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Abstract. A self-similar point process is developed by embedding a
process with bursty behavior over timescales. This embedding is not
arbitrary, but achieved through a model which itself has fractal patterns.
This model decomposes the self-similar point process over its timescales
in a manner that may be tractable for accurate characterization and
control of packet traffic. The limiting behavior of the model is shown
to possess the properties of a self-similar point process, namely, bursts
of arrivals which have no (intrinsic) timescale. Furthermore, this model
leads to efficient synthesis of such a process.

1 Introduction

In [1,2] the term self-similarity is used to describe the fractal (a form of invariance
with respect to changes in scale) nature of a stochastic process in its distribu-
tion, more specifically, Y (t) =d c−HY (ct), where =d is equality in distribution.
Fractal (or self-similar) processes are among many possible models for gener-
ating long memory (long-range) dependent process. For example, (fractional)
Brownian motion is a self-similar process and its increments may yield a long-ra
nge dependent process. Not every fractal process will give rise to long range
dependent process, for example standard Brownian motion and its increments.

Long-range dependence can be observed in many ways. One of the most
common ways is to examine the correlation function, ρ(k). A long-range de-
pendent process will have a correlation structure that decays to zero at a rate
that is proportional to k−α where 0 < α < 1, so that

∑∞
k=n ρ(k) = ∞,

∀n < ∞. A consequence of this correlation structure is that the variance of
the sample mean of the process decays to zero at a rate slower than n−1,

limn rightarrow∞
var[

∑n

i=1
Xi]

n2−α = K for 0 < α < 1, which has been typically
referred to as asymptotic self-similarity [3,4,5,6].

Asymptotic self-similar traffic has been observed to occur in many commu-
nication networks [3,7,8]. This traffic tends to be so bursty, that even bursts are
composed of bursts of bursts (a fractal “like” property). Several useful models
have been proposed that capture this behavior, namely the M |G|∞ (with Pareto
service times) model [9], the superposition of two state Markovian sources [10],
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the mixture of exponentials to fit the long-tail distributions citeFeldman, the
superposition of N On-Off processes with sub-exponential On periods [12,13],
deterministic chaotic maps [14] and self-similar (fractal) point processes [1,15,4].
In each of the above models, it has been shown that the number of arrivals over
an interval (number of busy servers in M |G|∞ model) all exhibit a long-range
dependent correlation structure.

In this work, a self-similar (fractal) point process is developed. A self-similar
point process, as defined by [1] is one whose inter-arrival times follow the “uni-
formly self-similar law of probability.” Mathematically, Pr( U

ε1
> u| Uε1 > 1) =

Pr( U
ε2

> u| Uε2 > 1), where U is the random variable corresponding to the inter-
arrival times. The model developed in this work, is based on a fractal construction
of a basic point process (c luster process), where clusters are embedded over an
infinite number of timescales. This construction is the basis of a self-similar point
process where points appear to be grouped in clusters, which in-turn are grouped
in clusters of clusters, etc. [1]. This construction leads to bursts which have no
(intrinsic) timescale. In addition, this model decomposes the self-similar point
process in a manner that may be tractable for the accurate characterization and
control of packet traffic. The model may also allow for further understanding the
features of self-similar traffic and how they may impact network performance.
Furthermore, this model leads to efficient synthesis of such a process.

2 Construction of a Self-Similar Point Process

In this section, a model for self-similar point processes is developed. The model is
based on a fractal construction of a basic point (cluster) process, where clusters
are embedded over all timescales.

2.1 Basic Process

Consider a process that generates Poisson arrivals with rate λ. After each ar-
rival instant, a decision is made with probability p to continue generating ar-
rivals with rate λ or with probability 1− p = q to turn off for a period of time.
The number of arrivals, N , before entering an Off period is geometrically dis-
tributed with a mean q−1. Thus, the time spent in an On period, τ =

∑N
i=1 Xi,

is a geometric sum of independent identically distributed (ii d) exponential ran-
dom variables, Xi. It is shown in the Appendix, that τ is an exponentially
distributed random variable with parameter λq. Therefore, if the Off periods
are taken to be exponentially distributed, then an On-Off Markovian model,
as shown in Fig. 1, may be used to describe this basic process. The timescale
of this basic point process is 1

q . A realization of the point process generated
by this basic On-Off process is seen in Fig . 2. The exponential parameter of
the Off period is also taken to be λq. In addition, it is also assumed that an
arrival is generated upon departing from an Off period. The inter-arrival time
probability density function for this basic process is, f1X(x) = f1X|on(x)Pon +
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λ q

λ q
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Fig. 1. On-Off Markovian model.

inter cluster gap

time

Fig. 2. Point process generated by
an On-Off Markovian model.

f
1X|off(x)Poff, where f1X|on(x) and f

1X|off(x) are the inter-arrival distribu-
tions while in the On and Off states, respectively. Pon is the probability that
an inter-arrival time is drawn from the fX|on(x) distribution. Pon may be

viewed as, Pon = E[# of arrivals during an on period over one cycle]
E[total # of arrivals over one cycle] = 1

1+q . Simi-
larly Poff = q

1+q . The inter-arrival distribution of this process is,

f1X(x) =
{ 1

1+q λe−λx + q
1+q λqe−λqx for x ≥ 0

0 otherwise.
(1)

This basic model along with its properties are repeatedly used for the fractal
construction of a self-similar point process.

2.2 Fractal Construction

As it can be seen in Fig. 2, the basic process generates a burst of arrivals over
one timescale. The burst lengths are exponentially distributed with parameter
λq and the idle periods are also exponentially distributed. To obtain burstiness
on the next timescale, this basic process is embedded into the On state of another
basic process. This two-scale process may be viewed on the next timescale as
the basic process. However, an arrival on this next timescale represents a clus
ter on the lower timescale. Furthermore, the inter-cluster gaps, as seen in Fig.
2, are exponentially distributed with parameter λq. Therefore, arrivals on this
next timescale during an On period may also be viewed as occurring according
to a Poisson process with rate λq.

Again, upon each arrival (cluster at the lower timescale), a decision1 is made
with probability q to enter an idle period. Thus, the time spent in the On state
at this next timescale is a geometric sum of iid exponential random variables
(On and Off periods of the lower scale) with parameter λq, and hence, the arrival
On per iod is exponentially distributed with parameter λq2. The Off period at
this next scale is also taken to be exponentially distributed with parameter λq2.
When the process described above enters an On period, the state of the next
lower scale process is selected with equal probability. A diagram for this two
1 A decision is made at the beginning and ending of each arrival to maintain a geo-

metric sum of iid exponential random variables.
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Fig. 3. Embedding an On-Off model of one scale
into another.
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Fig. 4. Point process with one level
of embedding and two time scales.

timescale process is shown in Fig. 3. The lower timescale is 1
q , while the higher

timescale is 1
q2 .

During an On period of the higher timescale process, the lower timescale
process alternates between On and Off periods, see Fig. 3. The number of times
it alternates between the On and the Off periods is a geometric random variable
with mean q−1. Thus, there will be (on average) 1

2q visits to the Off state of the
lower timescale and 1

2q visits to the On state of the lower timescale. Each visit to
the On state of the lower timescale generates (on average) 1

q arrivals. Therefore,
the probability that a given arrival occurs from leaving the off period of the
higher timescale process is 1

1
2q2 + 1

2q +1 = (2q)2

2+2q+(2q)2 . Similarly, the probabilities

that a given arrival occurs for the Off and On periods of the lower scale process
are 2q

2+2q+(2q)2 and 2
2+2q+(2q)2 , respectively. The inter-arrival time distribution

for this two-scale point process is,

f2X(x) =

{
2λe−λx+2qλqe−λqx+(2q)2λq2e−λq2x

2+2q+(2q)2 for x ≥ 0
0 otherwise.

This point process consists of clusters, which in-turn are composed of clusters of
arrivals. This behavior is shown in a realization of this point process over two
timescales in Fig. 4.

Now consider a point process constructed in a fashion as described above
which contains n timescales. This process may be viewed as the basic process
embedded in the On state of the nth timescale. The time between visits to the
On and Off periods in this n timescale process is exponentially distributed with
parameter λqn. The diagram for the n timescale process is shown in Fig. 5. For
each arrival generated from leaving an Off period at the hig hest timescale, (on
average) 1

2q arrivals will be generated from leaving an Off period at the next
lower timescale, 1

2q2 arrivals will be generated by the following Off period of the
next timescale, etc. Continuing in this manner, for every event that occurs from
leaving the Off period in the highest timescale, the average number of events that
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Table 1. Probabilities and rate of arrivals occurring on a particular timescale.

State Time Probability Average
Scale arrival rate

off q−n (2q)n

2+
∑n

i=1
(2q)i

λqn

...
...

...
...

off q−j (2q)j

2+
∑n

i=1
(2q)i

λqj

...
...

...
...

off q−1 2q

2+
∑n

i=1
(2q)i

λq

on q−1 2
2+

∑n

i=1
(2q)i

λ

occur due to the process being in the Off states of any timescale can be identified.
Table 1 contai ns the probability of an arrival generated from a particular state.

Given that the process is in the Off period at timescale i, the time spent in
this period is exponential with parameter λqi. Therefore, the inter-arrival time
distribution of the overall point process is,

fnX(x) =




2λe−λx+
∑n

i=1
(2q)iλqie−λqix

2+
∑n

i=1
(2q)i

∀x ≥ 0

0 otherwise.
(2)

It is easily verified that
∫ ∞
0 f

nX(x) = 1. As the number of timescales approach
infinity, interesting properties of the distribution of the time between clusters
(inter-cluster gap) develop. Let fX(x) ≡ limn→∞ f

nX(x), which may be shown
to be uniformly convergent (see Section 3.1).

Distribution of Inter-cluster Times A cluster at the (i − 1) timescale cor-
responds to an arrival at timescale i. If a cluster can be assumed to be a point
(by compressing time by a factor of qi−1) then the model may be assumed to
start from scale i and has (n − i) timescales. Therefore, the inter-cluster times

q     pλ n-1

Scale n

ON

q

OFF ON

Scale n

OFF

Scale n-1

λ n

λqn

q    pλ n-1 Scale n-1

Fig. 5. Model to construct fractal point process over n timescales.
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Y have a probability density function,

fnY (x) =




2λqi−1e−λqi−1x+
∑n−i+1

j=1
(2q)jλqi+j−1e−λqi+j−1x

2+
∑n−i+1

j=1
(2q)j

∀x ≥ 0

0 otherwise.
(3)

Scaling Y by qi−1, the new random variable, Y ′ = qi−1Y , has a probability
density function,

f
lY ′(x) =




2λe−λx+
∑l

j=1
(2q)jλqje−λqjx

2+
∑l

j=1
(2q)j

∀x ≥ 0

0 otherwise,

where l = n − i + 1 . Let fY ′(x) ≡ liml→∞ f
lY ′(x), which is also uniformly

convergent.
Consider the complementary cumulative distribution function (ccdf) for X

and Y . It is seen that

P (X > u) =
∫ ∞

u

fX(x)dx =
∫ ∞

u

fY ′(x)dx = P (Y ′ > u).

(Note that these are the same values of u, but on different timescales). Therefore,
the probability that an inter-cluster time is greater than u of its time units is
equal to the probability that the inter-arrival time of points is greater than u of
its time units. Since, n→∞ (l →∞), this result holds for all finite timescales.
Thus, a burst on any timescale will be statistically the same, a fundamental
characteristic of a fractal point process.

3 Analysis of the Model

The model delveloped had no strict restrictions on the parameters used to de-
scribe it. The only conditions on the parameters were λ > 0 and 0 < q < 1.
The density function has to be investigated further to find whether any more
restrictions on the model parameters are needed to make the probability density
function a valid density function, as n→∞.

3.1 Uniform Convergence of the Probability Density Function

Using the model described in Section 2, points (arrivals) can be generated with
an inter-arrival distribution given in (2). Several characteristics are observed in
this process as the number of timescales embeddings approach infinity, namely,
the inter-cluster time distributions were statistically the same and only differed
in timescale. Convergence of this distribution fX(x) for any timescale is studied
in this section. Uniform convergence of fX(x) = limn→∞ f

nX(x) can be shown
by applying the Weierstrass’ M-test [16], as follows. For x < 0, the probability
density function is always zero. For x ≥ 0, the probability density function can
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be analyzed by considering it to be the quotient of two series. The probability
density function fX(x), for x ≥ 0, is,

fX(x) =
2λe−λx +

∑∞
i=1(2q)iλqie−λqix

2 +
∑∞

i=1(2q)i
.

When q ∈ (0, 0.5), the denominator in the above expression evaluates to 2−2q
1−2q .

The infinite series in the numerator is λ[2e−λx +
∑∞

i=1(2q2)ie−λqix]. Let Mn =
(2q2)n for n > 0 and Mn = 2 for n = 0. Then,

∑∞
n=0 Mn converges absolutely if

2q2 < 1. For q ∈ (0, 0.5), 2q2 ≤ 1 and
∑∞

n=0 Mn converges to 2−2q2

1−2q2 . If gn(x) is
defined as

gn(x) =
{

2e−λx for n = 0
(2q2)ne−λqnx for n > 0

,

then it is seen that for all x > 0 and λ > 0, |gn(x)| ≤ Mn,∀n > 0 and therefore,
Nr{fX(x)} converges uniformly ∀x ≥ 0. Thus, it is seen that fX(x) converges
uniformly ∀x ≥ 0, when the generation process consists of infinite number of
timescale embeddings.

3.2 Moments of the Density Function

The mean inter-arrival time for this process with 0 ≤ q ≤ 0.5 may be evaluated
as,

E[x] =
∫ ∞

0

2λxe−λx +
∑n

i=1(2q)iλqixe−λqix

2 +
∑n

i=1(2q)i
dx (4)

=
1
λ (2 +

∑n
i=1 2i)

2 +
∑n

i=1(2q)i
.

As n→∞,

E[X] =
1
λ (2 +

∑∞
i=1 2i)

2 +
∑∞

i=1(2q)i
(5)

=∞.

Therefore, as the number of timescales embedded in the process approaches
infinity, the mean inter-arrival time approaches infinity and the mean arrival
rate E[X]−1 approaches zero. This result is another fundamental and necessary
characteristic of a self-similar point process [1].

3.3 Behavior of the Density Function Compared to a Pareto
Distribution

A point process can be called fractal if the following phenomenon is observed.
On a particular timescale, the point process looks bursty, with a lot of arrivals
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clustered around one point. If the time axis is dilated about this point and the
cluster is closely observed, the cluster looks bursty again leading to the formation
of clusters over the new timescale. If on continuous dilations of the timescale
about a point where the arrivals appear to be clustered, results in clustering of
points again over several timescales, the point process is said to exhibit fractal
properties. Alternatively, it can be explained as follows. The distribution of the
inter-arrival time on a particular timescale and the distribution of the inter-
arrival time on another timescale, differ only in scale. In [1], it is shown that the
only distribution that satisfies the above condition, i s the Pareto distribution.
A Pareto distribution can be described by its probability density function,

fX(x) =
{

Kεx
−(γ+1) x ≥ ε

0 otherwise,
(6)

where Kε is a normalizing constant to make fX(x) a valid density function.
A Pareto distribution may be expressed as a weighted sum of exponen-

tials by considering the Gamma function. The Gamma function is, Γ (D) =∫ ∞
0 e−yyD−1dy. Allowing y = bx, dy = xdb and observing that the limits remain

the same, the following equation is obtained, x−D =
∫ ∞
0 e−bxbD−1dbΓ (D)−1.

Approximating this integral by a summation, x−D may be written as a sum
of weighted exponentials. This approach may be used to relate the fractal pa
rameter D, to the parameters of this model. If the probability density function
of the inter-arrival times for a point process generated by this model behaves
as x−D, a relationship between the model parameters and the fractal D may be
obtained. Approximating the integral,

x−D = Γ (D)−1
∞∑

m=0

e−bmxbD−1
m (bm − bm+1).

Using the substitution bm = λqm, the above equation becomes,

x−D = Γ (D)−1
∞∑

m=0

e−λqmx(λqm)D−1(λqm)(1− q)

= G(D)
∞∑

m=0

λ(qm)De−λqmx, (7)

where G(D) = Γ (D)−1λD−1(1− q).
The probability density function can be written as,

fX(x) =
2− 2q

1− 2q
[λe−λx +

∞∑
m=0

λ(2q2)me−λqmx]. (8)

For large values of x the contribution of the initial terms in (7) and (8) are
negligible. Comparing the remaining terms of (7) to those of (8), it is seen that
qmD = (2q2)m or,

D =
log 2
log q

+ 2, (9)
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Fig. 6. Loglog plot of ccdf of the simulated data vs. Pareto distribution.

and γ = (D − 1), where γ is the fractal exponent of the Pareto distribution in
(6). It is seen that for 0 < q < 0.5, then 0 < γ < 1, which is the range for which
the point process in [1] behaves as a fractal point process.

4 Results

In this section, the simulations using the above described model are compared
to the theoretical Paretian distributions. Fig. 6 compares the complementary
cumulative distribution function of the point process simulated to that of the
corresponding Pareto distribution. It may be seen from these plots that the prob-
ability density function of the point process generated by this model approaches
a Paretian distribution. Fig. 7 shows the counting process of a single realization
over three different time scales. The first plot contains the first 10000 points of
the simulation. The plot shows the strong clustering of data. On zooming in,
on the first cluster, the second plot is obtained, which again shows strong clus-
tering of data. On further zooming in, the third plot is obtained, which shows
strong clustering of points again. The clustering of clusters and the reduction of
a cluster into a point on higher timescales may be illustrated in this figure.

5 Conclusion

This model was developed based on the fact of clustering of arrivals within clus-
ters as in present day telecommunication traffic. The concept of embedding an
On-Off process into another On-Off process gives more structure to the under-
standing of these clusters. In [1], it is shown that if the inter-arrival times follow
a Paretian distribution, the inter-cluster time distribution differ from the inter-
arrival time distribution only in scale. The analysis of the model developed ,
shows that the distribution of the inter-cluster time and that of the inter-arrival
time of the point process, differ only in scale. In addition, the model allows for
efficient synthesis of the process. The simulation results show that the comple-
mentary cumulative distribution function of the inter-arrival times behaves as a
Pareto distribution.
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Fig. 7. Counting process showing strong clustering of arrivals over different timescales.

A Geometric Sum of Exponential Random Variables

Theorem 1. If S =
∑N

i=1 Xi, where Xis are independent identically distributed
exponential random variables with parameter λ and N is a geometric random
variable with parameter q, then S is an exponential random variable with pa-
rameter λq.

Proof:
The distribution of S is found by first conditioning on N = n,

fS|N=n(s) =

{
λnsn−1

(n−1)! e−λs ∀s ≥ 0
0 otherwise.

Taking expectation with respect to N ,

fS(s) =
∞∑

n=1

λnsn−1pn−1qe−λs

(n− 1)!

= λqe−λse−λsp

= λqe−λsq.

Thus, the probability density function of S is,

fS(s) =
{

λqe−λqs ∀s ≥ 0
0 otherwise.

B Algorithm for Generating a Self-Similar Point Process

The algorithm used to synthesize the fractal point process of Section 2, is de-
scribed in this section. This algorithm assumes embedding of On-Off processes
over infinite timescales. The other parameters to be specified are λ and γ. λ is
determined by the value of time above which the probability density function or
the complementary cumulative distribution function behaves as a Pareto distri-
bution. This may be viewed as setting the value of ε in (??). γ is the parameter
of the Pareto distribution.
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This algorithm consists of four functions. The variables currentState and
q are used in the algorithm. currentState corresponds to the state and the
timescale in which the generation process is residing. currentState = 1 corre-
sponds to the On state of the lowest timescale. currentState = 2 corresponds
to the Off state of the lowest timescale. Continuing similarly currentState = n
corresponds to the Off state of the (n − 1)th timescale. The value of q depends
on the expone nt of the Pareto distribution, to which the probability density
function of the inter arrival time approaches. It is calculated from the value of
γ, using relation (9). A random initial state is chosen according to the proba-
bilities given in Table 1. The process starts off initially with currentState set
to this number. The second function NEXTSTATE computes the state to which
the generation process will jump next. This function uses two other functions
SUCCESS and FA ILURE. SUCCESS and FAILURE describe the sequence of
events that occur when the process has to leave any particular state.

GENERATE(λ, γ)

1. q ← 2− 1
1−γ

2. initialize currentState
3. time← 0
4. while(1)
5. do generate exponential random number, exp, with parameter λqcurrentState−1

6. time← time + exp
7. Generate an arrival at time seconds
8. currentState← NEXTSTATE(currentState)

NEXTSTATE(currentState)

1. Generate a uniform random number unirand ∈ (0, 1).
2. if (unirand > q)
3. currentState←SUCCESS(currentState)
4. else
5. currentState←FAILURE(currentState)
6. return currentState

SUCCESS(currentState)

1. if (currentState = 1)
2. return currentState
3. else
4. currentState← currentState− 1
5. Generate uniform random number unirand ∈ (0, 1)
6. if (unirand < 0.5)
7. return currentState
8. else
9. return SUCCESS(currentState)

FAILURE(currentState)
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1. currentState← currentState + 1
2. Generate uniform random number unirand ∈ (0, 1)
3. if (unirand > q)
4. return currentState
5. else
6. return FAILURE(currentState)
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