Structuring QoS-Supporting Services
with Smart Proxies

Rainer Koster and Thorsten Kramp

Distributed Systems Group, Dept. of Computer Science
University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
{koster,kramp}@informatik.uni-k1l.de
http://www.uni-kl.de/AG-Nehmer/Projekte/Squirrel

Abstract. While middleware platforms have been established in best-
effort environments nowadays, support for QoS-sensitive services is still
found lacking. More specifically, due to the high diversity of QoS re-
quirements, the abstractions provided for QoS-unaware services cannot
be maintained and the developer has to face the difficulties of low-level
networking in heterogeneous environments again. In this paper, we there-
fore propose the notion of smart prozxies as an effective means for making
the use of QoS-sensitive services for the client-application developer as
comfortable as the use of QoS-unaware services. This is achieved without
imposing restrictions on the internal mechanisms and protocols used by
an QoS-sensitive service to guarantee an agreed on level of QoS. Basi-
cally, smart proxies encapsulate service-specific code which is downloaded
dynamically to the client during binding establishment. The benefits of
this model are discussed in general and exemplified in a case study.

1 Introduction

Today’s middleware platforms such as CORBA [17], DCOM [2], and DCE [4] have
emerged as key components in heterogeneous environments with best-effort re-
quirements. For QoS-sensitive application domains, however, the abstractions
provided are still insufficient at best and prohibitively unsuitable at worst. In
general, middleware platforms allow developing client and server applications
independently of each other, with abstract interface specifications that are writ-
ten in a language-independent interface definition language (IDL) and represent
the link between client and server programmers. Aside from the interface spec-
ification neither the client programmer needs to know how the servers used by
his client are implemented nor the server programmer needs to know about the
internals of the clients that will access her server. Stubs, skeletons, and commu-
nications protocols in concert, directed by the middleware core, shield the client
programmer from the low-level details of heterogeneous networking. Moreover,
while performance issues, additional failure modes, and restricted parameter-
passing rules tell the client that a service might be remotely located, it remains
unaware of the exact location of the service.

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 273288, 2000.
© Springer-Verlag Berlin Heidelberg 2000

274 Rainer Koster and Thorsten Kramp

This model works well for best-effort application domains, yet applications
with more stringent QoS requirements are not adequately supported. In fact,
considering the vast diversity of QoS requirements imposed on middleware plat-
forms by, for example, next-generation multimedia applications or within mobile
environments (Fig. 1), it is highly unlikely that a single middleware platform will
meet all these requirements equally well — specifically since, besides traditional
remote invocations, time-constraint messages and continuous media streams are
becoming more important. The latter demand protocols with predictable latency
and strictly controlled jitter while the respective mechanisms necessarily vary
with the underlying network technologies. For example, with a QoS-supporting
network such as ATM, bandwidth reservations can be easily mapped onto native
network parameters, whereas a best-effort network requires a feedback mecha-
nism and buffering on top to effectively control the stream according to given
QoS constraints. Moreover, bandwidth limitations often enforce data compres-
sion with an appropriate codec whose choice also depends on the processing time
and buffer space available at the client and the server. Consequently, CORBA,
for instance, does not attempt to define a one-size-fits-all streaming protocol
but only prescribes generic control and management interfaces for streams [16].
Since QoS inherently is an end-to-end issue, this leaves it to both the client and
the server application-developers to implement the low-level protocols needed
which, of course, cannot be generated automatically from an IDL description.

In this paper, we therefore propose the use of smart prozies as a structuring
mechanism for QoS-sensitive services. Basically, any service-specific code needed
at the client side is encapsulated in a smart proxy, which replaces the traditional
stub and provides to the client the same high-level service-centred interface as if
its remote server would be co-located with the client. This high-level interface,
in turn, can be described in an IDL and may provide for high-level QoS negoti-
ation in terms of, for example, frame rate or resolution, leaving it to the smart
proxy and the server to map service-level parameters to corresponding resource
requirements and low-level mechanisms. Access to a QoS-supporting service then
becomes as easy for the client programmer as it is to a conventional service that
does not need particular QoS provisions.

As a consequence, all low-level service-specific development efforts are shifted
to the service developer, who implements both the server and its smart proxies
using whatever protocol functionality and communications patterns are appro-
priate. Transparently to the client, different implementations may be tailored
for particular environments. The service interface, however, is unaffected by the
internal implementation and remains constant, shielding the client from all low-
level technicalities. Of course, while the client so far can be implemented without
knowing what service implementations it will connect to, all eligible proxies still
must be available at the client side beforehand. We therefore propose that smart
proxies are loaded dynamically from the server during binding establishment.
The middleware platform downloads the smart proxy to the client machine and
dynamically links its code to the client application on demand; from then on,
the smart proxy handles the communication to its server.

Structuring QoS-Supporting Services with Smart Proxies 275

node
process
client | server
node
process ‘ ’ process
. | smart ’
client; | proxy \ shm ‘ server
| [
node node
. ‘ smart H High speed LAN H
client server
‘ proxy H H
node node
‘ Low speed
. smart JPEG] connection] JPEG
client ‘ proxy decoder modem modem encoder *V
node node
_A-
. ‘ smart rate ’+ %’feedback
client . Internet server
‘ proxy monitor ‘ ’ control

Fig. 1. Various Communication Scenarios

The remainder of this paper is structured as follows. Section 2 introduces
the notion of smart proxies in more detail. Sections 3 and 4 then discuss the
effects of downloading smart proxies dynamically at run time and what support
is required from the middleware platform, respectively, followed, in Section 5, by
a case study. Related work is summarised in Section 6 before the paper closes
with conclusions and a brief outlook on future work in Section 7.

2 Smart Proxies

A smart prozxy is service-specific code added to a client application. The client
communicates with the smart proxy—and, thus, indirectly with the remote
server — through a local interface as it would do with a co-located server, includ-
ing QoS negotiation where appropriate. Whether the server is actually located
within the client address space, on the client machine, or on a remote machine

276 Rainer Koster and Thorsten Kramp

node node
client < Toosewer
0S ! 08
S - network
ode node
. smart
cliente» server
proxy
T os '] 08
S-o - network

< gervice interface — local resource
- — - network resource

Fig. 2. Service Abstractions

is transparent to the client (performance issues, additional failure modes, and
slightly restricted parameter passing rules aside).

For simple communication mechanisms, this functionality is identical to that
provided by stubs automatically generated from an IDL description, as employed
in CORBA or DCE, for instance. These stubs are limited to marshalling and
unmarshalling of parameters, and sending requests via the standard protocols
provided by their request broker. A smart proxy, in contrast, can also provide
arbitrary functionality such as compression and sophisticated service-specific
QoS management, although it must be developed specifically for each service
instead of being automatically generated.

Since there is no one-size-fits-all protocol for applications that require partic-
ular performance optimisations or QoS functionality, it is highly unlikely that a
single platform can satisfy all these requirements. In cases in which the platform’s
default protocol proves insufficient, client and server then need to communicate
directly, that is, the low-level protocol used by the service actually becomes the
service interface or at least part of it (Fig. 2). Hence, server implementations pro-
viding the same functionality but using different internal protocols essentially
become different services and require different client software. This problem can
be mitigated by supporting a set of protocols at both sides and choosing one in
both sets during connection establishment. The CORBA telecoms specification
relies on this approach for streaming by merely defining compatibility of stream
endpoints [16]. The client, however, still needs to know how the internal com-
munication works, what capabilities are provided by the server, and where the
server is located.

Structuring QoS-Supporting Services with Smart Proxies 277

UDP

raw

local Chent].
socket

shared
| memory

Server 1

v

controlled
- UDP
JPEG

TCP
H.263

feedback
cedbac Ifg(}lient 2

Server 2

:

Client 3

real
video

b

Fig. 3. Exemplified Smart Proxy Usage

By integrating and hiding complex communication mechanisms in smart
proxies, the level of abstraction as provided by middleware platforms for QoS-
unaware remote invocations can also be achieved for QoS-supporting services.
There may be a variety of specialised server implementations and servers may
provide different communication mechanisms for different connections (Fig. 3).
For instance, a server could use shared memory locally, a compression mecha-
nism and UDP across the Internet, or raw Ethernet on a dedicated LAN. In any
case, the corresponding smart proxy implements the client side of the commu-
nication link, while, from the point of view of the client application, offering the
same service-oriented high-level interface.

Note that the development of a smart proxy is not an additional effort. If
complex functionality is required at the client and the server to appropriately
handle a connection, this functionality unavoidably must be implemented manu-
ally and cannot be automatically generated from an abstract interface specifica-
tion. Without smart proxies, however, the client developer as well as the service
developer need to know the details of the communication protocol, whereas with
smart proxies, the low-level details are hidden from the client developer and only

278 Rainer Koster and Thorsten Kramp

the service developer, who is more likely to be familiar with low-level aspects
of the service anyway, implements the low-level communication with the addi-
tional benefit of having both ends of the connection under control. The latter is
particularly important for QoS control, which inherently is an end-to-end issue;
in this case, both sides of a client/server connection must tightly cooperate to
provide the negotiated level of QoS.

Consider, for instance, a video-streaming service. Its interface could include
some high-level QoS parameters such as frame rate and resolution. With smart
proxies the mapping of different QoS settings to low-level resource reservations
and communication protocols can be handled transparently for the client devel-
oper:

1. If the underlying system supports resource reservation, the smart proxy can
map these parameters to low-level resource requirements for the local node
and the network connection in terms of CPU capacity and network band-
width, for instance. Then, the smart proxy can obtain local resources and
negotiate a guaranteed QoS with the server. This QoS then is reported to
the client application, again in terms of high-level parameters such as frame
rate and resolution.

2. If only a best-effort transport protocol is available, sophisticated feedback
mechanisms are frequently used for QoS adaptation to guarantee an agreed
on level of QoS. Such feedback loops, however, can be employed internally
between the smart proxy and server without affecting the client application.

3. If the client and server happen to be in the same address space, no smart
proxy is needed at all and the client can directly negotiate with the server
what quality can be achieved with the resources available at this node. Sub-
stituting the server for the smart proxy again is transparent for the client
since both share the same high-level interface.

In each of these example scenarios, the actual QoS management is hidden from
the client application, whereas, without smart proxies, every client would need
to handle all these cases itself. As a consequence, each client developer usually
would have to implement the functionality for each connection type and server
implementation himself.

Furthermore, smart proxies can also be beneficial for improving other non-
functional aspects. They may, for instance, implement caching or prefetching
strategies, which require service-specific knowledge about access patterns and
appropriate consistency models.

Finally, service updates that affect communication protocols usually require
updates of the client software as well, even if the high-level service interface is
unaffected by the update. While a new service additionally can implement the
old protocol, the benefits of the new features cannot be utilised in backward
compatibility mode. Smart proxies, in contrast, are developed along with the
server, and simply need to be replaced when updating a service without affecting
the actual client application.

Structuring QoS-Supporting Services with Smart Proxies 279

3 Proxy Shipping

In general, smart proxies and clients can be shipped either statically or dynam-
ically. With the static approach, the smart proxy is somehow sent to the client
developer out of band (e.g., via email) and linked with the application. Hence,
all smart proxies that a client might need must be present before the service
is accessed. NETSCAPE plug-ins [3], for instance, work in a similar way. While
this is a more systematic approach than integrating smart-proxy functionality
directly into the client software, it only partially realises the benefits of smart
proxies.

Dynamic proxy shipping, in contrast, is much more flexible. The most ap-
propriate server, and then the most appropriate smart proxy of this server can
be chosen and shipped to the client during binding establishment, taking the
current resource availability into account. Moreover, as long as the service inter-
face remains stable, server updates become completely transparent to the client:
the updated smart proxy is simply sent and communicates with the new server
version. At the client side, only smart proxies currently in use need to be present
at the client.

However, regardless how a smart proxy is shipped, in an heterogeneous en-
vironment it must be available in several versions. If a server has m different
types of smart proxies supporting different types of network connections, and n
types of client applications run on p platforms, the service developer effectively
must implement m X p smart proxies, where p is typically small. Note that there
is still a lot less effort than implementing the same functionality in n x m X p
client versions. Furthermore, since smart proxies are implemented by the service
developer, often only a recompile or minor modifications are needed for different
platforms. If the development is spread among the client developers, in contrast,
the same functionality generally would have to be re-invented and implemented
over and over again.

To implement dynamic loading of smart proxies, code must be shipped from
the server to the client. One way to allow this is using a virtual machine (such
as provided by Java) for running the smart proxies. In this case, proxies need
to be programmed only for the virtual machine, but not for each possible client
platform in an heterogeneous environment. Yet, since smart proxies are meant
to perform computationally intensive tasks such as decoding video frames and
dealing with real-time constraints, run-time efficiency and predictability are im-
portant issues. Although considerable effort is being spent on improving virtual
machines to this respect, the current state of the art is hardly satisfactory. Hence,
we have explored a different approach. Many systems allow dynamic linking of
shared libraries at run time. Then, smart proxies can be built as native-code
shared libraries that are sent over the network and are dynamically linked to the
client. While this mechanism requires a different smart proxy version for each
supported client platform, language heterogenity is achieved to a certain ex-
tent since many languages share the same object-code format (e. g., ELF shared
libraries [19]) and, thus, can be linked to libraries written in another language.

280 Rainer Koster and Thorsten Kramp

Code shipping in general, however, also causes serious security risks which
are far easier to control with a virtual machine that ‘sandboxes’ smart proxies
and, thus, protects the client process from malicious operations. With native-
code libraries the problem is much more difficult and requires future research.
For now, the problems may be mitigated by using only trusted servers and
signing smart proxies cryptographically, or restricting the use of smart proxies
to security domains such as a cluster of computers.

4 Platform Support

Smart proxies as a structuring mechanism can be used without any particular
support from an underlying middleware platform. Developing services as a com-
bination of a server and smart proxies first of all is a reasonable way of building
distributed services. The smart proxies define the interface to the service from a
client developer’s point of view and only need to be linked to clients that want
to use it.

For dynamic proxy shipping, in contrast, client and server at least must be
able to transmit the proxy at connection setup and link it to the client appli-
cation. With Java, the virtual machine handles downloading the byte code of
smart proxies and running it, whereas the use of shared libraries with a language
such as C or C++ is slightly more difficult. Since the function definitions are not
available at compile time of the client, functions of smart proxies must be called
via function pointers. The machinery required for these indirections, however,
can be generated automatically from the header file of a smart proxy for which
we have developed a tool. Apart from this, there needs to be a standardized
way of retrieving the smart proxy from the server. The client may open, for ex-
ample, a TCP/IP connection to the server and download the smart-proxy code
to a local disk prior to linking it to the application code using the operating
system’s default dynamic-linking facilities such as dlopen under Unix. We have
implemented this mechanism on LINUX and extended dlopen to read the code
to be linked directly from the network rather than from a file.

However, the functionality required for dynamically downloading and link-
ing smart proxies should be integrated with a middleware platform to be readily
available. The middleware platform then is responsible for the handling of ser-
vice references and locating the respective servers as well as performing the
the actual shipping and linking of smart proxies. For choosing the best-suited
smart proxy for a given client, the middleware platform automatically would
report the client’s operating system, hardware platform, and network technol-
ogy to server, possibly complemented by status information such as the current
processing load. It may also be useful to establish smart-proxy repositories to
keep smart proxy and server implementations consistent. Finally, a middleware
platform could provide some security in loading proxies such as checking their
integrity.

To this end, we are currently investigating how smart proxy support can be
integrated with CORBA. The ability to access objects by value [15] provides some

Structuring QoS-Supporting Services with Smart Proxies 281

prerequisites for proxy shipping and allows the development of a CORBA service
for this task. For continuous-media transmission, smart proxies can be built along
the lines of the CORBA telecoms stream-management specification [16], which
provides services with the ability to exploit protocols not directly supported
by the ORB itself. To fully utilise the potential of smart proxies with respect
to QoS, however, the underlying operating environment including the operating
system, the networking subsystem, and the middleware platform must support
some resource management. The system should at least provide mechanisms for
smart proxies and servers to reserve elementary resources such as CPU cycles
and memory buffers on the respective node, and to specify connection properties
such as guaranteed bandwidth and maximum latency. In this context, we are cur-
rently developing an open low-level foundation for QoS-supporting middleware
in combination with appropriate operating-system-level support [6,7,8,9].

5 Case Study

To demonstrate the benefits of using smart proxies, we have implemented a
live-video service providing access to a camera and to be used by, for example,
video-conferencing and video-surveillance clients. With this example application
we can demonstrate the following important features of smart proxies:

> Different service implementations that use different communication mecha-
nisms can be accessed transparently by clients through a uniform interface.

> Different QoS management strategies can be encapsulated in proxies.

> Different client applications using the same service all can utilise the set of
protocols supported by the service’s smart proxies without re-implementing
endpoint functionality in each client.

Right now, we have not implemented the example on a middleware platform, but
have used the modified dlopen mentioned above to prove the general feasibility
of smart proxies.

The video server runs on x86 PCs with Linux 2.2 using a Hauppauge frame-
grabber card with a camera as the video source. Clients and smart proxies have
been implemented in C++, according to the following service interface:

class live_video {
public:
void start(int frame_rate);
void stopQ);
void get_frame(charx &frame, struct timeval &when);
void free_frame(char* frame);
int request(int frame_rate);

};

Calling the start method initiates the transmission of video frames with a given
frame rate, calling stop terminates the transmission. Frame data can be read by
calling get_frame which blocks until a frame becomes available and also reports

282 Rainer Koster and Thorsten Kramp

the recording time of each frame returned. Finally, frames need to be freed with
free_frame. The only QoS parameter controlled by this simple example is the
frame rate. A client can try to make a reservation for some level of QoS using the
request method. The frame rate returned can then be guaranteed by the system
with a return value of 0 indicating that only best-effort access is supported.

5.1 Various Communication Mechanisms

We have implemented smart proxies and servers for four ways of communication.
A simple UDP transmission just sends the frames over the network. Since UDP is
unreliable and does not preserve order, packet losses and out-of-order delivery
must be handled correctly. A second proxy-server pair also uses UDP but em-
ploys JPEG compression to save network bandwidth at the expense of higher
computational load. The third version uses the BEAT protocol for local net-
works [6], which is reliable and provides some level of QoS guarantees discussed
in more detail below. Finally, proxy and server can efficiently communicate via
shared memory if client and server happen to be co-located on the same node.
Based on information submitted by the client, the server chooses the smart proxy
which most closely matches the client requirements and is compatible with the
processing time and network bandwidth available.

The various performance characteristics of the different communication pro-
tocols are illustrated in Fig. 4. Transmitting video frames over an idle 10 Mbps
Ethernet peaks at 8.5fps (frames per second) for raw images and 12.8 fps for
JPEG-encoded images, independently of the network protocol used. For a co-
located client/server pair, finally, shared memory reaches the expected frame
rate of 25 fps.

5.2 QoS Management

The BEAT protocol provides deterministic network access on an Ethernet and a
means for bandwidth reservation, which is used as a simple example for QoS man-
agement. When a client application requests a particular frame rate from its
service, a best-effort smart proxy (i.e., one that relies on UDP) would simply
return 0 to indicate that there are no guarantees available. With BEAT, in con-
trast, a smart proxy could map the high-level parameter ‘frame rate’ to the
low-level parameter ‘bandwidth’. This mapping can be done as part of the ser-
vice logic since the smart proxy knows the size of the frames used. Then, the
smart proxy tries to reserve this bandwidth with the transport protocol and
checks with the server what frame rate can be delivered from the video source.
Finally, the frame rate that can be guaranteed by server and network is reported
to the client, which is unaware of the required low-level resource reservation and
mechanisms used to guarantee the frame rate.

The advantage of using a resource-reservation protocol shows when transmit-
ting video frames in competition with a synthetically generated load of 4 Mbps
(Fig5). Plain UDP peaks at a frame rate of only 4.3 fps for raw images, whereas
BEAT still allows up to 6 fps for raw images and about 12 fps for JPEG encoded

Structuring QoS-Supporting Services with Smart Proxies 283

254 ... UDP
********** BEAT
***** UDP with JPEG
20 — — — — UDP over 100 Mb/s
Shared mem
15 —
frame
rate |
delivered
10 —
5
z

I I I I I
5 10 15 20 25

frame rate requested

Fig. 4. Different Communication Protocols

ones. While JPEG encoding induces an additional computational load it allows
to submit a reasonable frame rate even if the available network bandwidth would
not allow an uncompressed transmission.

In a similar manner, reservations with RSVP or other protocols could be en-
capsulated. For this case study, we have also assumed that network bandwidth is
the only potentially scarce resource. More elaborate smart proxy/server combi-
nations would also control other resources on the client and the server side such
as processing time or buffer space, as well as additional QoS parameters such as
jitter and latency bounds.

Even if there is no support for reservations, smart proxies can improve QoS.
Advanced best-effort transport protocols for continuous media typically employ
some feedback mechanism to adjust the send rate of the server to the resources
actually available [1,18]. The client-side code required for these features again
can be provided by smart proxies without modifying the client.

5.3 Proxy Reuse for Several Clients

As one example for the versatility of our smart proxies, we have used the live-
video service twice in our teleconferencing clients. A local server shows the pic-
ture of the person running the client while a remote server shows the person he
or she is talking to. The client accesses both servers in the same way, relying on
the smart proxies to take care of finding the best way of transmitting the video
frames.

284 Rainer Koster and Thorsten Kramp

12 e o T T
v
v
/s
Ve
10 — T UDP
A BEAT
// — — — BEAT with JPEG
frame 87 /
/
rate /
delivered /
6 —) ST
4
/
| [
4 /-
/.
I I I I I
5 10 15 20 25

frame rate requested

Fig. 5. Reservation with Smart Proxies

Furthermore, we have implemented a surveillance tool re-using the live-video
server and its smart proxies. This tool connects to a remote video service and
compares adjacent frames, raising an alarm when the picture changes. Regard-
less of what type of connection is best, the same service as for the teleconfer-
encing can be used. Without smart proxies, all client-side functionality for the
respective connection types would have been to be re-implemented. Even for this
rather rudimentary example this would have resulted in a considerable effort in
developing each client.

6 Related Work

The notion of smart proxies is most closely related to the work on fragmented
or distributed objects as proposed by Makpangou et al. [12] and, more recently,
within the GLOBE [20,21] and AsPECTIX [5] projects. The fundamental idea
is to allow objects to be physically distributed and to consist of fragments at
several nodes; distribution and communication between fragments are hidden
from other (client) objects.

GLOBE is a middleware platform that employs distributed objects to pro-
vide scalability to wide-area distributed applications such as replication and
caching for web documents. Middleware services are used to locate and down-
load fragments, through which the object is accessed. The ASPECTIX project, in
contrast, while also being based on distributed objects, is focussed on enhanced

Structuring QoS-Supporting Services with Smart Proxies 285

QoS support, extending CORBA by support for mobile and reconfigurable object
fragments.

Smart proxies can be seen as a particular way of using distributed objects and
represent a simpler and more elementary model. In contrast to the symmetric
model of fragments in a distributed object, however, smart proxies and servers
have distinct roles. This approach is more similar to the familiar client and
server model and, hence, may be more easily adopted by programmers than the
development of servers as distributed objects. In addition, less platform support
is needed. For instance, proxies do not have persistent state, are selected by the
server, and need not be located independently of the server. Moreover, while we
try to provide QoS support for applications such as continuous media streaming
services, GLOBE focusses on scalability. It is not obvious, for instance, whether
complex transmission mechanisms such as compression or feedback can easily be
integrated with GLOBE’s object fragments.

The QuO architecture [11,22] takes a different approach to hiding QoS man-
agement issues from the client application. Separately from the IDL defining
the functional interface of an object, QoS parameters and adaptive behaviour
are specified by QuO description languages. From these QDL so called delegates
are generated and linked to the client application in a similar way as stubs are
generated from the IDL. Hence, the delegates are basically a kind of statically
shipped smart proxies. Compared to our approach, on the one hand, the QuO
architecture and the automatic code generation facilitate integration of function-
ality such as resource reservation, QoS monitoring, and adaptation. On the other
hand, complex delegate functionality not provided by the platform can only be
added to the QDL as source code in the implementation languages of the clients,
when the service interface is designed.

Within a more narrow context, the concept of embedding service-specific code
within client applications has also been explored by Yoshikawa et al. with so-
called smart clients [24]. These smart clients were primarily used to implement
caching and prefetching as a means for increasing the scalability of Internet
services in terms of performance, load balancing, and fault tolerance. Of course,
these tasks can also be encapsulated in smart proxies.

Proxies are also an important concept in Sun’s JINI environment [13,23], in
which services are defined in terms of Java interfaces. To access a service, a
lookup service returns sort of a smart proxy to the client that communicates
with the server. JINI mainly uses this mechanism to allow devices and services
to be dynamically added to and removed from the system. Of course, it also
allows server and proxy to choose their own protocol for communicating with
each other. Since JINI is based on Java, it inherits the advantages of security,
ease of code shipping, and platform independence, as well as the drawbacks of
being restricted to one language and the potential performance penalties and
unpredictability of a virtual machine.

Furthermore, there are several ongoing efforts to develop QoS supporting

middleware platforms in general and to improve real-time and QoS properties
of CORBA in particular. Specifically related to QoS for continuous-media trans-

286 Rainer Koster and Thorsten Kramp

mission are implementations of the CORBA telecoms specification [16] such as
the audio/video streaming service built on top of TAO [14]. Work on config-
urable middleware platforms, finally, is related to our work since these platforms
open a wider range of infrastructural support to smart proxies. TAO’s pluggable
protocol framework [10] is only one example of ongoing efforts in this context.

7 Conclusions

In this paper we have introduced the notion of smart proxies as an effective means
for structuring QoS-sensitive services. The benefits of this approach are threefold.
Firstly, service-specific client code is separated from the client application-code
and encapsulated in self-contained modules. This leads to a clear separation of
functionality as a prerequisite for dynamically substituting modules that adhere
to the same high-level interface. Secondly, all low-level service-specific devel-
opment efforts are shifted to the service developer, while the client developer
merely interacts with a high-level interface in the same way as he does with
QoS-unaware services. As a consequence, instead of developing low-level client-
side functionality over and over again for each client application anew, with
smart proxies this functionality is only developed once by the service developer
who knows the internals of his service best anyway. Thirdly, dynamic shipping of
smart proxies allows for the seamless introduction of improved service function-
ality or completely new service implementations without requiring modifications
of the client applications. Only the functionality actually used must be available
at the client.

To demonstrate the viability of smart proxies, we have implemented a video
service that supports a small range of different communication protocols, namely
unreliable UDP with and without compression, BEAT with explicit resource reser-
vation, and shared memory for co-located client and servers. The video service is
used both in a video-conferencing tool and a video-surveillance tool which only
interact with the high-level interface of the video service. The use of smart proxies
for low-level networking significantly reduced the development of both services
and both services automatically would benefit from adding another smart proxy
implementing, for example, a feedback loop over UDP.

As part of our future work we will integrate smart proxies with CORBA,
making use of and possibly expanding on the recent objects-by-value specifica-
tion. Furthermore, support for smart proxies will be integrated with our own
QoS-supporting middleware under development [6,7,8,9].

Acknowledgements

We are indebted to Marcus Demker for implementing parts of the case study.
Moreover, we thank the anonymous reviewers for their helpful comments.

Structuring QoS-Supporting Services with Smart Proxies 287

References

1.

10.

11.

12.

13.
14.

15.

S. Cen, C. Pu, R. Staehli, C. Cowan, and J. Walpole. A distributed real-time
mpeg video audio player. In Proceedings of the Fifth International Workshop on
Network and Operating Systems Support for Digital Audio and Video, volume 1018
of Lecture Notes in Computer Science, pages 142—153. Springer Verlag, April 1995.
283

Microsoft Corp. Distributed Component Object Model Protocol, 1998. 273
Netscape Communications Corporation. Plug-in guide.
http://developer.netscape.com/docs/manuals/communicator/plugin/
index.htm, January 1998. 279

The Open Group. Introduction to OSF DCE 1.2.2, November 1997. 273

F. Hauck, U. Becker, M. Geier, E. Meier, U. Rastofer, and M. Steckermeier. As-
pectIX, an aspect-oriented and CORBA-compliant ORB architecture. Technical
Report TR-14-98-08, Friedrich-Alexander-University, Erlangen-Niirnberg, Septem-
ber 1988. 284

R. Koster. Design of a real-time communication service for local-area networks.
Diplom thesis, Department of Computer Science, University of Kaiserslautern, May
1998. 281, 282, 286

T. Kramp and G. Coulson. The design of a flexible communications framework
for next-generation middleware. Technical Report SFB 501 12/99 and MPG-99-25,
Dept. of Computer Science, University of Kaiserslautern, and Dept. of Computing,
Lancaster University, 1999. 281, 286

T. Kramp and R. Koster. A service-centred approach to QoS-supporting middle-
ware. Work-in-Progress Paper presented at Middleware '98 (IFIP International
Conference on Distributed Systems Platforms and Open Distributed Processing),
September 1998. 281, 286

T. Kramp and R. Koster. Flexible event-based threading for QoS-supporting mid-
dleware. In Proceedings of the Second International Working Conference on Dis-
tributed Applications and Interoperable Systems (DAIS). IFIP, July 1999. 281,
286

F. Kuhns, C. O’Ryan, D. C. Schmidt, O. Othman, and J. Parsons. The design
and performance of a pluggable protocols framework for object request broker
middleware. In Proceedings of the sixth IFIP International Workshop on Protocols
for High-Speed Networks (PfHSN), August 1999. 286

J. P. Loyall, D. E. Bakken, R. E. Schantz, J. A. Zinky, D. A. Karr, R. Vanegas, and
K. R. Anderson. QoS aspect languages and their runtime integration. In Proceed-
ings of the Fourth Workshop on Languages, Compilers, and Run-time Systems for
Scalable Computers (LCR98), volume 1511 of Lecture Notes in Computer Science.
Springer Verlag, May 1998. 285

M. Makpangou, Y. Gourhant, J.-P. Le Narzul, and M. Shapiro. Fragmented objects
for distributed abstractions. In T. L. Casavant and M. Singhal, editors, Readings
in Distributed Computing Systems, pages 170-186. IEEE Computer Society Press,
July 1994. 284

Sun Microsystems. Jini architectural overview, 1999. Technical White Paper. 285
S. Mungee, N. Surendran, and D. C. Schmidt. The design and performance of a
CORBA audio/video streaming service. In HICSS-32 International Conference on
System Sciences, minitrack on Multimedia DBMS and WWW, January 1999. 286
OMG. CORBA objects by value.
http://www.omg.org/cgi-bin/doc?orbos/98-01-18, 1998. orbos/98-01-18. 280

288

16.

17.

18.

19.
20.

21.

22.

23.

24.

Rainer Koster and Thorsten Kramp

OMG. CORBA telecoms specification. http://www.omg.org/corba/ctfull .html,
June 1998. formal/98-07-12. 274, 276, 281, 286

OMG. The Common Object Request Broker: Architecture and Specification (Re-
lease 2.2), February 1998. 273

L. A. Rowe and B. C. Smith. A continuous media player. In Proceedings of
the third International Workshop on Network and Operating Systems Support for
Digital Audio and Video, volume 712 of Lecture Notes in Computer Science, pages
376-386. Springer Verlag, November 1992. 283

SunSoft. SunOS 5.3 Linker and Libraries Manual, 1993. 279

M. van Steen, P. Homburg, and A. S. Tanenbaum. Globe: A wide-area distributed
system. IEEE Concurrency, pages 70-78, January-March 1999. 284

M. van Steen, A. S. Tanenbaum, I. Kuz, and H. J. Sips. A scalable middleware so-
lution for advanced wide-area web services. In Proceedings of Middleware 98 (IFIP
International Conference on Distributed Systems Platforms and Open Distributed
Processing), pages 37-53. Springer Verlag, September 1998. 284

R. Vanegas, J. A. Zinky, J. P. Loyall, D. A. Karr, R. E. Schantz, and D. E. Bakken.
QuO’s runtime support for quality of service in distributed objects. In Proceedings
of the IFIP International Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware’98). Springer Verlag, September 1998. 285
J. Waldo. The Jini architecture for network-centered computing. Communications
of the ACM, 42(7):76-82, July 1999. 285

C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson, and D. Culler. Using
smart clients to build scalable services. In Proceedings of the USENIX 1997 Annual
Technical Conference, January 1997. 285

	Introduction
	Smart Proxies
	Proxy Shipping
	Platform Support
	Case Study
	Various Communication Mechanisms
	QoS Management
	Proxy Reuse for Several Clients

	Related Work
	Conclusions

