
Exploiting IP Multicast in Content-Based

Publish-Subscribe Systems

Lukasz Opyrchal1, Mark Astley2, Joshua Auerbach2, Guruduth Banavar2,
Robert Strom2, and Daniel Sturman2

1 Dept. of EECS, University of Michigan,
1301 Beal Avenue, Ann Arbor, MI 48109, USA

2 IBM T.J. Watson Research Center,
30 Saw Mill River Rd., Hawthorne, NY 10532, USA

Abstract. Publish-subscribe systems are evolving toward using
content-based subscription rather than subject-based subscription. A key
problem in implementing such systems is that a straightforward mapping
from matching sets to multicast groups produces a number of groups that
rapidly grows beyond practical limits. This paper proposes a set of al-
ternative algorithms for solving this problem, by: (1) using a smaller set
of overbroad multicast groups, judiciously chosen to minimize impreci-
sion; (2) issuing multiple multicasts to appropriately chosen clusters; or
(3) sending an event over multiple hops each involving a multicast to a
set of neighbors. We evaluate these algorithms on a simulated wide-area
network. We find that (1) a simple flooding algorithm is viable over an
extensive range of conditions; and (2) under conditions of high selectivity
and high regionalism of subscriptions, the other approaches mentioned
above perform significantly better; however, the specific algorithm to use
depends upon the economics of deployment.

1 Introduction

Publish-subscribe systems provide a convenient approach for interconnecting ap-
plications on a distributed network. Publish-subscribe middleware is currently
being deployed for application integration in many domains including financial,
process automation, and transportation. In the publish-subscribe paradigm, in-
formation providers publish units of information called events, and information
consumers subscribe to particular categories of events. The middleware ensures
the timely delivery of published events to all interested subscribers.

The earliest publish-subscribe systems used subject-based subscription. In
the past decade, systems supporting this paradigm have matured significantly,
resulting in several academic and industrial strength solutions [3,16,18,19,21]. In
subject-based subscription, each event is classified and labeled by the publisher
as belonging to one of a fixed set of subjects (also known as groups, channels,
or topics). Consumers subscribe to all the events within a particular subject
or set of subjects. Except for the subject identifier, the information content of
events is opaque to the middleware. A strength of this approach is the potential

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 185–207, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

186 Lukasz Opyrchal et al.

to easily leverage group-based multicast techniques to provide scalability and
performance, by assigning each subject to a multicast group.

An emerging alternative to subject-based subscription is content-based sub-
scription [1,2,20]. These systems support an event schema defining the type
of information contained in each event. For example, applications interested
in stock trades may use the event schema [issue: string, price: dollar,
volume: integer]. A content-based subscription is a predicate against the ev-
ent schema, such as (issue="IBM" & price < 120 & volume > 1000). With
content-based subscription, subscribers have the added flexibility of choosing
filtering criteria along multiple dimensions, without requiring pre-definition of
subjects. In our stock trading example, a subject-based subscriber is forced to
select trades by issue name. In contrast, a content-based subscriber is free to use
an orthogonal criterion, such as volume, or indeed a collection of criteria, such
as issue, price and volume.

While content-based subscription is the more general and flexible paradigm,
providing efficient and scalable implementations of such systems is still an open
problem. In particular, existing group-based multicast techniques cannot readily
be applied to this problem. Each subscriber may have a unique subscription, and
therefore, each event may go to a widely varying group of subscribers. To naively
map these subscribers into groups may require a number of groups exponential
in the number of subscribers (i.e. 2N).

In this paper, we explore a number of approaches for exploiting group-based
multicast for event delivery in content-based publish-subscribe systems. In par-
ticular, we focus on being able to exploit widely available, best effort multicast
such as IP Multicast [8], or reliable multicast techniques built on top of IP
Multicast such as SRM [9].

We explore three approaches to reducing the number of groups needed: (1)
reducing precision: i.e., sending to overly broad groups where brokers may receive
events for which they have no client subscriptions, (2) multiple sends: i.e., sending
an event on multiple multicast groups instead of making a single multicast, or
(3) multi-hop routing: i.e. sending an event over a set of multiple hops each of
which entails a multicast to a set of intermediate brokers.

We define and evaluate five algorithms – traditional flooding, plus four newly
proposed algorithms – each of which exploits one or more of the above ap-
proaches. Each of the techniques we present in the paper is compared to an
abstract algorithm which we call “ideal multicast.” Ideal multicast assumes that
a perfect multicast group can be determined for each event. Ideal multicast pro-
vides a lower bound on network bandwidth utilization and latency.

We evaluate these algorithms on a simulated wide area network (WAN).
This network consists of 100 multicast-enabled routers supporting 88 publish-
subscribe servers (a.k.a. brokers), which include eight brokers with publishers
and 80 brokers with a total of 10,000 subscribers.

The remainder of the paper is organized as follows. In Sect. 2, we describe all
the evaluated algorithms. In Sect. 3, we provide details of the simulation setup
that we use to evaluate the various algorithms, and we summarize our findings.

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 187

In Sect. 4, we review some of the previous work on event distribution systems
using content-based subscription, and on applications of group multicast. Finally,
Sect. 5 discusses conclusions of these experiments and suggests future directions
for our work.

2 Group Multicast Algorithms

As mentioned earlier, the naive use of group-based multicast for implementing
content-based publish-subscribe may require as many as 2N groups where N is
the number of communication end-points. Rather than treating each subscribing
client as a communications end-point, we assume that the communication end-
points are brokers, which are servers that manage client connection and event
distribution. Brokers reduce the complexity of routing events by reducing the
total number of endpoints known to the distribution system. Each end-point
broker performs a local matching operation before forwarding the event to the
subscribing clients. The local matching operation determines the set of interested
clients connected to that broker. An implementation of matching for content-
based subscription is described in [1] and shown to take time sub-linear in the
number of subscriptions.

The current IPv4 specification for IP Multicast provides a maximum of 224

locally scoped multicast addresses. The practical limit is smaller, since routing
table space in backbone routers is a scarce resource [4]. Thus, it is important to
reduce the number of groups needed. However, multicast technology is evolving
rapidly, so it is difficult to know how few is “few enough.” Rather than setting
an arbitrary limit (other than the architected limit of 224), we examine ways to
reduce the number of groups needed for a given number of brokers, favoring ap-
proaches that use fewer groups over those that use greater numbers. We explore
three general approaches to reducing the number of groups needed.

1. Reduce group precision. In this approach, events are sent to multicast groups
that may contain brokers that do not have subscriptions for the event. In
the extreme case, messages are sent to all brokers (Sect. 2.2). Another way
to reduce precision is to combine groups to form larger groups until the
number of groups is within an acceptable limit. This approach is explored
in Sect. 2.6.

2. Send multiple multicasts. In this approach, the set of end-points is divided
into mutually exclusive subsets, thereby reducing the total number of re-
quired groups. For example, if N endpoints are divided into two equal sub-
sets, the number of groups required in each subset is 2N/2, and the total
number of groups required is 2 × 2N/2. However, each event must be sent
to two groups in this case. This approach is explored by the algorithm in
Sect. 2.3.

3. Send over multiple hops. In this approach, each publisher sends to a small
subset of neighboring brokers, which in turn forward the event to their neigh-
bors, and so on. This approach is explored in Sect. 2.5.

188 Lukasz Opyrchal et al.

Hybrid approaches that combine more than one of the above approaches are also
possible; one such algorithm, explored in Sect. 2.4, combines approaches 1 and 2
above.

2.1 The Ideal Algorithm

In an environment where we could have as many groups as we need, we could
assign a multicast group to every required subset of the set of brokers. Every
such group may be reached using a single multicast, and every event published
is always sent to the group which contains exactly those brokers subscribing to
the event. We call this the Ideal algorithm.

Of course, for any system with non-trivial size, the ideal algorithm requires an
impractical number of multicast groups. This makes the ideal algorithm useless
in practice. Nonetheless, the ideal algorithm provides a useful benchmark for
evaluation – we expect the ideal algorithm to provide a lower bound on the
performance of each of our multicast strategies.

2.2 Flooding

A simple solution to the problem of content-based routing is to send every pub-
lished event to all brokers. In this approach, only one multicast group is needed
consisting of all the brokers in the system.

A simple optimization to avoid sending events that do not match any sub-
scribers is to first perform a matching operation at the publishing broker against
all subscriptions. The additional overhead of this matching step (on the order of
100 microseconds for 10,000 subscriptions) is not significant relative to overall
network latencies (on the order of a hundred milliseconds).

2.3 Clustered Group Multicast (CGM)

The CGM algorithm is based on the use of clusters: mutually exclusive subsets
of brokers where each subset has its own set of multicast groups. We observe
that if we divide N endpoints into 2 clusters, we reduce the number of groups
in each cluster to 2N/2 groups, and the total number of groups to 2× 2N/2. The
cost of this approach, however, is that it may be necessary to multicast an event
twice: once to a group in each cluster. In general, if we divide N into C clusters,
the total number of groups needed is given by g = C ∗ 2N/C. Figure 1 shows, for
a given number of groups and number of clusters, the number of endpoints that
can be supported. For example, if we have 213 multicast groups available, we
can support 80 broker end-points by dividing them into 8 clusters of 10 brokers
each. Since the groups within a cluster enumerate all possible combinations of
brokers, each broker must join half these groups (those that include the broker)
at system configuration time.

Each broker contains an instance of the subscription matching engine with
entries for all client subscriptions in the system. When an event is published,

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 189

Max Groups # Clusters # Endpoints

224 8 168

224 4 88

217 8 112

217 4 60

213 8 80

213 4 44

Fig. 1. Number of endpoints supported by CGM

the publisher’s broker matches the event against all subscriptions, and sorts the
resulting list of brokers by cluster. It then looks up the group in each cluster
that contains exactly those brokers destined to receive the event. The publisher’s
broker then performs up to C multicasts, where C is the number of clusters. Some
clusters may have no matching brokers and are therefore skipped.

The choice of cluster assignment has a significant impact on performance.
For example, brokers that match a single subscription, but that are spread over
multiple clusters will require multiple multicasts. One approach builds clusters
by grouping brokers with similar subscription sets. Another uses geographic (or
network) location data to group brokers into clusters. The algorithms described
here use the latter approach.

2.4 Threshold Clustered Group Multicast (TCGM)

The CGM algorithm described above requires a number of groups that may be
prohibitively large for many applications. The number of groups required may
be reduced by reducing the precision of the algorithm. One approach to reducing
the precision is to flood a cluster when more than a threshold number of brokers
within that cluster need to receive an event. That is, the algorithm behaves
like CGM unless the number of destinations in a cluster exceeds a threshold, at
which point the event is multicast to the entire cluster. We call this algorithm
Threshold CGM (or TCGM).

For each cluster, we pick a threshold T < K, whereK is the size of the cluster.
If an event matches more than T endpoints, the event is sent to all brokers in
one cluster. Otherwise, the event is sent only to the brokers subscribed to the
event (as in CGM). This algorithm requires multicast groups for all subsets of
brokers in a cluster of size T or smaller, plus one additional multicast group for
all brokers in the cluster. A closed form expression for the number of groups
required is given in Fig. 4. Figure 2 compares group requirements for CGM
and TCGM for three different values of threshold T , and for different numbers
of brokers and clusters. The group requirement for TCGM is many orders of
magnitude smaller than in the case of CGM.

190 Lukasz Opyrchal et al.

Nodes CGM TCGM, T = 5 TCGM, T = 4 TCGM, T = 3

168, 8 clusters 16,777,216 223,168 60,376 12,496

112, 8 clusters 131,072 27,784 11,768 3,760

112, 4 clusters 1,073,741,824 489,756 96,632 14,732

88, 4 clusters 16,777,216 141,776 36,436 7,176

Fig. 2. Group requirements of CGM vs. TCGM

2.5 The Neighbor Matching Algorithm

The neighbor matching algorithm is derived from our earlier work [2]. In this
approach, each broker designates a number of nearby brokers as “neighbors.”
Each broker performs just enough tests of the event content to determine which
subset of its neighbors are on the next hop to a final destination broker.

There is one major difference between the earlier work and the use of neighbor
matching in this paper: In the earlier work, we assumed a point-to-point link
to each neighbor (which is why in that work, the algorithm was named “link
matching”). In this paper, we are assuming that there is a multicast group
for each possible combination of neighbor brokers. When an event arrives at a
broker, the broker computes the set of brokers on the “next hop” and forwards
the event to the corresponding group.

There are a number of potential advantages of this approach. First of all,
it is more scalable as the number of brokers in the system grows. Each broker
has to know about only its immediate neighbors, not about all the brokers.
For k neighbors, a broker can have a maximum of 2k groups. Furthermore, the
knowledge of those group names does not need to be widely disseminated; only
neighbors need to subscribe to a group.

The disadvantages of the approach are that there is extra processing required
on brokers, extra bandwidth required on the links between brokers and the net-
work, and potential extra delay from publisher to subscriber because of the extra
hops required.

2.6 Group Approximation Algorithm

The group approximation algorithm is a single multicast approach which re-
duces the number of groups required by combining actual groups to approxi-
mate groups. This approach reduces precision because an approximate group
often contains a superset of the brokers which match an event. That is, some
brokers may receive waste events: events which do not match any subscription
held by a broker. The volume of waste events can affect system performance.
Thus, an important aspect of this technique is to construct approximate groups
which minimize the volume of waste events received by each broker, given a fixed
number of multicast groups.

One way to choose approximate groups is to make use of the information
contained in the subscriptions stored at each broker. In particular, we may re-

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 191

quire a separate group for each disjoint matching set entailed by a collection of
subscriptions. The matching set of a subscription is the set of events which sat-
isfy the constraints of the subscription. Figure 3 gives example subscriptions and
corresponding matching sets. Note that the ideal algorithm creates a multicast
group for each disjoint matching set.

The intuition behind the group approximation algorithm is the observation
that, in systems with large event schemas, many groups have a relatively low
probability of receiving events. Therefore, combinations of such groups also have
a relatively low probability of introducing wasted events.

[a = 1, b = *, c = 1]

[a = 1, b = 2, c = *]

[a = 1, b != 2, c = 1]

[a = 1, b = 2, c != 1]

[a = 1, b = 2, c = 1]

Fig. 3. Example subscriptions (on the left) and their corresponding disjoint
matching sets (on the right) for the simple event schema [a: integer, b:
integer, c: integer]. The events in the first set match the first subscrip-
tion, events in the second set match the second subscription, and events in the
third set match both

The group approximation algorithm operates as follows. Let g be the desired
number of groups, then:

1. Determine the set of required multicast groups and their probability of re-
ceiving an event.

2. Combine pairs of groups until there are no more than g groups in the system.

The choice of groups to combine at each step has a significant impact on the
waste generated by approximation. This waste may be characterized as follows.
Given a multicast group Gi, define:

pi The probability that Gi will receive an event.
li The loss factor of Gi. That is, the expected number of events wasted for each
multicast to Gi.

bi The set of brokers with a subscription containing the matching set repre-
sented by Gi.

The expected waste induced by a groupGi is pi×li. The net waste induced (NWI)
by combining two groups G1 and G2 is given by the expression NWI(1, 2) =
(p1 + p2)× l1,2 − p1 × l1 − p2 × l2 where l1,2 is given by:

192 Lukasz Opyrchal et al.

l1,2 =
(

p1

p1 + p2

)
× (|b2 − b1|+ l1) +

(
p2

p1 + p2

)
× (|b1 − b2|+ l2)

and |bi − bj | is the number of brokers in set bi but not in bj . Note that for the
combined group G1,2 we also have p1,2 = p1 + p2 and b1,2 = b1 ∪ b2, where the
former follows from the fact that G1 and G2 represent disjoint matching sets.
Reducing the equations above, NWI(1, 2) may be expressed as p1 × |b2 − b1| +
p2 × |b1 − b2|.

Typically, the set of disjoint matching sets is exponential in the number of
subscriptions (several million for the simulations described in the next section).
Moreover, the order in which we combine groups is significant. Therefore, an
ideal group reduction involves a search over all possible orders of combining
groups, and is therefore exponential in the size of the initial group set. Thus,
heuristics are the only practical approach for deriving approximate groups using
the expressions above. However, even in the case of polynomial heuristics, the
exponential size of the initial group set is still a limiting factor1.

In this paper, we use a hybrid approach where we approximate the set of
initial groups, and then use a heuristic to reduce to a final group set. We ap-
proximate the initial group set by reducing the selectivity of subscriptions by
eliminating rare attributes of the schema. We then combine groups to form an
approximate group set by first sorting the initial groups from least to greatest
according to probability of receiving an event. Groups with the same probability
are further sorted from greatest to least according to the expression |bi| − li.
We then compute NWI(i, j) for each combination of the first 100 groups, and
combine the pair with the minimal net waste induced. The combined group is
reinserted and the algorithm is repeated until we have reduced to the desired
number of groups.

The motivation for sorting the groups is that groups with small probability
pay less of a penalty for non-optimal combinations. In the case of the second
sorting term, the intuition is that groups with many members but little waste
are more likely to overlap in a productive manner. As a further check, we find
the best pair of groups to combine by considering the first 100 groups, rather
than simply combining the first two groups in sorted order. This algorithm is
O(log n) for each combination step.

Note that some error is introduced by only considering a subset of sub-
scription attributes. In particular, it is possible to discover an actual group at
run-time which has no corresponding approximate group. In this case, we dy-
namically map the actual group to the smallest approximate group which is a
superset of the actual group.

1 One simple heuristic is to use a greedy algorithm which combines pairs of groups
with minimal NWI. This algorithm is ≈ O(n3) which is still prohibitively expensive
for group sets with size in the millions.

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 193

2.7 Summary

Each of the algorithms described above makes specific tradeoffs in order to ex-
ploit multicast. While a common goal is to reduce the number of groups, there
are several other criteria by which these algorithms may be categorized:

– Precision: Defined as the ratio # matched brokers
receiving brokers . Precision is one measure

of the amount of waste in the system.
– Number of Multicasts: The number of multicast sends required in order to
distribute an event.

– Total Number of Groups: A bound on the total number of groups required
in the system.

– Groups Per Broker: A bound on the number of groups each broker is required
to join.

– Configuration: The stage at which multicast groups must be created. “Static”
means that groups can be created before the subscription set is known.

– Manageability: An indication of the complexity and ease of management of
a particular algorithm.

Ideal Flooding CGM TCGM Neighbor Approx

Precision 1 Pb 1 [T+1
K

, 1] 1 1− W
N

Mcasts 1 1 1...C 1...C 1 per hop 1

Groups 2N 1 C × 2B C ×PT
i=0

�
B
i

�
N × 2k Configurable

Grps/Broker 2N−1 1 2B−1 PT−1
i=0

�
B−1

i

�
k × 2k−1 Variable

Config. Static Static Static Static Static Dynamic

Manag. Hard++ Trivial Moderate Moderate Moderate Hard

Fig. 4. Summary of event distribution algorithms where N is the number of
brokers, k is the average number of neighbors of each broker, Pb is the probability
that an arbitrary broker will match an event, C is the number of clusters, B is
the number of brokers in each cluster, T is the threshold value for TCGM, andW
is the total waste induced by the group approximation algorithm

Figure 4 summarizes the characteristics of each of the algorithms under con-
sideration. Note that the ideal algorithm is infeasible to implement in most
systems and is only presented for comparison purposes.

3 Evaluation

We have implemented the multicast algorithms described in the previous section
and tested them on a simulated network topology. The goals of our simulations
were:

194 Lukasz Opyrchal et al.

1. To measure the bandwidth utilization characteristics of the algorithms we
developed as well as the simple flooding algorithm and the ideal algorithm.

2. To measure the latency characteristics for the same set of algorithms. We
define latency as the delay from the time an event is published to the time
it is delivered to a subscribing client.

It should be noted that if subscriptions are uniformly distributed over a
geographic region, then for a high enough probability of match between a random
event and a random subscription, and a small enough set of brokers, it follows
from straightforward probability theory that most events will be required by all
brokers, and thus the behavior of ideal multicast and the behavior of flooding
will be the same. Therefore, we concentrate on evaluating other algorithms only
where these conditions do not occur, or in other words, where the following
conditions do occur:

1. High selectivity. The subscriptions are sufficiently selective that the average
probability of a match is very low; or

2. High regionalism. The subscriptions are sufficiently non-uniform that certain
kinds of events will have high interest in certain parts of the network and
low interest in other parts of the network.

3.1 Simulated System

We simulate an eighty-eight broker publish-subscribe network deployed across a
WAN. The WAN topology used in the simulations was generated using the Geor-
gia Tech Internetwork Topology Models [5]. We used the transit-stub topology
model [26] which approximates wide-area networks. The generated topology is
shown in Fig. 5. It consists of three kinds of nodes: eighty broker nodes with
only subscribing clients (rectangles), eight broker nodes with only publishing
clients (double circles), and one hundred multicast-enabled router nodes (cir-
cles). Links between these nodes are of three types: backbone links (bold lines)
that are OC-12 class (622Mbit), intermediate links (normal lines) that are OC-3
class (155Mbit), and fringe links (dotted lines) that are high-speed LAN class
(100Mbit). Latencies are labeled on individual links.

The multicast routers in the network are state of the art wire-speed routers.
That is, they are able to forward messages at the maximum bandwidth of their
incoming links. However, for each outgoing link, there is an output queue for
messages that are yet to be consumed by that link. Routers and links in the
network are also loaded with traffic unrelated to publish-subscribe traffic. This
ambient load is 25% of the link capacity on average, uniformly across the net-
work2.

Each of the eighty brokers with subscribing clients has twenty five clients
connected to it, with an average of five subscriptions per client (giving 10000 to-
tal subscriptions). Subscriptions are generated randomly using an event schema
2 We leave the study of a more realistic non-uniform ambient load as future work.

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 195

Broker

Router

Publisher

X

Fringe Link

Intermediate Link

Backbone Link

Link with Latency X

Fig. 5. Simulated network topology

196 Lukasz Opyrchal et al.

with fifteen attributes, where each attribute has four possible values. For each
attribute, a subscription gives either a concrete value chosen from a Zipf dis-
tribution, or a “don’t care” value, which matches events with any value for the
attribute. Subscriptions are generated randomly in such a way that the first at-
tribute is a concrete value with probability of 0.98, and this probability decreases
from the first to the last attribute. We vary the rate of this decrease to obtain
results for different subscription match rates. For example, if the probability that
an attribute is a concrete value decreases at the rate of 78%, each event matches
about 2.24% of subscriptions. If the probability of a concrete value decreases at
the rate of 88%, each event matches about 0.21% of subscriptions.

There are also 8 publishers in the network that publish events tracked by
the simulator. Events are generated randomly, with attribute values in a Zipf
distribution. Events arrive at the publishing brokers according to a Poisson dis-
tribution with mean arrival rate of 200 µs. The size of each event is 1KB.

When an event is published, it is matched at the publishing broker and
then one of the previously described algorithms is used to forward it towards
other brokers. Along the way, it incurs latency delays along different links as
well as queuing delays at router output queues. Receiving brokers also perform
a matching operation before forwarding to clients or to other brokers (in the
case of neighbor matching). The brokers’ CPU utilization for performing the
matching operations is also modeled.

Simulations were run for all multicast algorithms described above with each
run consisting of 5000 published events. In all cases, this number of events guar-
antees less than a 1% error rate (with 99% confidence) for the bandwidth mea-
surements.

Additional Setup for Specific Algorithms

For the purposes of the neighbor matching algorithm of Sect. 2.5, the topology
described above also specifies a “neighbor” relation between brokers, as shown
in Fig. 6. Each circle in Fig. 6 corresponds to one of the broker nodes (rectangle
or double circle) in Fig. 5. Latencies between neighbors represent latencies on
the shortest path between corresponding brokers. In the particular experimental
configuration tested here, we assign neighbor relationships based upon proximity
in the network topology. We limit the number of neighbors so that the total
number of groups used in the system is approximately 213. We chose 213 to
match the number of groups used in the simulation of CGM-8 and in the group
approximation algorithm. Because no broker needs to know about any groups
other than those used by its immediate neighbors, the number of groups known
to any one broker is small — on the average a broker needs to know 100 groups
to which it can send, and needs to join 325 groups from which it can receive an
event.

For the purposes of the CGM algorithm of Section 2.3, we manually assigned
each broker to one of the required number of clusters, based on its geographical
location and its proximity to other brokers in the same cluster.

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 197

Fig. 6. Broker “neighbor” relations

198 Lukasz Opyrchal et al.

Subscription Distributions

We ran simulations for two kinds of subscription distributions: non-regional,
and regional. In the non-regional distribution, the subscriptions are assigned
randomly with a uniform distribution, without regard to the location of the
subscribing client. In the regional distribution, topologically nearby clients are
more likely to be interested in the same events. This is achieved by assigning
one attribute of the event schema as the “regionalism” attribute. The value of
the regionalism attribute is a number between one and four, corresponding to
its “cluster” as determined by the CGM clustering algorithm (with 4 regions)
described above. With probability p, a subscription for a client in region i spec-
ifies an interest in an event with value i for the regionalism attribute; otherwise
it specifies a don’t-care for this attribute. This probability p is a simulation pa-
rameter we call the degree of regionalism. At p = 0, the distribution is equivalent
to the non-regional distribution. We refer to the distribution at p = 1 as “total
regionalism”.

The regionalism simulations were further refined according to whether or not
publisher events are assigned a regionalism attribute based upon the location
of the publisher. In one scenario, called “publisher regionalism”, all events are
assigned a regionalism attribute value equal to the publisher’s region number; in
the other scenario, the regionalism attribute is assigned randomly. As it turned
out, the results of the simulations were not sensitive to publisher regionalism. We
therefore present only the results with non-regional subscriptions and regional
subscriptions.

3.2 Bandwidth Utilization Results

To study the bandwidth utilization of the multicast algorithms described earlier,
we divide the links into three classes: backbone links, intermediate (router to
router) links, and fringe (router to broker) links, corresponding to link types in
Sect. 3.1. This classification is based not only on the bandwidth capacity, but also
on economic and administrative considerations. For example, the cost of using
a backbone link may be different from that of a fringe link. Similarly, economic
decisions regarding fringe links may affect the way in which subscriptions on a
broker are managed. For these reasons, we believe that these three classes of
links must be studied separately.

Highly Selective Non-Regional Subscriptions

For non-regional subscriptions, the various approaches are only distinguish-
able when match rates are low (e.g., less than 3%). Figure 7 charts the mean
bandwidth utilization per published event at various subscription match rates,
for different classes of links. On backbone links, the graph shows that cluster-
based algorithms use a factor of two or three more bandwidth on the backbone
than the other algorithms. This is because these approaches send multiple mes-
sages for each published event. The other algorithms perform similar to each
other on the backbone, and are close to ideal for almost all match rates. One

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 199

interesting observation here is that the neighbor matching algorithm is slightly
more efficient than the ideal algorithm even though it uses multiple sends, one
per hop. This is because hops from neighbor to neighbor may use an optimal
number of backbone links although a sub-optimal number of links overall.

On intermediate links, all the algorithms outperform flooding if the subscrip-
tion set is highly selective. In particular, the neighbor matching and CGM-4
algorithms perform better than others (excluding ideal) for subscription match
rates below 1.5%. Thus, if an application has a stable match rate in this region,
one of these algorithms may prove to be suitable. However, at higher match
rates, these algorithms perform worse than a simple flooding approach. Sim-
ilarly, CGM-8 and TCGM perform worse than flooding for anything but the
most highly selective subscriptions. The group approximation algorithm does no
worse than flooding asymptotically, but offers a slight benefit for match rates
below 0.5%.

On fringe links, bandwidth utilization is closely related to the precision of
algorithms. Single-hop precise algorithms, such as the cluster-based algorithms
perform similar to the ideal algorithm, the difference being the extra usage of
fringe links from publisher brokers. Single-hop imprecise algorithms, such as
TCGM and Approx utilize more bandwidth on the fringes, and quickly approach
flooding. Neighbor matching, although precise, utilizes worse amounts of band-
width on the fringes since it is based on multiple hops between brokers (which
are always on the fringes).

As expected, all algorithms (even ideal) eventually converge to the same (or
worse) bandwidth usage as the flooding approach. With 125 subscriptions per
broker and 2% subscription match rate, the fact that subscriptions are uniformly
distributed (as opposed to regionally distributed) gives a 92% probability that
an arbitrary broker will have a subscription matching a particular event. This
means that over 90% of the brokers receive each published event.

Regional Subscriptions

For regional subscriptions, all the algorithms have the same relative perfor-
mance (with the exception of approx) but show a marked improvement over
flooding as the degree of regionalism (as given in Sect. 2) is increased. Figure 8
illustrates the effect of regionalism on the various approaches at a fixed match
rate of 3%. At the top of the figure, intermediate link utilization is plotted as
a function of the degree of regionalism. It is interesting to note that none of
the algorithms perform significantly better than flooding until regional corre-
lation reaches 0.75. At this point, ideal, neighbor matching and CGM-4 begin
to show successively better improvement as the degree of regionalism increases.
CGM-8 and TCGM-4(3) also show improvement but do not compare favorably
with flooding until regional correlation is close to 1. The one exception to this
trend is the group approximation algorithm which does not improve because the
set of required groups is approximated and regionalism is not accounted for. In

200 Lukasz Opyrchal et al.

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3

Me
an

 N
um

be
r o

f L
ink

s/M
es

sa
ge

Match Rate (%)

Graph A - Backbone Links

cgm-4
cgm-8

flooding
ideal

neighbor matching
approx

tcgm-4(3)

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3

Me
an

 N
um

be
r o

f L
ink

s/M
es

sa
ge

Match Rate (%)

Graph B - Intermediate Links

cgm-4
cgm-8

flooding
ideal

neighbor matching
approx

tcgm-4(3)

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3

Me
an

 N
um

be
r o

f L
ink

s/M
es

sa
ge

Match Rate (%)

Graph C - Fringe Links

cgm-4
cgm-8

flooding
ideal

neighbor matching
approx

tcgm-4(3)

Fig. 7. Link utilization results for non-regional subscriptions

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 201

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

Me
an

 N
um

be
r o

f L
ink

s/M
es

sa
ge

Degree of Regionalism

Intermediate Links

cgm-4
cgm-8

flooding
ideal

neighbor matching
approx

tcgm-4(3)

1

1.1

1.2

1.3

1.4

1.5

1.6

0 0.2 0.4 0.6 0.8 1

Re
lat

ive
 Li

nk
 U

tili
za

tio
n

Degree of Regionalism

Intermediate Links

cgm-4/ideal
cgm-8/ideal

flooding/ideal
ideal/ideal

neighbor/ideal
approx/ideal

tcgm-4(3)/ideal

Fig. 8. Effect of regionalism on intermediate link utilization

particular, it is possible for groups from separate regions to be combined into a
single group during the group combination phase3.

The bottom of Fig. 8 illustrates the performance of each algorithm relative
to the ideal algorithm. The peaks in the graph indicate regions where the ideal
algorithm improves at a faster rate than the other algorithms. The CGM-4 and
TCGM algorithms converge with ideal at total regionalism because the four
regions used in the experiment correspond exactly with the four clusters used in
these algorithms4.

3 The group approximation algorithm can be refined to take regions into account while
combining groups in order to eliminate this effect.

4 Also, under total regionalism, all matching subscriptions will be in the same region.
As a result, a match rate of 3% gives a high probability that every broker in a cluster
will require an event. Thus the flooding aspect of TCGM has no detrimental effect.

202 Lukasz Opyrchal et al.

Summary

These results illustrate that in scenarios with high selectivity (match rates
in the 1% range) or high regionalism (degree of regionalism greater than 0.8),
the algorithm of choice will depend on the economics of deployment. If the
cost of fringe links is the highest, a cluster-based algorithm may be feasible,
provided that the number of groups required can be supported. If intermediate
links are most expensive, that may suggest the neighbor matching approach. If
backbone is expensive, anything but the cluster-based algorithms are acceptable.
A weighted sum of the bandwidth utilizations, where the weights are based on
the cost of using each class of links, will suggest the optimal algorithm.

3.3 Latency Results

The latency metric compares the average time taken by an event to travel from
a publisher to all subscribers. It turns out that the latency of all algorithms
except neighbor matching were virtually identical for all match rates. All these
algorithms do not differ since the event publish rate used in our simulations
was not high enough to induce queueing delays at the various routers. Even
under regionalism, event rates were not sufficiently high to show any latency
variation. In all cases, however, neighbor matching was about 25% slower because
of the delays introduced by performing partial matching at broker nodes on
intermediate hops.

4 Related Work

The background of this study, and work related to it, will be reviewed in two
phases. First, we examine the event distribution algorithms of those systems
that support non-trivial subscription languages, with respect to how (if at all)
these systems exploit group multicast at the network level. Second, we examine
algorithms that employ multiple IP multicast groups, with respect to how closely
their semantics resemble those of content-based subscription systems.

4.1 Event Distribution Systems

Relatively few event distribution systems [25] allow subscriptions to be expressed
as predicates over the entire message content. A few noteworthy examples of this
emerging category are SIENA [6], READY [10], Elvin [20], JEDI [7], Yeast [12],
GEM [15], and Gryphon [2]. All of these systems support rich subscription predi-
cates, and thus face problems of scalability in their event distribution algorithms.

However, pure content-based systems are only one endpoint on a scale of sub-
scription “richness,” and an increasing number of publish-subscribe systems may
be expected to experience aspects of the problem explored here. The Java Mes-
sage Service (JMS) [22] enables the use of message selectors, which are predicates
over a set of message properties. Message designers are free to store information
in properties rather than the message body, making the resulting system behave

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 203

more like a content-based system. The OMG Notification Service [17] describes
structured events with a “filterable body” portion. Many vendors are imple-
menting JMS, or the OMG Notification service, or both, which has the result
of making this form of subscription more popular. The TIB/Rendezvous sys-
tem [23] available from the TIBCO corporation has a hierarchy of subjects and
permits subscription patterns over the resulting segmented subject field, also
approximating some of the richness available with content-based subscription.

The actual event distribution algorithms employed by the “richer” systems
vary. Some systems, such as Yeast [12] and Elvin [20], are centralized, with a
single server to which all events are first sent. The server evaluates subscription
expressions and sends the results to individual subscribers. Multicast is not used.
The Elvin server supports a “quench” function, wherein publishers are able to
find out if an event has any subscribers at all: such events are not sent to the
server.

TIB/Rendezvous uses LAN broadcast to deliver all events, and performs
event filtering in daemon processes at client machines. An extension to use IP
multicast [8] instead of LAN broadcast has been accomplished and it is report-
edly in use by some customers.5 This extends the reach of the Rendezvous solu-
tion to a somewhat wider network, but the solution still employs a single group
and is optimized for the LAN case, where the cost of multicast and unicast are
similar.

Both SIENA [6], and our previous work in the Gryphon project [2] explored
algorithms that delivered events over a logical network of brokers. These algo-
rithms delivered events only to interested subscribers, employed only links that
were along a path to an interested subscriber, and sent each message at most
once over each link. Both papers characterized their algorithms as forms of mul-
ticast, but neither system actually exploited multicast services at the network
level: their implementation assumed only point-to-point links.

READY [10] is a new, distributed version of Yeast. It offers two ways for
publishers and subscribers to connect to event brokers, via TCP connections,
or via a “reliable multicast” provider. However, what they mean by reliable
multicast is itself an event-based middleware layer such as TIB/Rendezvous
or IONA’s OrbixTalk [11]. Whether or not network-layer multicast is exploited
depends on how the underlying product achieves its reliable multicast semantics.
READY employs a peer group of equivalent servers rather than a graph of servers
as in SIENA or Gryphon.

Both READY and TIB/Rendezvous provide specialized routers between ad-
ministrative domains (called “boundary routers” in READY and “routing dae-
mons” in Rendezvous). The assumption is that the publishers and subscribers
within an administrative domain have high levels of traffic, while messages
cross domain boundaries less frequently. Elvin lists a similar function as future
work [20].

As far as we can determine, all previous solutions either do not use group
multicast at the network level, or employ a single group with filtering at the

5 See http://www.rv.tibco.com/faq.html.

204 Lukasz Opyrchal et al.

clients, or modify the second technique only at boundaries between administra-
tive domains. We wish, in contrast, to use network-level multicast as a flexible
building block in developing a specialized content-based multicast solution.

4.2 Other Algorithms That Exploit IP Multicast

Publish-subscribe systems are not the only domain in which information is peri-
odically delivered to a set of clients whose membership may vary from delivery
to delivery. IP multicast was, of course, designed for the case where the set of
interested clients was the same for a large set of related deliveries. So, the need
to use multiple, possibly overlapping, IP multicast groups may be expected to
arise in numerous domains.

One domain where the use of multiple IP groups is becoming popular is
web caching. The Adaptive Web Caching proposal [27] proposes a dynamically
maintained mesh of overlapping multicast groups, over which trees are implicitly
formed with web servers at their root and caches as nodes. A mixture of multicast
and unicast transmissions are used in constructing the protocol. Caching is based
on requests from clients, rather than pro-active “pushes” from servers, so the
relevance of this proposal to publish-subscribe systems is limited.

Other web caching proposals, however, have used a model in which servers
push content to proxy caches based on predictions concerning likely interest in
particular pages. This is much more like a publish-subscribe system. MMO [14]
and LPC [24] are two recent examples of multicast “push” caching proposals that
assign caches to multiple IP multicast groups based on clusters of web pages that
are expected to have “similar” hit patterns.

As far as we can determine, proposals in which web caches belong to multiple
IP multicast groups have assumed that the number of groups will be modest,
and that the limit of IP multicast addressing is not a factor in the scalability of
the proposals. In contrast, the present study contemplates algorithms in which
the number of groups can become a factor in scalability, and considers tradeoffs
to minimize the number of groups.

5 Conclusions and Future Work

One important result of this study is that the flooding algorithm is viable over an
extensive range of conditions. As pointed out earlier, when subscription patterns
do not vary by location in the network, even a fairly low match rate guarantees
that all or nearly all brokers will have some subscription matching each event.
For instance, under our simulation parameters (10,000 subscriptions distributed
among 80 brokers), with a match rate of about 3%, each event goes to over
91% of the 80 brokers. That is, there is less than 9% wasted work on the fringe
links and in the destination brokers if that event were broadcast to all brokers
(there is an even smaller percentage of wasted work on the other links). Even
with a match rate as low as 1.5%, each event goes to over 77% of all brokers.
Therefore, it is only useful to examine the non-flooding algorithms for cases with

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 205

high selectivity (i.e., match rates are low or highly variable), or high regionalism
(i.e., where the probability of match is biased according to the location of the
broker).

The algorithms being studied here do not begin to perform significantly bet-
ter than flooding until the match rate drops below 1%. CGM performs well in this
region, but still requires a very large number of groups and does not scale well.
Neighbor matching is the best of the candidates if intermediate link bandwidth
is the most important, but suffers in terms of latency. The group approximation
algorithm is potentially scalable but performs worse than neighbor matching in
the low match-rate region.

The case in which subscriptions display what regionalism is an important
one. In this case, flooding is less likely to perform well because subscriptions are
localized and wide-scale dissemination of events will unnecessarily congest the
network. Thus, it is not surprising that many of the approaches described in this
paper begin to perform better than flooding when more than 75% of subscrip-
tions have a regional correlation. In particular, CGM and neighbor matching
may provide significant bandwidth savings in these highly regional scenarios.
These results suggest a hybrid approach where our multicast techniques are
only utilized during high regionalism conditions. In particular, an important fu-
ture direction is to discover such conditions dynamically, and to exploit them in
creating small numbers of groups tailored to the most likely patterns of event
deliveries.

In evaluating multicast techniques, we have emphasized performance based
on a static set of subscriptions, based on the assumption that events are pub-
lished far more frequently than subscription changes. However, many systems
are likely to experience a flux of subscriptions. Thus, multicast groups may need
to be periodically reconstructed as subscription sets change. Of the approaches
considered, flooding, CGM, and neighbor matching are the most resilient to
subscription set changes, since these approaches organize brokers into multicast
groups which are fixed at system configuration time. For group approximation,
subscription changes may alter the waste incurred by existing groups. In the
worst case, the entire set of approximate groups must be reconstructed from
scratch. Some overhead may be reduced in each of these approaches by perform-
ing group reconstruction at idle times and using flooding for new subscriptions
in the interim. On the other hand, if subscription regionalism is also a dynamic
feature then both flooding and CGM may suffer in performance. Flooding, for
example, does not account for regionalism. Similarly, CGM may suffer from an
unfortunate choice of regions at configuration time. In contrast, the neighbor
matching algorithm is more adaptable to dynamically forming regions.

Any practical solution is likely to incorporate a hybrid of technologies. It
may be cost effective to incorporate a certain degree of higher-level function
in routers. For instance, neighbor matching or group approximation may be
combined with a form of network multicast that permits sending to a subset of a
group, as in AIM [13]. Moreover, as broker networks are consolidated and grow
into the hundreds of brokers, even clustering will not significantly reduce the

206 Lukasz Opyrchal et al.

number of required groups. Thus, it may be necessary to consider structuring
the larger network hierarchically, using different multicast algorithms internally
within the subnetworks and across subnetworks.

6 Acknowledgements

The authors wish to thank Arthur Goldberg for his comments and suggestions
regarding the cluster multicast algorithm, and Dilip Kandlur for his help in
understanding IP router characteristics. The authors also thank Sumeer Bhola
and the reviewers for their comments.

References

1. Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and
Tushar D. Chandra. Matching Events in a Content-Based Subscription System.
In Proceedings of Principles of Distributed Computing (PODC ’99), Atlanta, GA,
May 1999. 186, 187

2. Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao,
Robert E. Strom, and Daniel C. Sturman. An Efficient Multicast Protocol for
Content-Based Publish-Subscribe Systems. In International Conference on Dis-
tributed Computing Systems (ICDCS ’99), June 1999. 186, 190, 202, 203

3. Ken P. Birman. The process group approach to reliable distributed computing.
Communications of the ACM, 36(12):36–53, December 1993. 185

4. S. Bradner and A. Mankin. The Recommendation for the IP Next Generation
Protocol. IETF. RFC 1752. 187

5. Ken Calvert, Matt Doar, and Ellen W. Zegura. Modeling Internet Topology. IEEE
Communications Magazine, June 1997. 194

6. Antonio Carzaniga. Architectures for an Event Notification Service Scalable to
Wide-area Networks. PhD thesis, Politecnico di Milano, December 1998. Available
from http://www.cs.colorado.edu/˜carzanig/papers/. 202, 203

7. G. Cugola, E. DiNitto, and A. Fuggetta. The JEDI event-based infrastructure and
its application to the development of the OPSS WFMS. Submitted to Transactions
on Software Engineering. 202

8. S. Deering. Host Extensions for IP Multicasting. IETF. RFC 1112. 186, 203

9. S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A Reliable Multicast
Framework for Light-weight Sessions and Application Level Framing. IEEE/ACM
Transactions on Networking, 5(6):784–803, December 1997. 186

10. R. Gruber, B Krishnamurthy, and E. Panagos. An Architecture of the READY
Event Notification System. In Proceedings of the Middleware Workshop at the
International Conference on Distributed Computing Systems 1999, Austin, TX,
June 1999. 202, 203

11. IONA Corporation. OrbixTalk Fact Sheet.
http://www.iona.com/products/messaging/talk/index.html. 203

12. B. Krishnamurthy and D. Rosenblum. Yeast: A general purpose event-action sys-
tem. IEEE Transactions on Software Engineering, 21(10), October 1995. 202,
203

Exploiting IP Multicast in Content-Based Publish-Subscribe Systems 207

13. B. N. Levine and J.J. Garcia-Luna-Aceves. Improving internet multicast with
routing labels. In Proc. IEEE International Conference on Network Protocols,
pages 241–50, October 1997. 205

14. Dan Li and David R. Cheriton. Scalable Web Caching of Frequently Updated
Objects Using Reliable Multicast. In Proceedings of the USENIX Symposium on
Internet Technology and Systems, Boulder, Colorado, 1999. 204

15. M. Mansouri-Samani and M. Sloman. A Generalized Event Monitoring Language
for Distributed Systems. IEE/IOP/BCS Distributed Systems Engineering Journal,
4(2), June 1997. 202

16. Shivakant Mishra, Larry L. Peterson, and Richard D. Schlichting. Consul: A Com-
munication Substrate for Fault-Tolerant Distributed Programs. Technical Report
TR 91-32, Dept. of Computer Science, The University of Arizona, November 1991.
185

17. Object Management Group. Notification Service. http://www.omg.org/cgi-
bin/doc?telecom/98-06-15. 203

18. Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. The Information Bus -
An Architecture for Extensible Distributed Systems. Operating Systems Review,
27(5), December 1993. 185

19. David Powell. Group Communication. Communications of the ACM, 39(4):50–97,
April 1996. (Guest Editor). 185

20. Bill Segall and David Arnold. Elvin has left the building: A publish/subscribe no-
tification service with quenching. In Proceedings of AUUG97, Brisbane, Australia,
September 1997. 186, 202, 203

21. Dale Skeen. Vitria’s Publish-Subscribe Architecture: Publish-Subscribe Overview.
Technical report, Vitria Technology Inc., 1996. http://www.vitria.com. 185

22. Sun Microsystems. Java Message Service. http://java.sun.com/products/jms. 202
23. TIBCO. TIB/Rendezvous White Paper.

http://www.rv.tibco.com/whitepaper.html. 203
24. J. Touch and A. S. Hughes. The LSAM Proxy Cache - a Multicast Distributed

Virtual Cache. Computer Networks and ISDN Systems, 30(22–23), November 1998.
204

25. Workshop on Internet Scale Event Notification.
See http://www.ics.uci.edu/IRUS/wisen/wisen98 for details. 202

26. Ellen W. Zegura, Ken Calvert, and S. Bhattacharjee. How to Model an Internet-
work. In Proceedings of IEEE Infocom ’99, San Francisco, CA, April 1996. 194

27. L. Zhang, S.Floyd, and V. Jacobson. Adaptive Web Caching. In Pro-
ceedings of the 2nd NLANR Web Cache Workshop, Boulder, Colorado, 1997.
http://ircache.nlanr.net/Cache/Workshop97/Papers/Floyd/floyd.ps. 204

	Introduction
	Group Multicast Algorithms
	The Ideal Algorithm
	Flooding
	Clustered Group Multicast (CGM)
	Threshold Clustered Group Multicast (TCGM)
	The Neighbor Matching Algorithm
	Group Approximation Algorithm
	Summary

	Evaluation
	Simulated System
	Additional Setup for Specific Algorithms
	Subscription Distributions

	Bandwidth Utilization Results
	Highly Selective Non-Regional Subscriptions
	Regional Subscriptions
	Summary

	Latency Results

	Related Work
	Event Distribution Systems
	Other Algorithms That Exploit IP Multicast

	Conclusions and Future Work
	Acknowledgements

