
EHBT: An eÆ
ient proto
ol for group keymanagement?Sandro Rafaeli, Laurent Mathy, and David Hut
hisonComputing Department, Lan
aster University, LA1 4YR, Lan
aster, UKAbstra
t. Several proto
ols have been proposed to deal with the groupkey management problem. The most promising are those based on hi-erar
hi
al binary trees. A hierar
hi
al binary tree of keys redu
es thesize of the rekey messages, redu
ing also the storage and pro
essing re-quirements. In this paper, we des
ribe a new eÆ
ient hierar
hi
al binarytree (EHBT) proto
ol. Using EHBT, a group manager 
an use keys al-ready in the tree to derive new keys. Using previously known keys savesinformation to be transmitted to members when a membership 
hangeo

urs and new keys have to be 
reated or updated. EHBT 
an a
hieve(I � log2 n) message size (I is the size of a key index) for join operationsand (K � log2 n) message size (K is the size of a key) for leave operations.We also show that the EHBT proto
ol does not in
rease the storage andpro
essing requirements when 
ompared to other HBT s
hemes.1 Introdu
tionWith IP multi
ast 
ommuni
ation, a group message is transmitted to all mem-bers of the group. EÆ
ien
y is 
learly a
hieved as only one transmission is neededto rea
h all members. The problems start be
ause any ma
hine 
an join a mul-ti
ast group and start re
eiving the messages sent to the group without thesender's knowledge. This 
hara
teristi
 raises 
on
erns about priva
y and se
u-rity sin
e not every sender wants to allow everyone to have a

ess to its 
ommu-ni
ation.Cryptographi
 tools 
an be used to prote
t group 
ommuni
ation. An en-
ryption algorithm takes input data (e.g. a group message) and performs sometransformations on it using a key (where the key is a randomly generated num-ber). This pro
ess generates a 
iphered message. There is no easy way to re
overthe original message from the 
iphered text other than by knowing the key [9℄.When applying su
h te
hnique, it is possible to run se
ure multi
ast sessions.Group messages are prote
ted by en
ryption using a 
hosen key (group key).Only those who know the group key are able to re
over the original message.However, distributing the group key to valid members is a 
omplex problem.Although rekeying a group before the join of a new member is trivial (send thenew group key to the old group members en
rypted with the old group key),? The work presented here was done within the 
ontext of ShopAware - a resear
hproje
t funded by the European Union in the Framework V IST Programme.



rekeying the group after a member leaves is far more 
ompli
ated. The old key
annot be used to distribute a new one, be
ause the leaving member knows theold key. A group manager must, therefore, provide other s
alable me
hanisms torekey the group.Several resear
hers have studied the use of a hierar
hi
al binary tree (HBT)for the group key management problem. Using an HBT, the key distribution
entre (KDC) maintains a tree of keys, where the internal nodes of the tree holdkey en
ryption keys (KEKs) and the leaves 
orrespond to group members. Ea
hleaf holds a KEK asso
iated to that one member. Ea
h member re
eives andmaintains a 
opy of the KEK asso
iated to its leaf and the KEKs 
orrespondentto ea
h an
estor node in the path from its parent node to the root. All groupmembers share key held by the root of the tree. For a balan
ed tree, ea
h memberstores log2 n + 1 keys, where n is the number of members. This hierar
hy isexplored to a
hieve better performan
e when updating keys.In this paper, we propose a proto
ol to eÆ
iently built an HBT, whi
h we
all the EHBT proto
ol. The EHBT proto
ol a
hieves (I � log2 n) message size foraddition operations and (K � log2 n) message size for removal operations keepingthe storage and pro
essing on both, 
lient and server sides to a minimum. Wea
hieve these bounds using well-known te
hniques, su
h as a one{way fun
tionand the xor operator.2 Related WorkWallner et al [13℄ were the �rst to propose the use of an HBT. In their approa
h,every time the group membership 
hanges, internal node keys (a�e
ted by themembership 
hange) are updated and every new key is en
rypted with ea
h ofits 
hildren's keys and then multi
ast. A rekey message 
onveys 2 � log2 n keysfor in
luding or removing a member.Caronni et al [12℄ proposed a very similar proto
ol to that of Wallner, butthey a
hieve a better performan
e regarding the size of multi
ast messages forjoining operations. We refer to this proto
ol as HBT+. Instead of en
ryptingnew key values with their respe
tive 
hildren's key, Caronni proposes to passthose keys into a one{way fun
tion. Only the indexes of the refreshed keys needto be multi
ast and an index size is smaller than the key size.An improvement to the hierar
hi
al binary tree approa
h is the one{wayfun
tion tree (OFT) proposed by M
Grew and Sherman [5℄. The keys of a node's
hildren are blinded using a one{way fun
tion and then mixed together usingthe xor operator. The result of this mixing is the KEK held by the node. Theimprovement is due to the fa
t that when the key of a node 
hanges, its blindedversion is only en
rypted with the key of its sibling node. Thus, the rekey message
arries just log2 n keys.Canetti et al [3℄ proposed a slightly di�erent approa
h that a
hieves the same
ommuni
ation overhead. Their s
heme uses a pseudo{random{generator (PRG)[9℄ to generate the new KEKs rather than a one{way fun
tion and it is appliedonly on user removal.



Perrig et al proposed the eÆ
ient large{group key (ELK) proto
ol [6℄. TheELK proto
ol is very similar to the OFT, but ELK uses pseudo{random fun
-tions (PRFs)1 to build and manipulate the keys in the tree. ELK employs atimely rekey, hen
e, at every time interval, the KDC refreshes the root key usingthe PRF fun
tion and then uses it to update the whole key tree. By deriving allkeys, ELK does not require any multi
ast messages during a join operation. Allmembers 
an refresh their own keys, hen
e no rekey message is required. Whenmembers are deleted, as in OFT, new keys are generated from both its 
hildren'skeys.3 EÆ
ient Hierar
hi
al Binary Tree Proto
olIn the EHBT proto
ol, a KDC maintains a tree of keys. The internal nodes of thetree hold KEKs and the leaves 
orrespond to group members. Keys are indexedby randomly 
hosen numbers. Ea
h leaf holds a se
ret key that is asso
iated tothat member. The root of the tree holds a 
ommon key to all members.An
estors of a node are those nodes in the path from its parent node to theroot. The set of an
estor of a node is 
alled an
estor set. Ea
h member knowsonly its own key (asso
iated to its leaf node) and keys 
orrespondent to ea
hnode in its an
estor set. For a balan
ed tree, ea
h member stores log2 n+1 keys,where n is the number of members.In order to guarantee ba
kward and forward se
re
y [11℄, the keys related tojoining members or leaving members should be 
hanged every time the groupmembership 
hanges. The new keys in the an
estor set of an a�e
ted leaf aregenerated upwards from the key held by the a�e
ted leaf's sibling up to the root.Using keys that are already in the tree 
an save information to be transmittedto members when a membership o

urs and new keys have to be 
reated orupdated.The formula F(x; y) = h(x � y) is used to generate keys from other keys,where h is a one{way hash fun
tion and � is a normal xor operator. The obviousfun
tionality of fun
tion h is to hide the original value of x and y into value z ina way that if one knows only z he 
annot �nd the original values x and y. Thefun
tionality of � is to mix x and y and generate a new value.We say that a key ki 
an be refreshed by doing k0i = F(ki; i), where i isthe index (or identi�er) of key ki or key ki 
an be updated by deriving one ofits 
hildren key by doing k0i = F(kleftjrighti ; i), where kleftjrighti is the key of i'seither left or right 
hild. Appendix A des
ribes the reason for using index i infun
tion F .3.1 Rekey Message FormatA member 
an re
eive two types of information in a rekey message, one tellinghim to refresh or update the value of a key, the other telling him the new value1 ELK uses the stream 
ipher RC5 [8℄ as the PRF.



of a key. In the former 
ase, the member re
eives an id and in the latter 
ase,he re
eives a key value. After deriving a key, a member will try to derive allother keys by himself (from that key up to the root) unless he re
eives anotherinformation telling him something di�erent. For example, if key Ki is refreshed,the KDC needs to send to K's holders the identi�
ation of the key so that they
an perform the refresh operation themselves. Or, if a node n has its key updated(K 0n = F(kL; n)), then it implies sending to member L the index n and to theother 
hild, namely R, the new key value K 0n (be
ause R does not know L's key).
` ` `

indexes and
commands

keys

+i + j i {K j}K i` ` `Fig. 1. Example of a rekey message.The rekey message that relays this information has two parts. The �rst part
arries 
ommands and the se
ond 
arries keys. Ea
h pie
e of information isindexed by a key index. Keys are en
rypted with the key indi
ated by the keyindex (see Figure 1), but 
ommands are not en
rypted be
ause they do not 
arryvital information. Based on 
ommands and keys, members 
an �nd out whi
hkeys they must refresh or update, or just substitute, be
ause they have re
eiveda new key value to a spe
i�
 key.Algorithm 1: Reading rekey message algorithm.(1) re
eive rekey message(2) set last 
ommand to "keep key"(3) while there is a key to be derived(4) get a key index from key{list(5) sear
h indexes part of rekey message for key index(6) if there is a 
ommand(7) exe
ute the 
ommand on the spe
i�
 key(8) set last 
ommand to this 
ommand(9) else(10) sear
h keys part of the rekey message for key index(11) if there is a key(12) substitute it in the key list(13) set last 
ommand to "update"(14) if there is no 
ommand or key(15) exe
ute last 
ommand in 
urrent keyThe algorithm to handle rekey messages starts with a member holding a listof known keys (key{list). After exe
uting the algorithm, a member will have allhis keys freshened up. A simpli�ed version of this algorithm appears in Algorithm1.



In the remainder of this paper, we use the following notation:+i or �i or �i are 
ommands to be applied on key iR(ki) refresh ki applying F(ki; i)U(ki) update kj applying F(ki; j)fxgk en
ryption of x with kj : 
ommand 
ommand to key j's holder[
ommands; keys℄ message 
ontaining 
ommands and keys4 Basi
 OperationsIn this se
tion, we des
ribe the basi
 algorithms for join and leave operations forsingle and multiple 
ases.
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Fig. 3. Users u2 and u3 join the tree.Single Member Join Algorithm. When a member joins the group, it isasso
iated to a leaf node n. The KDC assigns a randomly 
hosen key kn to n.Leaf n is then in
luded in the tree at the parent of the shallowest leaf node s(to keep the tree as short as possible). Leaf s is removed from the tree, and inits pla
e a new node p is inserted. Leaves s and n are inserted as p's 
hildren.We see an example in Figure 2: Member 2 is pla
ed in leaf n2, whi
h is insertedat node n12. Node n12 be
omes the new parent of leaves n1 and n2. Leaf n2 isassigned key k2.In order to keep the ba
kward se
re
y, keys in n1's an
estor set need tore
eive new values. Key k1 is refreshed (k01 = R(k1)), K12 re
eives a value basedon k01 (K12 = U(k01)) and keys K14 and K18 are refreshed (K 014 = R(K14) andK 018 = R(K18)).Note that during a join operation, keys, whi
h were already in the tree, arejust refreshed. Members holding those keys only need to be told those keys'indexes to be able to generate their new values, whi
h means that these keys donot have to be transmitted. In the same way, members that had their keys usedfor generating new keys just have to be told the index of the new key and they
an generate that key by themselves.The KDC generates uni
ast messages for member n2 ([k2; K12; K014; K018℄) andmember n1 ([+12℄), and multi
ast message [14 : �14; 18 : �18℄.



Member u2 re
eives its uni
ast message and 
reates its key{list. Member u1re
eives its uni
ast message and derives key K12, in
luding it in its key{list.Members holding keys K14 and K18 refresh these keys.Multiple Members Join Algorithm. Several new members are insertedin the tree as in the single member join algorithm. They are asso
iated to nodesand the nodes are pla
ed at the parent of the shallowest leaves. However, thekeys in the tree are modi�ed in a slightly di�erent manner. New nodes' an
estorsets 
onverge at some point and all keys that are in more than one an
estor setare modi�ed only on
e.See Figure 3 for an example. Members u2 and u3 joined the group and havebeen pla
ed at nodes n12 and n43, respe
tively. Following the single member joinalgorithm, the keys in member u2's an
estor set are 
hanged: �rst, k01 = R(k1),and then, K12 = U(k01), K14 = R(K14), K 018 = R(K18). In the same way, keys inmember u3's an
estor set are 
hanged: �rst, k04 = R(k4), and then, K43 = U(k04).KeysK12 and K18 have already been 
hanged be
ause of member u2, hen
e theyare not 
hanged again.The KDC generates uni
ast messages for member n2 ([k2; K12; K014; K018℄),member n3 ([k3; K43; K014; K018℄), member u1 ([+12℄) and member u4 ([+43℄), andmulti
ast message [14 : �14; 18 : �18℄.Members u2 and u3 re
eive their uni
ast messages and 
reate their respe
tivekey{lists. Member u1 re
eives the uni
ast message, derives keyK12, and in
ludesit in its key{list. Member u4 does the same with key K43. Members holding keysK14 and K18 refresh these keys.
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Fig. 5. Users u2 and u6 leave the tree.Single Member Leave Algorithm.When a member u leaves or is removedfrom the group, its sibling s repla
es its parent p. Moreover, all keys known byu should be updated to guarantee forward se
re
y. For example, see Figure 4:u2 leaves (or is removed from) the group and its node is removed from the tree.Node n12 is also removed and leaf n1 is promoted to its pla
e.In order to keep the forward se
re
y, keys in n1's an
estor set need to re
eivenew values. Keys K14 and K18 have to be updated: k01 = R(k1), K 014 = U(k01)and K 018 = U(K 014).Note that in removal operations, all keys in the removed member's an
estorset are updated. Those keys 
annot be just refreshed be
ause the removed mem-



ber knows their previous values and 
ould easily 
al
ulate the new values. Sin
ethe new values are all generated from the removed member's sibling key, whi
hwas not known by the removed member, the removed member 
annot �nd thenew values.The KDC generates multi
ast message [1 : �12; fK014gK34 ; fK018gK58 ℄.Member n1 refreshes k01 and, be
ause it has removed K12, it updates K14and K18. Members holding key K34 get new key K 014 and then update key K18.Members holding key K58 get new key K 018.Multiple Members Leave Algorithm. This algorithm is handled simi-larly to the single member leave algorithm. The leaving nodes are removed andthe tree shape is adjusted a

ordingly. As in the multiple join algorithm, there
an be several di�erent path from removed nodes to the root, whi
h means thatthe root key 
an be updated by several nodes (see Figure 5).In order to avoid several root key versions for the same operation, the KDC
hooses one of the paths and use it to update the root key. For example, inFigure 5, n2 and n6 leave the group and nodes n1 and n5 are promoted to theirrespe
tive parents' pla
es (n12 and n56). Both are used to derive their new parentkeys K 014 and K 058, but then they both 
annot be used to update keyK 018. In this
ase, the KDC 
hooses one of them to update key K 018 and the other will re
eivethe updated key. For instan
e, the KDC 
hooses node n1 and then the keys areupdated as follows: k01 = R(k1), K 014 = U(k01), K 018 = U(K 014), k05 = R(k5) andK 058 = U(k05).The KDC generates multi
ast message [1 : �12; 5 : �56; fK014gK34 ; fK058gK78 ;fK018gK058 ℄.Member n1 refreshes k01 and, be
ause it has removed K12, it updates K 014and K 018. Key K34's holders re
over K 014 and update K 018. Member n5 refreshesk05 and updates K 058, but sin
e there is a new key en
rypted with K 058, n5 stopsupdating its keys and just re
overs K 018. Key K78's holders re
over K 058 and,sin
e there is a key en
rypted with it, they just re
over K 018.Rebalan
ing. The eÆ
ien
y of the key tree depends 
ru
ially on whetherthe tree remains balan
ed or not. A tree is said to be balan
ed if no leaf is mu
hfurther away from the root than any other leaf. In general, for a balan
ed binarytree with n leaves, the distan
e from the root to any leaf is log2 n, but if thetree is unbalan
ed, the distan
e from the root to a leaf 
an be
ome as high asn. Therefore, it is desirable to keep a key tree as balan
ed as possible.The rebalan
ing works by getting the shallowest and deepest internal nodesand 
omparing their depths. If the depth gap is larger than two then it meansthat the tree is unbalan
ed and needs to be levelled. For balan
ing the tree, thedeepest leaf node is removed, whi
h makes its sibling to go one level up (similarlyto the removing algorithm), and inserted at the shallowest node (similarly to theinserting algorithm). This pro
edure is repeated until the di�eren
e between thedepths of the shallowest and the deepest nodes is smaller than two.In a rebalan
ing operation, the deepest node, whi
h has been moved fromone position in the tree to another, requires that its old keys need to be updated(as in a deletion operation) and it needs to have a

ess to the keys in its new



path to the root (as in an insertion operation). Therefore, an insertion and adeletion are performed simultaneously.
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u8Fig. 6. Rebalan
ing the tree.See Figure 6 for an example. The tree needs a rebalan
ing, so leaf n8 isdeleted from its original position (n89) and inserted into a new position (n38).The deletion starts a removal operation with leaf n9 updating the new keys. Atthe same time, leaf n3 starts refreshing the keys on its path (as an insertionrequires). The new keys are 
al
ulated as follows: k09 = R(k9), K 079 = U(k09),K 059 = U(K 079), k03 = R(k3), K38 = U(k03) and K 018 = R(K 018). Key K 019 does notneed to be 
hanged.The KDC generates uni
ast messages for member n8 ([K38; K018℄ and memberu3 ([+38℄), and multi
ast message [9 : �89; 18 : �18; fK079gk7 ; fK059gK56 ℄.Member n8 deletes all its known keys and repla
es them by those just re-
eived. Member n9 updates its keys. Members n7 and key k56's holders extra
ttheir parts and update their keys. Member n3 derives K 038. Key K18's holdersrefresh K 018.5 EvaluationIn this se
tion, we 
ompare the properties of the EHBT algorithm with the otheralgorithms introdu
ed in se
tion 2: PRGT2 (Canetti et al.), HBT+ (Caronni etal), OFT (M
Grew and Sherman) and ELK (Perrig). We fo
us our 
riteria onKDC 
omputation, joined member 
omputation (for insertions), sibling 
ompu-tation (sibling to the joining/leaving member), size of the multi
ast message,size of the uni
ast messages and storage at both KDC and members.The notations used in this se
tion are:2 Canetti does not spe
ify the PRG fun
tion to use, hen
e we assume the same RC5algorithm used in ELK.



n number of member in the groupd height of the tree (for a balan
ed tree d = log2 n)I size of a key index in bitsK size of a key in bitsG key generationH hash fun
tion exe
utionX xor operationE en
ryption operationD de
ryption operationTable 1 summarizes the 
omputation required from the KDC, joined mem-ber and sibling to joined member, and message size of joining member's uni
astmessage, sibling's uni
ast message and multi
ast message during single join op-erations. Table 1. Single join operation equations.S
heme/ Computation Message sizeResour
e KDC Join member Sib member Join uni
ast Sib uni
ast Multi
astEHBT G + (d + 1)(X + H + E) (d + 1)D (d + 1)(X + H) (d + 1)K I dIPRGT 2G + dH + (d + 1)E (d + 1)D D + dH (d + 1)K I +K dIHBT+ 2G + dH + (d + 1)E (d + 1)D D + dH (d + 1)K I +K dIOFT G + (d + 1)H + dX + 3dE (d + 1)D + d(H +X) 2D + d(H +X) (d + 1)K I + 2K (d + 1)KELK G + (4n � 2)E and (d + 3)E (d + 1)D 2dE and 2E (d + 1)K I 0Table 2 summarises multiple join operation equations. The parameters anal-ysed are the same parameters used in Table 1. The equations are valid for mul-tiple joins when the original number of members is doubled after the mass join,whi
h means that every old member gets a new sibling (a new member) and allthe keys in the tree are a�e
ted. This represents the worst 
ase possible for joinoperations. For the sake of the equations in this table, n is the original numberof members in the group previously to the mass join, but d is the new height ofthe tree after the mass join.Table 2. Multiple join operation equations.S
heme/ Computation Message sizeResour
e KDC Join member Sib member Join uni
ast Sib uni
ast Multi
astEHBT nG + (3n � 1)(X +H) + n(d + 1)E (d + 1)D (d + 1)(X +H) n : (d + 1)K n : I (n� 1)IPRGT 2nG + (n� 1)H + n(d + 2)E (d + 1)D D + dH n : (d + 1)K n : I +K (n� 1)IHBT+ 2nG + (n� 1)H + n(d + 2)E (d + 1)D D + dH n : (d + 1)K n : I +K (n� 1)InG + (4n � 2)(H +X)+ (d + 1)D+ 2D+OFT (nd + 5n� 1)E d(H +X) d(H +X) n : (d + 1)K n : I + 2K (2n � 2)KELK (8n� 2)E and nG + n(d + 3)E (d + 1)D 2dE and 2E n : (d + 1)K n : I 0EHBT requires less 
omputation than the other s
hemes, but it loses outto ELK when 
omparing the message sizes. The reason for that is that ELKemploys a timed rekey, whi
h means that the tree is 
ompletely refreshed at



intervals, despite membership 
hanges, thus only the index of the new parentinserted needs to be sent to the sibling of the joining member. However, this risestwo issues: �rst, at every interval the KDC has to refresh all its 2n-1 keys, whi
himplies unne
essary work for the KDC; se
ond, this s
heme does not supportrekey on membership 
hanges (regarding join operations). Additionally, ELKimposes some delay on the joining member before he re
eives the group key.Table 3. Single leave operation equations.S
heme/ ComputationResour
e KDC Sib member Multi
astEHBT d(X +H + E) d(X +H) I + dKPRGT (2d + 1)E D + dE I + (d + 1)KHBT+ 2dE dD I + 2dKOFT d(H +X + E) D + d(H + X) I + (d + 1)KELK 8dE dD + 5dE I + d(n1 + n2)Table 3 summarizes the KDC 
omputation, sibling 
omputation and multi-
ast message size during single leave operations. We also analyse the equationsof multiple leave operations, and we show the results in Table 4. For mass leav-ing, we 
onsider the situation when exa
tly half of the group members leave thegroup. The sibling of every leaving member remains in the tree, and hen
e, allkeys in the tree are a�e
ted.Table 4. Multiple leave operation equations.S
heme/ ComputationResour
e KDC Sib member Multi
astEHBT (2n� 1)(X +H) + (n � 1)E D + (d + 1)(X + H) nI + (n � 1)KPRGT (5n=2� 2)E D + dE (3n=2� 1)KHBT+ (2n � 2)E dD nI + 2(n � 1)KOFT (2n � 2)H + (n � 1)X + (3n � 2)E (d + 1)D + d(H +X) nI + (3n � 2)KELK (7n � 3)E dD + 5dE nI + (n� 1)(n1 + n2)For leaving operations, again EHBT a
hieves better results than the others
hemes regarding the 
omputations involved, but loses out to ELK when 
om-paring the multi
ast message size. ELK has a slightly smaller multi
ast messagethan EHBT, be
ause it sa
ri�
es se
urity. ELK uses only n1 +n2 bits of a totalK possible bits for generating a new key and this pro
edure weakens that key,Consequently, an expelled member needs to 
ompute only 2n1+n2 possibilities tore
over the new key. In EHBT, however, an expelled member needs to 
omputethe full 2K operations to brute-for
e the new key.We have simulated a group with 8192 members. For the 
al
ulations of themultiple join operations, we doubled the size of the group to 16384 members,and then we removed all joining members and �nished with the 8192 originalmembers. We measured en
ryption and de
ryption times for the RC5 algorithm,



MD5 hash fun
tion and xor operation. We used 16-bit keys for the 
al
ulations.We used Java version 1.3 and IAIK [4℄ 
ryptographi
 toolkit on a 850Mhz MobilePentium III pro
essor. It takes 1:72 � 10�2 ms for RC5 to en
rypt a 16-bit keywith a 16-bit key, and 1:73 � 10�2 ms to de
rypt it. Hashing a 16-bit key takes4:95 � 10�3 ms and xoring it takes 1:59 � 10�3 ms. Finally, generating a 16-bitkeys takes 7:33 �10�3. Applying these numbers into Tables 2 and 4 produ
es theresults in Table 5 that show that EHBT in general is faster to 
ompute than theother proto
ols.Table 5. Time in millise
onds for multiple joins and leaves.S
heme/ Multiple Join Multiple LeaveResour
e KDC Join member Sib Member KDC Sib memberEHBT 2334 0:25 0:09 248:03 0:10PRGT 2415 0:25 0:08 352:22 0:24HBT+ 2415 0:25 0:08 281:77 0:22OFT 2951 0:35 0:12 516:78 0:32ELK 1140 + 2455 0:25 0:48 + 0:03 1105:46 1:34Finally, EHBT and the other s
hemes require the KDC to store 2n� 1 keysand members to store d+ 1 keys.6 Se
urity ConsiderationsThe se
urity of the EHBT proto
ol relies on the 
ryptographi
 properties of theh fun
tion. One{way hash fun
tions, unfortunately, are not proven se
ure [2℄;nevertheless, for the time being, there has not been any su

essful atta
k oneither the full MD5 [7℄ or SHA [1℄ algorithms [10℄.Taking into a

ount the use of hash fun
tions as fun
tion h, atta
ks on thehidden key are limited to brute-for
e atta
k. Su
h an atta
k 
an take 2n hashesto �nd the original key, with n being the number of bits of the original key usedas input.In order to guarantee ba
kward se
re
y and forward se
re
y, every time thereis a membership 
hange, the keys related to joining members or leaving membersare 
hanged.When a member is added to the tree, all keys held by nodes in its an
estorset are 
hanged to avoid giving the new member a

ess to past information. Forexample, see Figure 2, when member n2 is inserted in the tree, keyK12 is 
reatedand keys K 014 and K 018 are refreshed. Node n2 does not have a

ess to the oldvalues, be
ause it only re
eives the new key values, whi
h were hidden by thehash fun
tion, and assuming the hash fun
tion is se
ure, n2 has no other way tore
over the old key but brute-for
ing it. The same rule applies when n2 leaves;key K12 is deleted from the tree and keys K 014 and K 018 are updated and sin
en2 does not have a

ess to their new values it does no longer has a

ess to thegroup 
ommuni
ation.



7 Con
lusionUsing one{way hash fun
tions and xor operations, we 
onstru
ted an eÆ
ientHBT proto
ol that a
hieves better overall performan
e than other HBT proto-
ols. Our proto
ol, 
alled EHBT, requires only (I � log2 n) message size for joinoperations and (K � log2 n) message size for leaving operations. Additionally,EHBT requires the same key storage as other HBT proto
ols, and it requiresmu
h less 
omputation to rekey the tree after membership 
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