing, we consider the situation when exactly half of the group members leave the
group. The sibling of every leaving member remains in the tree, and hence, all
keys in the tree are affected.

Table 4. Multiple leave operation equations.

Scheme/ Computation Multicact

Resource KDC Sib member

EHBT (2n =)(X + H)+(n - 1)E D+ (d+1)(X + H) nl +(n - 1K
PRGT (5m/2 — 2)E D+ dE (3n/2 — 1)K
HBT+ (2n — 2)E dD nl +2(n — 1)K
OFT |[(2n —2)H + (n — 1)X + (3n — 2)E|(d + 1)D + d(H + X) nI+ (3n — 2)K
ELK (7n — 3)E dD + 5dE nI+ (n —1)(ny + na)

For leaving operations, again EHBT achieves better results than the other
schemes regarding the computations involved, but loses out to ELK when com-
paring the multicast message size. ELK has a slightly smaller multicast message
than EHBT, because it sacrifices security. ELK uses only ny + ns bits of a total
K possible bits for generating a new key and this procedure weakens that key,
Consequently, an expelled member needs to compute only 2" +"2 possibilities to
recover the new key. In EHBT, however, an expelled member needs to compute
the full 2% operations to brute-force the new key.

We have simulated a group with 8192 members. For the calculations of the
multiple join operations, we doubled the size of the group to 16384 members,
and then we removed all joining members and finished with the 8192 original
members. We measured encryption and decryption times for the RC5 algorithm,

MD5 hash function and zor operation. We used 16-bit keys for the calculations.
We used Java version 1.3 and TAIK [4] cryptographic toolkit on a 850Mhz Mobile
Pentium III processor. It takes 1.72 - 102 ms for RC5 to encrypt a 16-bit key
with a 16-bit key, and 1.73 - 1072 ms to decrypt it. Hashing a 16-bit key takes
4.95- 1073 ms and zoring it takes 1.59 - 1072 ms. Finally, generating a 16-bit
keys takes 7.33-107 3. Applying these numbers into Tables 2 and 4 produces the
results in Table 5 that show that EHBT in general is faster to compute than the
other protocols.

Table 5. Time in milliseconds for multiple joins and leaves.

Scheme/ Multiple Join Multiple Leave

Resource KDC Join member|Sib Member| KDC |Sib member
EHBT 2334 0.25 0.09 248.03 0.10
PRGT 2415 0.25 0.08 352.22 0.24
HBT+ 2415 0.25 0.08 281.77 0.22
OFT 2951 0.35 0.12 516.78 0.32
ELK 1140 + 2455 0.25 0.48 4 0.03 |1105.46 1.34

Finally, EHBT and the other schemes require the KDC to store 2n — 1 keys
and members to store d + 1 keys.

6 Security Considerations

The security of the EHBT protocol relies on the cryptographic properties of the
h function. One way hash functions, unfortunately, are not proven secure [2];
nevertheless, for the time being, there has not been any successful attack on
either the full MD5 [7] or SHA [1] algorithms [10].

Taking into account the use of hash functions as function A, attacks on the
hidden key are limited to brute-force attack. Such an attack can take 2™ hashes
to find the original key, with n being the number of bits of the original key used
as input.

In order to guarantee backward secrecy and forward secrecy, every time there
is a membership change, the keys related to joining members or leaving members
are changed.

When a member is added to the tree, all keys held by nodes in its ancestor
set are changed to avoid giving the new member access to past information. For
example, see Figure 2, when member ns is inserted in the tree, key K is created
and keys Ki, and K|g are refreshed. Node ny does not have access to the old
values, because it only receives the new key values, which were hidden by the
hash function, and assuming the hash function is secure, ny has no other way to
recover the old key but brute-forcing it. The same rule applies when ny leaves;
key Ko is deleted from the tree and keys K7, and K{g are updated and since
ny does not have access to their new values it does no longer has access to the
group communication.

7 Conclusion

Using one—way hash functions and zor operations, we constructed an efficient
HBT protocol that achieves better overall performance than other HBT proto-
cols. Our protocol, called EHBT, requires only (I -log, n) message size for join
operations and (K - log, n) message size for leaving operations. Additionally,
EHBT requires the same key storage as other HBT protocols, and it requires
much less computation to rekey the tree after membership changes.

References

1. N. F. P. 180-1. Secure Hash Standard. National Institute of Standards and Tech-
nology, U.S. Department of Commerce, DRAFT, May 1994.

2. S. Ba ’htiari, R. Safavi-Naini, and J. Pieprzyk. Cryptographic Hash Functions: A
Survey. Technical Report 95-09, University of Wollongong, July 1995.

3. R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naorr, and B. Pinkas. Multicast
Security: A Taxonomy and Some Efficient Constructions. In Proc. of INFOCOM
99, volume 2, pages 708 716, New Yok, NY, USA, March 1999.

4. 1.-J. Group. I/§IK7 java—crypto toolkit. = Web site at http://jcewww.iaik.tu-

raz.ac.at/index.htm.

5. D. A. McGrew and A. T. Sherman. Key Establishment in Large Dynamic Groups
Using One-Way Function Trees. Technical Report No. 0755, TIS Labs at Network
Associates, Inc., Glenwood, MD, May 1998.

6. A. Perrig, D. Song, and J. D. Tygar. ELK, a New Protocol for Efficient Large-

Group Key Distribution. In 2001 IEEE Symposium on Security and Privacy, Oak-

land, CA, USA, May 2001.

R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, April 1992.

R. Rivest. The RC5 encryption algorithm. In Fast Software Encryption, 2*¢ Int.

Workshop, LNCS 1008, pages 86—96. Springer-Verslag, December 1995.

B. Schneier. Applied gryptogmphy econd Edition: protocols, algorithms, and

source code in C. John Wiley & Sons, Inc., 1996. ISBN 0-471-11709-9.

10. W. Stallings. Cryptography and Network Security. Prentice Hall, 1998. ISBN

0-138-69017-0.

11. M. Steiner, G. Taudik, and M. Waidner. Cliques: A new approach to group key

agreement. Technical Report RZ 2984, IBM Research, December 1997.
12 1\/% Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner. The VersaKey
Framework: Versatile Group Key Management. IEEE Journal on Selected Areas
in Communications (Special Issue on Middleware), 17(9):1614-1631, August 1999.
13. D. Wallner, E. Harder, and R. Agee. Key Management for Multicast: Issues and
Architectures. RFC 2627, June 1999.

© o=

A Reasoning on Using Index ¢ in Function F

Index i is included in the formula F to avoid giving the possibility for members to
have access to keys that they are not meant to. For example, removing member
ny in Figure 4, means new keys kj = U(k1), ki, = R(k]) and kig = R(ki,)-

If, immediately after member ns has left the group, member ny joins it and
is inserted as a sibling of ny, then it means new keys ki = U(k}), k1o = R(k{)
(new node nyq), ki, = U(k},) and ki'y = U(kig).

If we remove i from function F and instead only apply a simple hash h to
update keys then the keys from the removal above become ki = h(ki1), ki, =
h(k}) (or h(h(k1))) and kig = h(k}4) (or h(h(h(k1)))) and the keys from the join
become kY = h(k}) (or h(h(k1))), k1o = h(K}) (o h(h(h(k:)))), Ky = h(kl,)
and kis = h(kig). As one can see, key ki and kjg are identical, which means
that member ng can have access to past messages encrypted with kig (or kip).

