
J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 231-255, 2000.
 Springer-Verlag Berlin Heidelberg 2000

A Publish/Subscribe CORBA Persistent State Service
Prototype

C. Liebig, M. Cilia†, M. Betz, and A. Buchmann

Database Research Group - Department of Computer Science
Darmstadt University of Technology - Darmstadt, Germany

{chris,cilia,betz,buchmann}@dvs1.informatik.tu-darmstadt.de

Abstract. An important class of information dissemination applications
requires 1:n communication and access to persistent datastores. CORBA’s new
Persistent State Service combined with messaging capabilities offer the
possibility of efficiently realizing information brokers between data sources and
CORBA clients. In this paper we present a prototype implementation of the
PSS that exploits the reliable multicast capabilities of an existing middleware
platform. This publish/subscribe architecture makes it possible to implement an
efficient update propagation mechanism and snooping caches as a generic
service for information dissemination applications. The implementation is
presented in some detail and implications of the design are discussed. We
illustrate the use of a publish/subscribe PSS by applying it to an auction
scenario.

1 Introduction

The deployment of large scale information dissemination systems like Intranet and
Extranet information systems, e-commerce applications, and workflow management
and groupware systems, is key to the success of companies competing in a global
marketplace and operating in a networked world. Applications like warehouse
monitoring, auctions, reservation systems, traffic information systems, flight status
tracking, logistics systems, etc. consist of a potentially large number of clients spread
all over the world demanding timely information delivery. Many of these applications
span organizational boundaries and are centered around a variety of data sources, like
relational databases or legacy systems that maintain business data. The business logic
may be spread over separate modules and the entire system is expected to undergo
continuous extension and adaptation to provide new functionality.
Common approaches in terms of systems architecture can be classified into traditional
2-tier client/server, 3-tier TP-heavy using TP monitors and n-tier Object-Web
systems.
In 2-tier client/server the client part implements the presentation logic together with
application logic and data access. This approach depends primarily on RPC-like
communication and scales well only if client and server are close together in terms of

† Also ISISTAN, Faculty of Sciences, UNICEN, Tandil, Argentina.

232 C. Liebig et al.

network bandwidth and access latency. However, it does not scale in the face of wide-
area distribution. Moreover, the fat-client approach renders the client software depen-
dent on the data model and API of the backend.
In a 3-tier architecture a middle-tier – typically based on a TP monitor - is introduced
to encapsulate the business logic and to hide the data source specifics. TP monitors
provide scalability in terms of resource management, i.e. pooling of connections,
allocating processes/threads to services and load balancing. The communication
mechanisms used in 3-tier architectures range from peer-to-peer messaging and
transactional queues to RPC and RMI. TP monitor based approaches assume that the
middle-tier has a performant connection to the backend data sources, because
database access protocols for relational systems are request/response and based on
“query shipping”. In order to reduce access latency and to keep the load of the data
source reasonably low, the application programmers are urged to implement their own
caching functionality in the middle-tier. A well known example of such an
architecture is the SAP system [21].
In n-tier Object-Web systems the clear distinction between clients and servers gets
blurred. The monolithic middle-tier is split up into a set of objects. Middleware
technology, such as CORBA, provides the glue for constructing applications in
distributed and heterogeneous environments in a component-oriented manner.
CORBA leverages a set of standard services [22] like Naming Service, Event and
Notification Service, Security Service, Object Transaction Service, and Concurrency
Control Service. CORBA has not been able to live up to expectations of scalability,
particularly in the information dissemination domain, because of a limiting
(synchronous) 1:1 communication structure and the lack of a proper persistence
service. The new CORBA Messaging standard [23] will provide true asynchronous
communication including time independent invocations. We argue, that the recently
proposed Persistent State Service [14], which replaces the ill-fated Persistent Object
Service, will not only play a key role as integration mechanism but also provides the
opportunity to introduce efficient data distribution and caching mechanisms.
A straightforward implementation of the PSS relying on relational database
technology is based on query shipping. The PSS must open a datastore connection to
the server, then ships a query that is executed at the server side and the result set is
returned in response. Such a PSS implementation realizes storage objects as stateless
incarnations on the CORBA side, that act as proxies to the persistent object instance
in the datastore. Operations that manipulate the state of objects managed by the PSS
are described in datastore terms. This approach generates a potential bottleneck at the
datastore side, because each operation request on an instance will result in a SQL
query. Furthermore, for information dissemination systems, where the user wants to
continuously monitor the data of interest, polling must be introduced which results in
a high load at the backend, wasting resources and possibly delivering low quality of
data freshness.
For information dissemination systems an alternate approach based on server-initiated
communication is more desirable. Techniques ranging from cache consistency
mechanisms in (OO)DBMSs [33,5] and triggers/active database rules [10] to
broadcast disks [1] can be used to push data of interest to clients. In the context of the
PSS a new publish/subscribe session is needed. A publish/subscribe session represents
the scope of the objects an application is interested in, i.e. subscribes to. For those

A Publish/Subscribe CORBA Persistent State Service Prototype 233

objects in a publish/subscribe session the cache is loaded and updated automatically.
Additionally, this session provides notifications about insert, modify and delete events
to the application. While publish/subscribe sessions currently are not part of the PSS
specification they are definitely not precluded by it and would represent a useful
extension to the spec.
In this paper we present an implementation of a PSS prototype that provides an
intelligent caching mechanism and active functionality in conjunction with message
oriented middleware (MOM) that is capable of 1:n communication. By removing two
crucial bottlenecks from the CORBA platform we claim that highly scalable Object-
Web systems become feasible.
In our PSS prototype1 we take advantage of commercial publish/subscribe
middleware that provides the paradigm of subject based addressing and 1-to-many
reliable multicast message delivery. We show how a snoopy cache can be
implemented for multi-node PSS deployment. We make use of a prototype of a
database adapter for object-relational databases (Informix IUS, in particular) that was
partially developed and extended in the scope of this project. The database adapter
allows to use publish/subscribe functionality in the database and to push data to the
PSS caches when update transactions are issued against the data base backend or
when new data objects are created.
This paper concentrates on the basic infrastructure needed to provide scalability with
respect to dissemination of information from multiple data sources. We explicitly
exclude from the scope of this paper federated database and schema integration
issues.
The remainder of this paper is organized as follows: Section 2 briefly introduces key
concepts of the PSS specification and the multicast-enabled message oriented
middleware; Section 3 provides an overview of the architecture of our prototype
implementation of the PSS and identifies the main advantages of integrating the
reliable multicast functionality of the TIBCO platform; Section 4 describes the
implementation; Section 5 introduces auctions as a typical scenario for middleware-
based Web-applications and Section 6 presents conclusions and identifies areas of
ongoing research.

2 CORBA PSS and Messaging Middleware

2.1 CORBA Persistent State Service

The need for a persistence service for CORBA was recognized early on. In 1995, the
Persistent Object Service was accepted but failed because of major flaws: the
specification was not precise, persistence was exposed to CORBA clients,
transactional access to persistent data was not covered, and the service lacks
integration with other CORBA services. Recently, the Persistent State Service (PSS)
was proposed to overcome those flaws. The goals of the PSS specification [14] are to
make the state of the servant persistent, to be datastore neutral and implementable
with any datastore, to be CORBA friendly, consistent with other OMG specifications

1 The work of this project is partially funded by TIBCO Software Inc., Palo Alto.

234 C. Liebig et al.

(Transactions, POA, Components, etc.) and also with other standards like SQL3 [18]
and ODMG [7].
The PSS provides a single interface for storing objects’ state persistently on a variety
of datastores like OO-, OR-, R-DBMS, and simple files. The PSS provides a service
to programmers who develop object implementations, to save and restore the state of
their objects and is totally transparent to the client. Persistence is an implementation
concern, and a client should not be aware of the persistence mechanisms. Therefore,
the PSS specification does not deal with the external interface (provided by a CORBA
server) but with an internal interface between the CORBA-domain and the datastore-
domain.
Due to numerous problems with IDL valuetypes - used in previous proposals as
requirement imposed by the RFP - the IDL was extended with new constructs to
define storage objects and storage home objects. The extended IDL is known as
Persistent State Definition Language (PSDL). Storage objects are stored in storage
homes, which are themselves stored in datastores. In order to manipulate a storage
object, the programmer uses a representative programming-language entity, called
storage object instance. A storage object instance may be connected to a storage
object in the datastore, providing direct access to the state of this storage object. Such
a connected instance is called storage object incarnation. To access a storage object, a
logical connection between the process and the datastore is needed. Such a connection
is known as session.
There is also a distinction between abstract storage type specification and concrete
storage type implementation. The abstract storage type spec defines everything a
servant programmer needs to know about a storage object, while an implementation
construct defines what a code generator needs to know in order to generate code for it.
A given abstract specification can have more than one implementation and it is
possible to update an implementation without affecting the storage objects’ clients.
So, the implementation of storage types and storage homes lies mainly in the
responsibility of the PSS. An overview of these concepts is depicted in Figure 1.

storage home
incarnations

storage object
incarnations

storage
homes

storage
objects

abstract
storage homes

abstract
storage objects

datastore

P
ro

ce
ss

A
P

ro
ce

ss
B sessions

implementation of

Fig. 1. PSS concepts [14]

A Publish/Subscribe CORBA Persistent State Service Prototype 235

A storage object can have both state and behavior, defined by the storage type : its
state is described by attributes (also called state members) and its behavior is
described by operations. State members are manipulated through equally named pairs
of accessor functions. Operations on storage objects are specified in the same manner
as with IDL. In addition to IDL parameter types, storage types defined in PSDL may
be used as parameters. In contrast to CORBA objects, operations on storage objects
are locally implemented and not remotely accessible.
A storage home does not have its own state, but it can have behavior, which is
described by operations in the abstract storage home. A storage home can ensure that
a list of attributes of its storage type forms a unique identifier for the storage objects it
manages. Such a list is called a key. A storage home can define any number of keys.
Each key declaration implicitly declares associated finder operations in the language
mapping. To create or locate a storage object, a CORBA server implementor calls
create(<parameters>) or find_by_<some key>(<parameters>) operations on
the storage home of the storage type and in return will receive the according storage
object instance.
The inheritance rules for storage objects are similar to the rules for interface
inheritance in IDL. Storage homes also support multiple inheritance. However, it is
not possible to inherit two operations with the same name; as well as to inherit two
keys with the same name.
In the PSS spec the mapping of PSDL constructs to several programming languages is
also specified. A compliant PSS tool must generate a default implementation for
storage homes and storage types based on the given PSDL definition.
For the case that the underlying datastore is a database system, the PSS introduces a
transactional session orchestrated by OTS through the use of the X/Open XA
interface [34] of the datastore. Access to storage objects within a transactional session
produces executions that comply with the selected isolation level i.e. read
uncommited, read commited. Note that stronger isolation levels like repeatable read
and serializable are not specified.

2.2 Multicast-Enabled MOM

We use COTS MOM [31] to build the PSS prototype, namely TIB/Rendezvous and
TIB/ObjectBus products. TIB/Rendezvous is based upon the notion of the
Information Bus [26] (interchangeable with the wording “message bus” in the
following) and realizes the concept of subject based addressing, which is related to
the idea of a tuple space, first introduced in LINDA [6]. Instead of addressing a
sender or recipient for a message by its identifier, which in the end comes down to a
network address, messages are published under a subject name on the message bus.
The subject name is supposed to characterize the contents - i.e. the type - of a
message. If a participant, who is connected to the message bus, is interested in some
specific message types, she will subscribe for the subjects of interest and in turn be
notified of messages published under the selected subject names. The subject name
space is hierarchical and subscribers may use subject name patterns to denote a set of
types to which they want to subscribe.
Messages are constructed from typed fields and can be recursively nested.
Furthermore, messages are self-describing: a recipient of a message can inquire about
the structure and type of message content. The abstraction of a bus inherently carries

236 C. Liebig et al.

the semantic of many-to-many communications as there can be multiple publishers
and subscribers for the same subject. The implementation of TIB/Rendezvous uses a
lightweight multicast communication layer to distribute messages to all potential
subscribers. On each machine, a daemon manages local subscribers, filters out
relevant messages according to subject information and notifies individual
subscribers. The programming style for listening applications is event-driven; i.e.
eventually the program must transfer control to the TIB/Rendezvous library which
runs an event-loop. Following the Reactor-Pattern [29] the onData() method of an
initially registered callback object will be invoked by the TIB/Rendezvous library
when a message arrives with a subject that the subscriber is listening to.
Message propagation can be configured to use IP multicast or UDP broadcast. In the
latter case, a special message routing daemon must be set up in each subnet in order to
span LAN (broadcast) boundaries. Optionally, TIB/Rendezvous can make use of
PGM, a reliable multicast transport on top of IP multicast, which has been developed
by Cisco Systems in cooperation with TIBCO and proposed to the IETF [30].
Two quality of service levels are supported by TIB/Rendezvous: reliable and
guaranteed. In both modes, messages are delivered in FIFO order with respect to the
publisher. There is no total ordering in case of multiple publishers on the same
subject. Reliable delivery uses receiver-side NACKs and a sender-side in-memory
ledger that buffers messages for some amount of time in case of retransmission
requests. With guaranteed delivery, a subscriber may register with the publisher for a
certified session or the publisher preregisters dedicated subscribers.
Strict group membership semantics must be realized at the application level if so
required. However, atomic message delivery is not provided. The TIB/ Rendezvous
library uses a persistent ledger in order to provide guaranteed delivery. Messages may
be discarded from the persistent ledger as soon as all subscribers have explicitly
acknowledged the receipt. In both variants, the retransmission of messages is
receiver-initiated by sending NACKs.
The diagram in Figure 2 depicts, how the multicast messaging middleware is
introduced to CORBA in ObjectBus, a CORBA 2.0 compliant ORB implementation.

TIB/Rendezvous TCP/IP

TIBIOP IIOP
protocols - GIOP

ORB interfaces

skeletons stubs

Application

TIB IIOP

Messaging
Applicaitons

ObjectBus
Services

CORBA 2.0
Applications

P
S
S

Fig. 2. ObjectBus Architecture

The General Inter-ORB Protocol (GIOP) is implemented both by a standard Internet
Inter-ORB Protocol (IIOP) layer and a TIBCO specific layer (TIBIOP). When using

A Publish/Subscribe CORBA Persistent State Service Prototype 237

TIBIOP, the GIOP messages are marshaled into TIB/Rendezvous messages and
published on the message bus on behalf of a specific subject. The CORBA (server)
object may be registered with the ORB presenting an application specific subject
name. In that case the returned Interoperable Object Reference (IOR) carries the
subject name on behalf of the TIBIOP addressing profile. In order to preserve
interoperability, server objects may be registered with both, TIBIOP and IIOP profiles
at the same time. Additionally, CORBA applications may access the TIB/Rendezvous
API directly to register listeners and publish messages on behalf of some subject. The
PSS prototype implementation is mainly based on this TIB/Rendezvous messaging
API.

3 Overview of the Prototype Architecture

In [13], the nodes in a general distributed information system are classified into: i)
data sources which provide the base data that is to be disseminated, ii) clients which
are net consumers of information and iii) information brokers (agents, mediators) that
acquire information from data sources and provide the information to the clients. Data
delivery mechanisms are distinguished along three main dimensions: push vs. pull,
periodic vs. aperiodic and 1:1 vs. 1:n.
An analysis of the large, scalable, distributed applications that we are addressing
reveals that they are best built using multi-tier architectures. The diagram in Figure 3
below shows this: clients can interact with an application either directly through an
ORB or via a Web-server (optionally using an applet). Both periodic and aperiodic
pull may be used to begin an interaction, while aperiodic notification and polling are
required to propagate change to the users. At the integration-tier the application logic
is realized through CORBA objects and services.
The interaction between the integration-tier and the backend-tier requires both pull
and push communication to initiate individual requests and to update the caches,
respectively. Further, aperiodic event-driven interaction is required and 1:n
communication capabilities are essential for effective dissemination of updates and
for snooping of load reply and creation/deletion events. Under these conditions, the
PSS provides the means to efficiently realize CORBA objects as information brokers
between data sources and CORBA clients.
In our prototype architecture of a publish/subscribe based PSS, we include a PSS
Connector on the side of the integration tier and its counterpart, the DB Connector on
the datastore. In terms of Object Oriented Database Systems architecture, the DB
Connector plays the role of an object server, leveraging extended relational data base
technology and the PSS Connector acts as the object manager.

238 C. Liebig et al.

P
S

S
C

on
ne

ct
or

A
pp

lic
at

io
n

lo
gi

c
(I

nf
or

m
at

io
n-

B
ro

ke
r)

client integration-tier backend-tier

N
ot

ifi
ca

tio
n

M
es

sa
ge

B
us

datastoreD
B

C
on

ne
ct

or

snooping

aperiodic pull

aperiodic
notificationaperiodic

notification

aperiodic pull

periodic pull

snooping

1:n delivery

aperiodic push

App. PSS

C
O

R
B

A

C
O

R
B

A

applet

Web
Server datastoreD

B
C

on
ne

ct
or

1:n delivery

domain:
auction.com

Fig. 3. Multi-tier Architecture for Information Dissemination Systems

We unbundle object caching and object-relational mappings and benefit from the
reliable multicast messaging services provided by publish/subscribe MOM:
1. The PSS Connector at the CORBA side interacts with the data sources at the

backend in aperiodic pull combined with 1:n delivery. A storage object lookup
request is initiated by some PSS Connector on application demand. The response is
published by the DB Connector under an associated subject and all PSS Connector
instances that have subscribed to that kind of object will snoop the resulting
messages and possibly refresh or add a new incarnation to their object cache.

2. Updates to storage object instances result in publishing update notifications under
an associated subject including the new state of the object, i.e. aperiodic push
combined with 1:n delivery. Again, the PSS Connector instances may snoop the
update notifications to update the cached incarnation of the object and notify the
application of the update.

3. In addition to update notifications, creation and deletion events can be signaled to
the application by letting the PSS snoop the respective messages. The application
is thus relieved from polling and may extend the chain of notification to the client-
tier in order to facilitate timely information delivery.

4. The implementation of the PSS uses a hierarchy of subject names to address
objects. Instead of addressing by location (i.e. IP number, DB listener socket
address), publish/subscribe interactions use the paradigm of addressing content
(i.e. subject based addressing). Thereby several data sources may be federated in a
single data source domain. Additionally, a labeling mechanism can be introduced
to support subscription to a collection of storage objects and simple subject-based
queries.

Given the potential distribution of clients and caches we expect to benefit from
reference locality not only in the scope of a single PSS instance but because of the
snooping of load replies and update notifications we benefit from reference locality
throughout the datastore domain across different PSS nodes.

A Publish/Subscribe CORBA Persistent State Service Prototype 239

4 Prototype Design & Implementation

The implementation consists of the realization of the PSS Connector and the DB
Connector including the definition of the corresponding formats and protocols (FAP),
provision of snoopy caching and active functionality, the mechanisms to adapt the
database to the TIB/Rendezvous message bus, the mapping between PSDL and the
(object-) relational data model, and last but not least the transactional semantics and
correctness criteria that can be enforced.

4.1 Formats and Protocols between Connectors

In defining the FAPs we must specify the basic functionality to create, lookup, load,
change/save and delete objects. More advanced features are snooping load replies,
generating and snooping update notifications, and generating and snooping create/
delete events. Most important for the implementation of the advanced features on top
of publish/subscribe messaging middleware is the definition of the subject namespace,
i.e. the categories an application can subscribe to and under which to publish.
Subjects must be chosen in a way that enables snooping load and update payload data,
as well as detecting create/update/delete events and signaling them to the application.
Appendix A presents the subject name space with respect to the FAP. Figure 4 below
shows the basic functional units of the PSS prototype.

TIB/ObjectBus

P
S

S
C

on
ne

ct
or

D
B

C
on

ne
ct

or

Message Bus Adapter

DB-Adapter

FAP

ca
llb

ac
k

ca
llb

ac
k

ca
llb

ac
k

interaction
protocol

SQL

Message Bus

IUS
persistent state

data tables

meta-data
repository

Application
generated code

notification
snoop F

A
P

object manager

Agent

P
ub

l.

Li
st

ne
r

Fig. 4. PSS Prototype Components

The FAP is materialized by type-specific generated storage object (home)
implementation on top of a general object manager library at the PSS Connector. At
the DB Connector the FAP is implemented using callback handlers (external SQL
UDR, see also 4.2). Additionally we must provide a DB Adapter that maps the
payload data to the constructs of the datastore as reflected in the metadata repository.

4.1.1 Loading a storage object in a publish/subscribe session
An application gets access to one or more storage object incarnations through its
respective storage home. Storage homes are managed by a publish/subscribe session,

240 C. Liebig et al.

which also defines the scope of the object cache. Before actually accessing a storage
object, the application must retrieve a handle to the object incarnation using
find_by_pid() or some other key-based finder operation, or using
find_by_label(). In the first case, the application is returned a handle to the
storage object incarnation. In the second case the storage home will return a sequence
of handles (see also ItemHome in Appendix C).
As the prototype is restricted to C++, the handle is realized by a C++ pointer. The
actual implementation of state and of the corresponding accessor functions is
delegated to a “data container” object. Thus the handle represents a smart-pointer [12]
to the actual storage object incarnation This approach is somewhat similar to
Persistence [28] and other OODB systems.
Although the handle is returned by the finder operation after the object lookup
returned successfully, the data container part is not populated by pulling the datastore
immediately. Instead, the respective delegate data container object subscribes to the
storage object’s subject name and snoops the message bus for LOADREPLY and
UPDATENOTIFY messages.

PSS-Connector DB-Connector

listen on
/* LOADREPLY.rep_id.pid.fragment_no.domain.> */

LOADREPLY.Item.1234.0.auction.com.>

IU
S

P
S

S
-

D
at

ab
la

de

persistent
state data

tables

�

� � � �

Message Bus

publish on
/* LOAD.rep_id.pid.domain */

LOAD.Item.1234.auction.com�

listen on
/* LOAD.rep_id.pid.domain */

LOAD.Item.*.auction.com�

publish on
/* LOADREPLY.rep_id.pid.fragment_no.domain.label */

LOADREPLY.Item.1234.0.auction.com.computer.hardware.misc�

Fig. 5. Object load with publish/subscribe

At the time the application accesses the storage object incarnation - by calling an
accessor method - we either have snooped the state in the meantime and can save
pulling the object from the data store, or we run into an object fault and initiate a
synchronous load request. Figure 5 depicts the object fault situation for a storage
object of type Item with identifier 1234 in the data store domain auction.com. Other
nodes running a publish/subscribe session may benefit from snooping message
number 4 – an example scenario is presented later in Section 5.
The proposed mechanism is realized by the object manager in the PSS Connector and
is transparent to the user. The proposed object faulting technique extends lazy
swizzling to the accessed root object, compared to lazy swizzling restricted to
contained references [20]. Fetching through collections of objects and navigating
through an object tree are typical scenarios where lookup and access are separated in
time and thus benefit most from the lazy swizzling with snooping.
As mentioned above, the publish/subscribe PSS provides a supplementary finder
operation find_by_label() which returns a collection of handles to storage
object incarnations. Storage object instances can be assigned a label, which will

A Publish/Subscribe CORBA Persistent State Service Prototype 241

become a postfix of the subject name in DB Connector reply messages as depicted in
Appendix A. The labeling mechanism presents the subject-based addressing paradigm
to the server implementor to explicitly take additional advantage of publish/subscribe
capabilities of the PSS implementation. By labeling a collection of related objects, the
application can issue subject-based queries to find all storage objects with a given
label. In contrast to traditional object server approaches, the result returned by the DB
Connector is a set of subject names merely representing the storage object instances.
The data container part of the incarnations is eventually filled by snooping on the
message bus. As labels can be hierarchically structured, storage objects can be
hierarchically categorized. The simple subject-based query mechanism is not
supposed to replace a full fledged query service, but comes with our prototype
implementation for no additional cost.

4.1.2 Snooping and state reassembling
As mentioned before, the data container of a storage object incarnation implements
the snooping algorithm. In order to collect the state of an storage object the data
container may subscribe to LOADREPLY as well as to UPDATENOTIFY messages.
Depending on the storage type definition, the storage object state may be mapped to
different tables in the data store (see 4.3) and published on the message bus in
different fragments per mapped table respectively. The data container reassembles the
fragments according to a common request_id which identifies a particular
request/reply interaction and which is enclosed in the message payload data (see
Appendix A).
Given a specific incarnation, the data container object subscribes to the message bus
using an appropriate subject mask. For example, to snoop for update notifications on
storage object of type Item with identifier 1234 in data store domain auction.com the
subject mask to use is “UPDATENOTIFY.Item.1234.*.auction.com.>”. The subject
mask for snooping load replies for the same storage object instance is
“LOADREPLY.Item.1234.*.auction.com.>”.
Figure 6 summarizes the swizzling with snooping mechanism implemented by any
data container in the object manager. Initially the handle to the incarnation is
unswizzled and snooping to loads and updates is initiated. Eventually, snooping the
collection of fragments is completed and the incarnation is switched to the valid state
or an accessor is called beforehand. In the former case, the storage object state
members can be accessed without going back to the data store. In the latter case, a
blocking load request is published – in turn, replies to this request may be snooped by
other PSS nodes. Once in a valid state, the storage object incarnation continuously
tracks updates by snooping UPDATENOTIFY fragment messages.
The construction of a valid state is possible only if the collection of incoming
fragments is complete and all fragments are compatible. We say, that two fragments
of a storage object instance are compatible if they carry the same request_id and thus
are published on behalf of the same interaction. Thereby we assure that we assemble
the object state belonging to the same snapshot of the object. The fragment buffer
needs only one slot for each fragment, as we are only interested in one version of the
object, i.e. the one that represents the latest snapshot.

242 C. Liebig et al.

Initial
state after creation

invalid
snooping on loads & updates

loading

valid
snooping on update

access:
publish load request

initial snoop
complete

write
access

read
access

start snooping

load complete

flush

LOADREPLY.rep_id.pid.*.domain.>
UPDATENOTIFY.rep_id.pid.*.domain.>

UPDATENOTIFY.rep_id.pid.*.domain.>

LOAD.rep_id.pid.domain

dirty

Fig. 6. Snooping states of the data container

As the snooping functionality is executed in an asynchronous thread with respect to
the application, we have to synchronize the application access on storage objects with
the snooping handler. In order to guarantee snapshot consistency (see also Section
4.4), even if the fragment buffer is complete, we may not unconditionally switch to a
new snapshot of the object state in some situations:
• the incarnation is marked as pinned: do not switch to a new state until the object is

unpinned; continue snooping in the background.
• a read accessor function is currently being executed: switch to the new state on

return of the accessor.
• the incarnation is marked as dirty: do not switch, until
• the incarnation has been updated and flushed: switch not before a corresponding

SAVEREPLY message is received.

4.1.3 Active functionality in PSS
So far, snooping and updating storage objects in the cache has been transparent to the
user. To enable the application to reactively monitor significant events like create,
update, delete, we extend the PSS API with a notification-channel-like interface.
Each storage home implementation acts as a push-style supplier. It exports the
ProxyPushSupplier [24] interface, extended with label-based filtering (see
ItemHomeImpl in Appendix C). An application may register a PushConsumer
object (IOR) with a storage home, to receive create (update, delete) events, when they
occur on any managed storage object whose label matches the given subject predicate.
The event parameter of the push(Any e) notification carries the type of event
(create, update, delete) and the identifier of the affected object. The notification may
then trigger appropriate reactions of the application. The addition of a push channel to
the PSS interfaces really enables to build CORBA based information brokers in
information dissemination systems.
For example, the application could proactively collect instances of objects of some
category - identified by label. To do so, the application registers a PushConsumer
with an appropriate label predicate. Each time a new instance appears the event is

A Publish/Subscribe CORBA Persistent State Service Prototype 243

pushed to the application. As a reaction, the application could then issue a
find_by_pid() using the event payload data and thus proactively start snooping
on the recently created object’s state. Optionally, the application may itself act as a
push-style supplier on behalf of an external notification channel which is connected to
the front-end application (e.g. implemented as Java applet).

4.2 Message Bus Adapter

The Message Bus Adapter provides the means to connect a relational database to the
Rendezvous message bus and thereby to provide transactional publish/subscribe
functionality in the database. We use a prototype for Informix Universal Server (IUS)
that initially was developed by TIBCO [8] and has been modified and extended by the
authors to suit the needs of the project. At the time of this writing, TIB/Adapter
ActiveDatabase [32] has been announced. This product shares many features with our
prototype of the Message Bus Adapter (see Figure 4).
The API is provided through SQL User Defined Routines which are implemented as
external routines in a datablade [15,16]. It is possible to publish row-type data using
EVBSendRow() as well as results of (restricted) queries using EVBSendSQL() on
a specific predefined subject.
Publishing is executed on behalf of a database transaction. The data is effectively
published iff the publishing transaction commits. If the transaction commits, the
published messages are guaranteed to be delivered to all (certified) subscribers
eventually. In certified mode, the implementation uses event-tables to intermediately
queue published messages which will be selected and sent on the message bus by a
dedicated publication agent process, which runs outside of the server. We added
functionality to publish in reliable mode directly out of the in-blade UDR, without the
overhead of persistently queuing events and switching to the agent process. The
reliable delivery multicast is more “lightweight” than the guaranteed delivery
multicast on the message bus [9]. In fact, nearly all DB Connector messages are
published using reliable mode, certified mode is used for incoming SAVE messages
that contain the state of updated storage objects - SAVE messages are also used when
creating an object to initialize its state.
As it is not possible to start a foreign event-loop in a datablade, there is the need for a
listener agent process, that subscribes to the message bus on behalf of listeners and
the associated subjects in the database. Our Message Bus Adapter provides support to
register callback handlers, i.e. SQL UDRs, that will be executed when the subscribed
subject is encountered for an incoming message. To implement the logic that is
needed to drive the data protocol (i.e. create, find, load, save, delete), we register
dedicated handlers for the respective subjects. The handlers are themselves
implemented as external UDR in a separate datablade.
A particular problem in the implementation of the DB Connector for the PSS
prototype is the need for extended trigger functionality in the database. In order to
publish UPDATENOTIFY messages, containing the new state of an object - be it,
because it was saved out of a PSS Connector or because the tables were modified
directly through SQL - we would like to implement so called sequential causal
dependent coupling [4] between the triggering transaction and the update notification
transaction. This coupling between transactions would assure that the notification is
only sent out if the update transaction is successfully committed and that no other

244 C. Liebig et al.

update transaction can modify the data before having sent out the new state. Such a
coupling mode is not supported for SQL3 triggers [18] (as well as Informix SQL [17]
and SQL92 [11]). There are different ways to tackle this problem. One is to make use
of database server extensions that allow to register callback handlers for transaction
state changes in database extension modules like datablades in Informix [16]. This
way, the DB Connector is able to detect the commit of an update transaction and act
accordingly. The IUS 9.14 version, however, does not allow to pass closure data to a
transaction state change handler and it is thus hardly feasible to know for which
object to send out an update notification. A working (and more portable) solution for
us is to let the listener agent run another callback handler after dispatching a save
handler. Doing so, situations might occur, when an older update is overwritten before
the next update on a storage object and only the latest state of the object will be
notified to the PSS connectors. As an effect, a writer may not be able to read its own
update, but already receives a more recent version of the storage object.

4.3 Mapper

This task is well understood in the database community [3,19]. Automated mapping
from PSDL to object-relational therefore is straightforward. However, the derivation
of an OO model from a relational schema may need user intervention. In our
prototype we implemented the PSDL-to-relational mapping at first and made sure,
that the meta-data and the algorithms allow to cope with relational-to-PSDL
mappings.The mapping mechanism consists basically of two phases: configuration at
compile-time and the mapping process at run-time. The first one is carried out by the
PSDL compiler, which maps the definition of storage objects into tabular structures
(here, we describe only the PSDL-to-relational mapping). This mapping process
involves the following issues:
• inheritance hierarchy: each storage type is mapped into a separate table that

contains only the specialized (new) state members, not the inherited ones;
• recursive storage object types: flattened into one table using an attribute as self

reference;
• constructed types (array, sequence, enum, union, etc.): mapped into

separate tables carrying a reference (primary key) of the related object;
• primitive types: mapped based on a predefined correspondence description

between PSDL primitive types and basic SQL types;
• complex SQL types (date, interval, blob etc.): predefined library of storage

types (homes) and their implementation.
The result of the configuration process populates the meta-data repository in the data
store, which contains all necessary information to transform an object into a tabular
structure and vice versa. Based on this meta-data repository the relational schema is
generated. Additionally, the mapper creates the messages types, subjects, senders and
listeners needed for the FAP in the Message Bus Adapter. One important consequence
of the mapping in conjunction with the way, the message bus adapter defines message
types is, that the state of a storage object might be fragmented into several messages
which have to be published separately. This is the case for derived storage object
types and storage object types containing sequences or unions. We are investigating,

A Publish/Subscribe CORBA Persistent State Service Prototype 245

in how far we can benefit from object-relational mappings to increase efficiency of
data shipping.
Once the configuration is established, the second phase is carried out at run-time
when the mapping algorithm is executed in the database adapter i.e. called by some
callback handler. We have to unmarshal the payload data of the incoming message,
e.g. a fragment of a save request, and update the storage object’s tabular
representation accordingly.

4.4 Transaction Properties

Accessing a state member of a storage object incarnation is guaranteed to return a
consistent value. The implementation of an accessor method is realized as atomic unit
of access isolated from concurrent updates on the same storage object in that same
publish/subscribe session and isolated from update notifications snooped from the
message bus, as described in Section 4.1.2. Using the pin() operation on a storage
object incarnation allows to extend the unit of isolation with respect to update
notifications until the unpin() operation is called. Thereby it is possible to bracket
several read accessor calls to the same storage object incarnation in order to read a
consistent snapshot of the object [2].
Note, that we do not use a lock based implementation of isolation as it would require
interaction with the DB Connector. As one consequence, the prototype does not
support bracketing access to more than one storage object incarnation for snapshot
consistency. Without locking, this would require the PSS Connector to assure a
quiescent state [27] of the objects in the readset. In fact, deciding quiescence depends
on a bounded transmission delay of update notifications [27], which we think is not
realistic in the envisaged scenarios. As another consequence, concurrent updates to
the same storage object from different sessions are possible. Updates to the same
storage object will be serialized by the DB Connector in reception order. Updates are
propagated to the datastore on session flush() using certified message delivery.
The save handler in the DB Connector updates all the state fragments of the storage
object in one database transaction and thus assures the atomicity of writes. Again, this
is restricted to single storage objects, there is no transaction bracketing provided. In
Section 4.2, we discussed a restriction imposed by the particular message bus adapter:
it is not guaranteed that each update on a storage object will result in the publication
of an update notification but two updates might be collapsed into one update
notification. Nevertheless, snapshot consistency is preserved, as the application will
never see an older update after a newer one.
The PSS prototype described in this paper does not support the notion of transactions
as proposed for transactional sessions in the PSS specification, which is targeted to
integration with OTS [25] and X/Open DTP XA compliant data bases [34]. Instead
we define a publish/subscribe session. We argue that for many applications the object
instance is a sufficient granularity of isolation, especially for long-running read-only
applications with monitoring semantics. In that respect we trade serializability of
computations for timely delivery and freshness of data.

246 C. Liebig et al.

5 Putting It all Together: An Auction Application Scenario

A worldwide person-to-person auction system (à la eBay) is the basic scenario. We
assume the reader is familiar with the basic auction process. Figure 7 depicts the
infrastructure of this application.
Beginning from the back-end, the DB Connector interacts with the datastore(s), where
all auction entities are stored. The middle-tier encapsulates the auction business logic
(see Appendix D) and the access to persistent auction entity instances through use of a
publish/subscribe PSS (see Appendix B). In this scenario, there are multiple middle-
tiers organized by region, providing similar functionality, and more important,
accessing common storage objects of the auction.com datastore domain. At the
front-end, clients use a browser interface, where auction applets are running that in
turn are connected to the “nearest” application through an ORB. To refresh the data in
the front-end, the user can configure the applet to automatically refresh the data when
it receives the corresponding change/update notifications (aperiodic push/pull
combination); the user can schedule a periodic refresh, e.g. every 5 minutes (periodic
polling) or can refresh information on mouse-click (aperiodic polling).
We present a few characteristic interactions that illustrate the operation of the PSS in
the context of the auction application. Space limitations preclude a more detailed
analysis.

load
i789

PSS
Connector

A
pp

lic
at

io
n

lo
gi

c
(I

nf
or

m
at

io
n-

B
ro

ke
r)GetItem(i789)

NewItem(i543,..)

A
pp

lic
at

io
n

lo
gi

c

b99

b99

b99

i543

i543

i543

newBidFor i123

newBidFor i123

newItem i543

client integration-tier backend-tier

newItem i543

GetItem(i543)

A
pp

lic
at

io
n

lo
gi

c
N

ot
ifi

ca
tio

n

Accessor

b99

i543

create i543

subscribe(i123)

pull

publish

notify

M
essage

B
us

RDBMSP
S

S
/D

B
C

on
ne

ct
or

i543

currentBid(i123)

i789

i789

PlaceABid(aa,i123,$3)

create b99 for i123

newBidFor i123

germany.auction.com

us.auction.com

france.auction.com

japan.auction.com

auction.com

a)

b)

c)

d)

e)

f)

g)

h)
I

b99

b99

b99

A
pp

lic
at

io
n

lo
gi

c

i123

i123

i123
GetItem(i123)

i543

Fig. 7. Auction application scenario

A Publish/Subscribe CORBA Persistent State Service Prototype 247

• A German user on client (a) is interested on item i789, the applet calls the
operation GetItem(i789) through the ORB on the application, which itself
issues a find_by_item_id() on ItemHome (see Appendix C). Given that the
object is not in the cache, the application will run into an object fault when reading
the state of item i789, causing a load request to be published. The responsible DB
Connector looks up the storage object instance and selects corresponding tabular
data and publishes the fragments on the message bus. As no sessions exist on other
nodes that hold an incarnation for i789, the item i789 is only loaded by the German
middle-tier.

• The user on client (d), playing the role of a bidder, places a bid issuing a
PutABid(aa,i123,$3) operation call on the application. This operation
involves the creation of the bid instance b99 with label “i123” for the item i123.
The BidHome creates this instance on the datastore by publishing a CREATE
request. The responsible DB Connector of the particular datastore domain, maps
the corresponding Bid storage object instance into its tabular structure, creates the
required types and subjects in the Message Bus Adapter, and publishes a
CREATEREPLY as well as the object state (after commit) on the message bus. All
BidHome instances in PSS Connectors for which the application has registered a
PushConsumer for create events with label “i123”, snoop the message bus and
signal the creation of bid b99 to the application. The respective storage homes will
proactively create a storage object incarnation in the cache, which instantaneously
snoops the new state. In the scenario, the PSS Connectors in Germany, U.S.A. and
France have subscribed to “i123” labeled bids. On notification, the corresponding
applications in turn read the new b99 storage object - which should already be in
the cache – and send a newBidFor i123 notification to clients (b), (f), and (g).

• An American seller, in front of client (e), wants to sell an item. She requests an
item number and fills out all the required information (title, category, description,
duration, first bid, etc.) and when completed the NewItem operation is called on
the application. This method creates a new item instance (through ItemHome)
identifying it with i543 and category label “comp.misc”, as explained before. All
applications that registered with a respective ItemHome for create events with
label “comp.misc” again receive a create notification from the PSS, while the item
incarnation is already snooped and placed in the cache. Since bidders can specify
their interest in categories to the application, all new items under the selected
categories can be notified to them. That is the case of germany.auction.com
and japan.auction.com, where notifications are sent to the clients (c) and
(h). The latter one pulls i543 item description calling GetItem on the application.

6 Summary and Future Work

We discussed the need for supporting information dissemination applications by
integrating relational databases in a fully distributed Object-Web system. We have
shown that this can easily be done in a CORBA framework through the use of a
publish/subscribe Persistent State Service. In this paper we introduced an architecture
that combines the reliable multicast capabilities of COTS middleware with the
requirements of the new PSS specification. We presented implementation details of a

248 C. Liebig et al.

prototype implementation based on Informix IUS 9.14 and TIBCO’s TIB/Rendezvous
and discussed the main implementation issues: design of PSS and DB Connectors and
the associated formats and protocols, realization of an object manager that provides
lazy swizzling with snooping techniques, the mechanisms for adapting a DBMS to
interact with the messaging middleware and how active event signaling capabilities
were built into the DBMS extensions, the mapping procedures between PSDL and the
relational model and the required session and transaction semantics. We illustrated the
use of the publish/subscribe PSS through an auction scenario and a few characteristic
user interactions and the dissemination of the pertinent information.
The main advantage of our publish/subscribe PSS is the ability to support both client-
and server-initiated interactions in contrast to typical client-initiated approaches based
on query shipping. By exploiting the reliable multicast capabilities of the middleware
we provide a scalable generic caching mechanism that enables the application
developer to concentrate on application development rather than on the
reimplementation of basic functionality. The prototype of our CORBA Persistent
State Service is well suited to build n-tier information dissemination systems that
require timely delivery of data and exhibit access patterns that are typical of
monitoring applications. The introduction of a push channel in the PSS interface
makes it possible to notify applications whenever an event of interest occurs. Through
the use of lazy swizzling combined with message-bus snooping and subject-based
addressing we provide the means to achieve efficient data staging across data stores.
The current PSS implementation is a good platform for further experimentation. On
the one hand, future research includes the deployment in a realistic testbed for
performance evaluation and the use of this platform in large-scale e-commerce
application scenarios. On the other hand, PSS capabilities must be expanded and the
interactions with other CORBA services must be tested. Specific issues to be resolved
in our ongoing research include the use of timestamp-ordering consistency protocols,
the extension of the caching mechanism to do proactive caching, replication among
data stores, the integration with query, notification, and transaction services, and tool
support for handling heterogeneous data stores.

Acknowledgements
We would like to thank Arvola Chan for his support and constructive feedback.

References

1. S. Acharya, R. Alonso, M. Franklin and S. Zdonik, Broadcast Disks: Data Management for
Asymmetric Communications Environments. In Proceedings of the International Conference
on Management of Data (SIGMOD 95), pp. 199-210, San Jose, June 1995.

2. H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, P. O’Neil, A critique of ANSI SQL
Isolation Levels. In Proceedings of the International Conference on Management of Data
(SIGMOD 95), pp. 1-10, San Jose, June 1995.

3. M. Blaha, W. Premerlani and H. Shen, Converting OO Models into RDBMS Schema. IEEE
Software, Vol. 11, No. 3, pp. 28-39, May 1994.

4. H. Branding, A. Buchmann, T. Kurdass and J. Zimmermann, Rules in an Open System: The
REACH Rule System. In Proceedings of Intl. Workshop on Rules in Database Systems
(RIDS 93), pp. 111-126, Edinburgh, Scotland, September 1993.

A Publish/Subscribe CORBA Persistent State Service Prototype 249

5. M. Carey, M. Franklin, M.Livny and E. Shekita, Data Caching Tradeoffs in Client-Server
DBMS Architectures. In Proceedings of the International Conference on Management of
Data (SIGMOD 91), pp. 357-366, Denver, May 1991.

6. N.Carriero and D. Gelernter. Linda in Context. Communications of the ACM, Vol. 32, No.
4, April 1989.

7. R.G.G. Cattell et al (Editors). The Object Database Standard: ODMG 2.0. Morgan
Kaufmann Publishers, 1997.

8. A. Chan. Transactional Publish / Subscribe: The Proactive Multicast of Database Changes.
In Proceedings of the International Conference on Management of Data (SIGMOD 98), pp.
520, Seattle, Washington, 1998.

9. D.R. Cheriton and D. Skeen. Understanding the Limitations of Causally and Totally
Ordered Communication. In 14th ACM Symposium on Operating System Principles,
Asheville, NC, December 1993.

10.U. Dayal and A. Buchmann and D. McCarthy. Rules are Objects too: a knowledge model
for an active, object-oriented database system. In Proceedings of the 2nd Intl. Workshop on
Object-Oriented Database Systems, Lecture Notes in Computer Science 334, Springer,
1988.

11.C. Date and H. Darwen, The Guide of SQL Standard, 4th edition, Addison-Wesley, 1997.
12.D. Edelson, Smart Pointers: They’re Smart, but not They’re Not Pointers. Technical Report

UCSC-CRL-92- 27, Baskin Center of Computer Engineering & Information Science,
University of California, Santa Cruz, 1992.

13.M. Franklin and S. Zdonik, “Data in your Face”: Push Technology in Perspective. In
Proceedings of the International Conference on Management of Data (SIGMOD 98), pp.
516-519, Seattle, June 1998.

14.Fujitsu, Inprise, IONA Technologies, Objectivity, Oracle, Persistence Software, Secant
Technologies, Sun Microsystems and TIBCO, Persistent State Service 2.0, Joint Revised
Submission. OMG Document orbos/ 99-07-07, ftp://www.omg.org/pub/docs/orbos/99-07-
07.pdf, August 1999.

15.Informix Inc., Extending Informix Universal Server, User-Defined Routines, 1997.
16.Informix Inc., DataBlade API Programmers Manual, 1997.
17.Informix Inc., Informix Guide to SQL:Syntax, Version 9.1, 1997.
18.ISO-ANSI, Working Draft Database Language SQL (SQL / Foundation SQL3). Part 2,

X3H2-94-080 and SOU-003, 1995.
19.A. Keller, R. Jensen and S. Agrawal, Persistence Software: Bridging Object-Oriented

Programming and Relational Databases. In Proceedings of the International Conference on
Management of Data (SIGMOD 93), pp. 523-528, Washington, May 1993.

20.A. Kemper and G. Moerkotte, Object-Oriented Database Management: Applications in
Engineering and Computer Science, Prentice Hall, 1994.

21.R. Munz, Usage Scenarios for DBMS. Keynote, International Conference on Very Large
Data Bases (VLDB 99),
www.dcs.napier.ac.uk/~vldb99/IndustrialSpeakersSlides/SAPVLDB.pdf, Edinburgh,
September 1999.

22.Object Management Group (OMG), CORBA Services Specification. OMG Document
formal/98-12-09, ftp:/ /www.omg.org/pub/docs/formal/98-12-09.pdf, Famingham, MA,
December 1998.

23.Object Management Group (OMG), CORBA Messaging, OMG Document orbos/98-05-05,
ftp:// www.omg.org/pub/docs/orbos/98-05-05.pdf, Famingham, MA, May 1998.

24.Object Managment Group (OMG), CORBA Notification Service, OMG TC Document
telecom/99-07-01, ftp://www.omg.org/pub/docs/telecom/99-07-01.pdf, Famingham, MA,
August 1999.

25.Object Management Group (OMG), Transaction Service Specification, in CORBA Services
Specification, Chapter 10, Famingham, MA, May 1998.

250 C. Liebig et al.

26.B. Oki, M. Pfluegl, A. Siegel and D. Skeen, The Information Bus - An Architecture for
Extensible Distributed Systems. In Proceedings of SIGOPS 93, pp. 58-68, December 1993.

27.E. Pacitti, P. Minet and E. Simon. Fast Algorithms for Maintaining Replica Consistency in
Lazy Master Replicated Databases. In Proceedings of the Intl. Conference on Very Large
Data Bases (VLDB99), pp. 126- 137, Edinburgh, UK, September 1999.

28.Persistence Software, Persistence PowerTier: A Technical Overview. White Paper,
www.persistence.com/ Sources/Download/WP_Technical.pdf.

29.D.C. Schmidt. Reactor -- An Object Behavioral Pattern for Event Demultiplexing and Event
Handler Dispatching. Proceedings of the First Pattern Languages of Programs Conference
in Monticello, Illinois, August, 1994.

30.T. Speakman, D. Farinacci, S. Lin and A. Tweedly. PGM Reliable Transport Protocol
Specification. Internet Draft <draft-speakman-pgm-spec-02.txt>, Cisco Systems, August
1998.

31.TIBCO Software Inc. TIB/Active Enterprise.
http://www.tibco.com/products/active_enterprise/index.html, TIBCO Software Inc., Palo
Alto, USA.

32.TIBCO Software Inc. TIB/Adapter for ActiveDatabase.
http://www.tibco.com/products/adapter_adb/whitepaper.html, TIBCO Software Inc., Palo
Alto, USA.

33.W. Wilkinson and M. Neimat, Maintaining Consistency of Client-Cached Data. In
Proceedings of the Intl. Conference on Very Large Data Bases (VLDB 90), pp. 122-133,
Brisbane, Australia, August 1990.

34.X/Open DTP, Distributed Transaction Processing: Reference Model, The XA Specification,
Reading, Berkshire, England, X/Open Ltd., 1991.

A Publish/Subscribe CORBA Persistent State Service Prototype 251

Appendix A. Subject Namespace

Table 1. Subject Namespace.

Task Subject participant * mask content**

Create CREATE.rep_id. domain storagehome P CREATE.rep_id.domain rep_id,
[pid|{(key,value)}*]
label, request_id

DB-Connector S CREATE. *.domain
CREATEREPLY.rep_id.
domain.label

DB-Connector P CREATEREPLY.rep_id.
domain.label

rep_id, pid,
request_id,label,
result

“ snoop storagehome S CREATEREPLY.rep_id.
domain.>

storagehome S CREATEREPLY.rep_id.
domain.label

Delete DELETE.rep_id.domain storagetype P DELETE.rep_id.domain rep_id, pid,
request_id

DB-Connector S DELETE.*.domain
DELETEREPLY.rep_id.
pid.domain.label

DB-Connector P DELETEREPLY.rep_id.pid.
domain.label

rep_id, pid,
request_id,label,
result

“ snoop storage_type S DELETEREPLY.rep_id.pid.
domain.label

storagehome S DELETEREPLY.rep_id.*.
domain.label

Find FIND.rep_id.domain storagehome P FIND.rep_id.domain rep_id, pid,
request_id, {(key,
value)}*, label

DB-Connector S FIND. *.domain
FINDREPLY.rep_id.
Domain

DB-Connector P FINDREPLY.rep_id.domain (rep_id, pid, label)
collection,
request_id

storagehome S FINDREPLY.rep_id.domain
Load LOAD.rep_id. Pid.domain storagetype P LOAD.rep_id.pid. domain rep_id, pid,

request_id
DB-Connector S LOAD. *. *.domain

LOADREPLY. rep_id. pid.
fragment_no. domain.label

DB-Connector P LOADREYPL.rep_id. pid.
fragment_no.domain.label

fragment data

“ snoop storagetype S LOADREPLY.rep_id.pid.*.
domain.>

storagetype S LOADREPLY.rep_id. pid.*.
domain.>

Update
notification

UPDATENOTIFY.
rep_id.pid. fragment_no.
domain.label

DB-Connector P UPDATENOTIFY.rep_id.pid.
fragment_no.domain.label

fragment data

“ snoop storagetype S UPDATENOTIFY.rep_id.pid.
*.domain.label

Save SAVE.rep_id. pid.domain storagetype P SAVE.repid.pid.domain Fragment data,
request_id

DB-Connector S SAVE.*.*.domain
SAVECOMPLETE.
rep_id.pid.domain

storagetype P SAVECOMPLETE.rep_id.
pid.domain

rep_id, pid,
request_id

DB-Connector S SAVECOMPLETE.*.*.
domain

SAVEREPLY.
rep_id.pid.domain

DB-Connector P SAVEREPLY.rep_id. pid.
domain

rep_id, pid,
request_id, result

storagetype S SAVEREPLY.rep_id.pid.
domain

* P:publisher, S:subscriber
** rep_id: repository identification; pid:persistent state object identification.

252 C. Liebig et al.

Appendix B. PSDL (Auction Example)

abstract storagetype User {
//...

};

abstract storagetype Category {
//...

};

abstract storagetype Item;
typedef sequence<ref<Item>> item_seq;

abstract storagetype Bid{
readonly state long bid_no;
state ref<User> bidder;
state ref<Item> item;
state date when;
state money amount;

}

typedef sequence<ref<Bid>> bid_seq;
enum item_state {sold, cancelled, active, inactive};

abstract storagetype Item {
readonly state long item_no;
state string title;
state string description;
state ref<ItemDetails> details;
state ref<Category> cat_no;
state date from;
state date until;
state string location;
state ref<User> seller;
state item_state thestate;

};

abstract storagetype ItemDetails {
state ref<Item> item;
state string longdescription;
state blob image;

};

storagetype ItemImpl implements ItemDescription{};
storagetype ItemDetailsImpl implements ItemDetails{};
storagetype BidImpl implements Bid{};
// ...

abstract storagehome ItemHome of Item {
key item_no;

};
abstract storagehome BidHome of Bid {

key bid_no;
};
abstract storagehome ItemDetailsHome of ItemDetails {};

storagehome BidHomeImpl of BidImpl implements BidHome {;
primary key bid_no;

};
storagehome ItemHomeImpl of ItemImpl implements ItemHome {;

primary key item_no;
};
storagehome ItemDetailsHomeImpl of ItemDetailsImpl implements

ItemDetailsHome { };

A Publish/Subscribe CORBA Persistent State Service Prototype 253

Appendix C. PSS derived code (Auction Example)

// language mappings for special storagetypes date, money, blob
#include "sqltypes.h"

class Item : public virtual CosPersistentState::StorageObjectBase {
public:

virtual CORBA_Long item_no() = 0;
virtual const char* title() const = 0;
virtual void title(const char* s) = 0;
virtual void title(char* s) = 0;
virtual void title(CORBA::String_var& s) = 0;
virtual const char* description() const = 0;
virtual void description(const char* s) = 0;
virtual void description(char* s) = 0;
virtual void description(CORBA::String_var& s) = 0;
virtual ItemDetails* details() const =0;
virtual const ItemDetailsRef

details(CosPersistentState::YieldRef yr) const =0;
virtual void details(ItemDetails* id) = 0;
virtual void details(const ItemDetailsRef id) = 0;
//...

}

class ItemHome : public virtual CosPersistentState::StorageHomeBase {
public:

virtual Item* create(CORBA_Long item_no, const char* title,
const char* description, const ItemDetailsRef& idr,
const CategoryRef& cr, const date& from, const date& until,
const char* location, const UserRef& seller, item_state is,
const char* label)=0;

virtual ItemRef create(CORBA_Long item_no, const char* title,
const char* description, const ItemDetailsRef& idr,
const CategoryRef& cr, const date& from, const date& until,
const char* location, const UserRef& seller, item_state is,
CosPersistentState::YieldRef yr, const char* label,)=0;

// suppl. subscription based finder methods:
virtual item_seq* find_by_label(in string label)=0;
// finder methods for keys
virtual Item* find_by_pid(const CORBA_OctetSeq& pid) = 0;
virtual Item* find_by_item_no(CORBA_Long item_no) = 0;
virtual ItemRef find_by_pid(const CORBA_OctetSeq& pid,

CosPersistentState::YieldRef yr) = 0;
virtual ItemRef find_by_item_no(CORBA_Long item_no,

CosPersistentState::YieldRef yr) = 0;
}

class ItemImpl : public virtual Item {
public:

// accessors
CORBA_Long item_no();
const char* title() const;
void title(const char* s);
void title(char* s);
void title(CORBA::String_var& s);
const char* description() const;
void description(const char* s);
void description(char* s);
void description(CORBA::String_var& s);
ItemDetails* details() const;
const ItemDetailsRef

details(CosPersistentState::YieldRef yr) const;
void details(ItemDetails* id);
void details(const ItemDetailsRef id);
// ...

254 C. Liebig et al.

// methods inherited from StorageObjectBase:
void _add_ref();
void _remove_ref();
void destroy_object();
CORBA_Boolean object_exists();
CORBA_OctetSeq* get_pid();
CORBA_OctetSeq* get_short_pid();
StorageHomeBase_ptr get_storage_home();
void pin();
void unpin();

private:
ItemImpl() {};
ItemImpl(StorageHomeBase_ptr home, const CORBA_OctetSeq& pid,

OBCM_Session *obrvcm_session);
// ...
StorageHomeBase_ptr _home;
ItemImplData* _ptr;

}

class ItemHomeImpl : public virtual ItemHome {
Item* create(CORBA_Long item_no, const char* title,

const char* description, const ItemDetailsRef& idr,
const CategoryRef& cr, const date& from, const date& until,
const char* location, const UserRef& seller, item_state is,
const char* label);

virtual ItemRef create(CORBA_Long item_no, const char* title,
const char* description, const ItemDetailsRef& idr,
const CategoryRef& cr, const date& from, const date& until,
const char* location, const UserRef& seller, item_state is,
CosPersistentState::YieldRef yr, const char* label,);

// suppl. notification channel interface, inherited from
// StorageHomeBase:
virtual void connect_any_push_consumer(notification_type nt,

const char* label, const PushConsumer& pc);
virtual void disconnect_any_push_consumer(notification_type nt,

const char* label,const PushConsumer& pc);
};

A Publish/Subscribe CORBA Persistent State Service Prototype 255

Appendix D. IDL Interfaces (Auction Example)

// data structures for user, bid, item etc.
struct bid {...};
typedef sequence<bid> bid_seq;
struct item {...};
// ...

interface User
{

string NewUser(in string name, in string email,
in string password, in string address);

boolean LogIn(in string UserId, in string password);
boolean LogOut(in string UserId);
void ItemOfInterest(in string UserId, in string ItemNo);
void CategoryOfInterest(in string UserId, in long category);

// Seller:
string NewItem(in string title, in string descr,

in string details, in long category, in string seller,
in short days, in string location);

item_seq GetItemsForSale(in string UserId);

// Bidder:
boolean PlaceABid(in string Bidder, in string ItemNo,

in double amount);
item_seq GetInterests(in string UserId);

// ...
};

interface DataRetrieval
{

item GetItem(in string ItemNo);
itemDetails GetItemDetails(in string ItemNo);
item_seq SearchItem(in string text);
bid firstBid(in string ItemNo);
bid currentBid(in string ItemNo);
bid_seq BidHistory(in string ItemNo);
cat GetCategory(in long catNo);
user GetUser(in string UserId);
// ...

}

	1 	Introduction
	2 	CORBA PSS and Messaging Middleware
	2.1 	CORBA Persistent State Service
	2.2 	Multicast-Enabled MOM

	3 	Overview of the Prototype Architecture
	4 	Prototype Design & Implementation
	4.1 	Formats and Protocols between Connectors
	4.1.1 	Loading a storage object in a publish/subscribe session
	4.1.2 	Snooping and state reassembling
	4.1.3 	Active functionality in PSS

	4.2 	Message Bus Adapter
	4.3 	Mapper
	4.4 	Transaction Properties

	5 	Putting It all Together: An Auction Application Scenario
	6 	Summary and Future Work
	References
	Appendix A. Subject Namespace
	Appendix B. PSDL (Auction Example)
	Appendix C. PSS derived code (Auction Example)
	Appendix D. IDL Interfaces (Auction Example)

