
J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 289-307, 2000.
 Springer-Verlag Berlin Heidelberg 2000

Trading and Negotiating Stream Bindings

H. O. Rafaelsen1 and F. Eliassen2

1University of Tromsø
Dept of Computer Science, 9037 Tromsø, Norway

hansr@cs.uit.no
2University of Oslo, Dept of Informatics,

P.O.Box 1080, 0316 Oslo, Norway
frank@ifi.uit.no

Abstract. Distributed multimedia information systems require a range of different
interaction styles ranging from simple remote operation interaction to complex
patterns of interaction involving both discrete and continuous data. The standardized
reference model for Open Distributed Processing (ODP) defines a binding model
that encapsulates different interaction styles within explicit binding objects. In this
paper we discuss mechanisms for selecting and negotiating appropriate explicit
stream bindings as required by the application. We describe the notion of explicit
bindings and introduce the idea of using a trading-like facility for selecting potential
binding types. We show how an earlier proposed type model for stream interfaces
can be used as a basis for binding type selection, and extended to support automatic
negotiation of binding properties.

1 Introduction

The notion of stream interface has been proposed as the preferred means to convey
media streams in distributed multimedia systems [3]. A stream interface consists of a
collection of source and/or sink media flows. The act of stream binding establishes a
logical association between compatible stream interfaces for the purpose of
exchanging continuous flows as dictated by the type and direction of the flows. During
binding interfaces to be bound must be type-checked for compatibility. Informally,
type-checking means ensuring that the properties of each source flow are as expected
by the corresponding sink flow.

In the reference model for Open Distributed Processing (RM-ODP) stream bindings
are explicit. This supports direct client control of the binding during its lifetime.
Furthermore, bindings are first class objects and are created, managed and invoked in
the same way as other objects [1]. The result of the binding action is a control
interface through which the binding object can be controlled. In figure 1, the binding
model is illustrated where a binding object connects four interfaces by means of local
bindings that associate the interfaces of the objects with the interfaces of the binding
object.

290 H. O. Rafaelsen and F. Eliassen

Fig. 1. The explicit binding model

Depending on the type of the binding object, new interfaces can be added to the
binding, and existing ones can be removed. After a new (stream) interface has been
added to the binding, it can be locally bound to a suitable application (stream)
interface. Hence, for example, binding objects of the appropriate type can describe
dynamic groups in which membership can change during the lifetime of the binding.
The main rationale for explicit bindings is to support QoS management in terms of
QoS specification, monitoring and control [1]. For example, the binding control
interface of a stream binding can be used to control and monitor the QoS of ongoing
streams.

A binding type (or template) defines a particular class of binding objects by
identifying the type of interfaces which can participate in the binding, the roles they
play, and the way behaviour at the various binding interfaces are linked [9]. For
example, a multicast video binding would typically support a producer role and a
consumer role. In some cases the binding will support operations for adding interfaces
to a binding in a named role (e.g. a new multicast receiver), and for removing
interfaces from the binding (e.g. remove a multicast receiver from the binding).

Binding factories are objects that create bindings. In our model, a binding factory is
associated to a binding type such that by invoking the factory object’s create
method, a new binding of the associated type is created.

Through the local bindings the binding object receives and delivers information for
binding participants according to the causality and type of the bound interfaces. Type
checking as explained above, is applied when creating the binding and when adding a
new interface to the binding. When creating the binding, type information about the
application object interfaces to be initially bound and the corresponding roles they will
fulfill in the binding, is provided as parameters of the create method call.
Corresponding interfaces with the appropriate roles are as a result added to the
binding. If an application object interface α is offered to fulfil a role β, then the type
of α must be compatible with the type of β.

In this paper we present an approach for applications to select binding types and
associated binding factories according to their needs based on a trading model. In this

local binding
control interface

Binding object

Trading and Negotiating Stream Bindings 291

scheme a set of binding factories are located based on a specification of the required
properties of the binding. The located set of binding factories are all capable of
instantiating binding objects with properties conforming to those specified by the
trading client. Furthermore, in those cases where binding objects specify alternative
stream behaviour (e.g. alternative encodings, resolutions, or frame rates) at its
supported interfaces, we also show how the notion of policy specification supports
automatic negotiation to choose the actual stream interface behaviour to be used.

In general terms, a trading facility as indicated above, supports the reuse of binding
factories. More specifically, it will allow evolution of supported binding types in a
distributed computing environment without sacrificing support of existing
applications. This can be ensured by requiring that a new version of a binding type
must conform to the older version. Run time trading of binding types is also required
for multimedia databases. In this case the required properties of the binding to be used
to present a query result are generally not statically known, but rather depends on the
specifics of each query [18].

The remainder of the paper is organized as follows. In section 2, we offer an
overview of the model of bindings and streams that we base our work on. Following
that, in section 3 we present a trading model for selecting binding types from binding
type requirement specifications and introduces a simple middleware architecture
illustrating the application of a binding type trader. Section 4 presents our approach to
automatic negotiation of binding properties for those cases where binding objects
specify alternative behaviour at its supported interfaces. In section 5 we discuss some
related work while section 6 concludes with an outlook to further work.

2 Model of Bindings and Streams (MBS)

For the explicit binding and stream abstractions, we have developed a generic model
called MBS (Model of Bindings and Streams). MBS will constitute a part of the
foundation for the programming model of an adaptive multimedia ORB called
MULTE-ORB [15]. The engineering of MULTE-ORB is based on the flexible
protocol system Da CaPo [17]. MBS is based on a proposed generic type model for
stream flows and associated type checking rules earlier proposed in [6]. This model is
open-ended and can in principle support any set of flow parameters. It also includes
compatibility rules ensuring the correctness of binding attempts of flow endpoints, and
conformance rules expressing conditions for substitutability [7]. An implementation of
the flow type model and examples of its application are described in [8].

2.1 Flow Type Model

In the flow type model a flow type is specified by indicating the media type of the
flow such as audio or video, its causality (source or sink), and a set of quality
attributes such as rate and resolution. Furthermore, an attribute value is specified as a
set of "atomic" values. This will in general enhance the chances of successful binding.

292 H. O. Rafaelsen and F. Eliassen

For example when a sink flow type specifies a set of different names on the video
encoding attribute, it actually declares that it can accept flows where the video can
have any of the indicated formats.

The following example of an H.261 video flow type features optional playback
rates.

flow videoPhone {
video V {encoding:H.261, rate:2..24)};
audio A {encoding:PCM, rate:{8000,16000}};
constraint (V & A) | A };

This specification states that a VideoPhone flow consists of two different
element types labeled V and A respectively. Each element type includes a declaration
of the generic media type such as Video or Audio, and a specific set of attributes,
referred to as a media descriptor, specifying quality properties of the element type.
The expression (V & A) | A is referred to as the structural constraints of the flow
[8]. It specifies legal configurations of flow elements that may occur in an instance of
the flow. The above structural constraint indicates that an instance of a flow can
consist of video and audio elements, or audio elements only. Hence, we may think of
the specification as modeling an adaptable flow endpoint.

A flow type specification is interpreted as a set of potential flow qualities (QI) and
flow configurations (SI) that can be produced by a source flow endpoint or is
acceptable to a sink flow endpoint. This interpretation of a flow type allows us to
define a variety of flow type relationships based on set theory. The quality
interpretation of a flow type is defined as the combination of the interpretation I of
each of its element types (for further details see e.g. [6]).

Flow quality subtype relationship. A flow type M is a subtype of the flow type N
if both the quality and structural interpretation of M is a subset of the corresponding
interpretations of N. Suppose A, B and C, D are element types of flows M and N,
respectively. We derive that M = Flow[A;B] is a strict quality subtype of N =
Flow[C;D], denoted M <q N, if I(A) ⊆ I(C) and I(B) ⊆ I(D). On the other
hand, a relaxed quality subtype may support fewer element types than the super type
such that, for example, M = Flow[A] is a relaxed quality subtype of N =
Flow[B;C], denoted M <~q N, when I(A) ⊆ I(B).

Flow structure subtype relationship. A flow type M is a structural subtype of N
denoted M <s N, if SI(M) ⊆ SI(N). This means that the subtype supports a sub-set of
the configurations supported by the supertype. Suppose b & c is the structural
constraint of M and (a | b) & c is the structural constraint of N. The SI(M) =
{{b,c}} and SI(N) = {{a,c},{b,c}}. Clearly we have SI(M) ⊆ SI(N).

Flow quality compatibility relationship. Compatibility is determined by
computing the set of common flow qualities and configurations supported by the two
endpoints. Compatibility requires that this set is not empty. If the two endpoints can
support more than one common flow quality and flow configuration, a flow property
negotiation protocol may be employed to choose the actual flow quality to be used.
Our approach for type checking binding attempts is to require that the source and the
sink can at least support one common flow quality. This relationship we refer to as

Trading and Negotiating Stream Bindings 293

quality compatibility. Informally, two flow types are strict quality compatible (denoted
<>q) if there exist a bijection between their respective sets of element types such that
each pair in the bijection have non-empty set intersection of their respective
interpretations. We may for example conclude that Flow[A;B] <>q Flow[C;D]
if I(A) ∩ I(C) ≠ ∅ and I(B) ∩ I(D) ≠ ∅. Two flow types M and N are relaxed
flow quality compatible (denoted <~>q) if there exist a bijection between subsets of
their respective element types such that each pair in the bijection is compatible. Thus
if I(A) ∩ I(C) ≠ ∅, Flow[A;B] <~>q Flow[C;D] even if B and D are
incompatible, i.e. I(B) ∩ I(D) = ∅.

Flow structure compatibility relationship. Two flows of type M and N are
structural compatible, denoted M <>s N, if their structural interpretations have non-
empty intersection. This means that they support a least one common flow
configuration. Suppose (a | d) & c is the structural constraint of M and (a |
b) & c is the structural constraint of N. Then SI(M) = {{a,c},{d,c}} and
SI(N) = {{a,c},{b,c}}. Clearly we have SI(M) ∩ SI(N) ≠ ∅.

Different variants of the compatibility relationship where some variants are weaker
than others, are the following:
i) fully strict compatible, if M <>q N and M <s N .
ii) partially strict compatible, if M <>q N and M <>s N.
iii) fully relaxed compatible, if M <~>q N and M <s N .
iv) partially relaxed compatible, if M <~>q N and M <>s N

For example, fully strict compatible is a stronger relationship than partially strict
compatible in the sense that the former logically implies the latter. These different
kinds of compatibility can be used by applications to state their requirement to the
degree of matching that must be fulfilled when an application object interface is
locally bound to a corresponding interface provided by the binding object.

2.2 Stream Type Model

In [6] a stream interface is simply specified as a collection of flows. In MBS we
extend this specification by adding the notion of configuration constraint which is a
specification of alternative combinations of flows that may be configured in a stream
binding. For example, a stream interface modeling an access point to a video
conference provider, may exploit this feature to express the alternative audio and
video flow configurations and qualities that can be supported.

A stream configuration constraint is written as a structural constraint over flow
labels. The set of alternative configurations of flows of a stream interface is referred to
as its structural interpretation SI.

Stream compatibility relationship. Two stream interfaces S and T are
compatible, denoted S <> T, if S and T have a common configuration of flows and
there exist a bijection between the set of flows in these configurations of S and T such
that for each pair of flows in the bijection, the pair is compatible. The kind of
compatibility required we assume is specified by the application. Consider, for
example, the following stream interface type of a video conference binding type

294 H. O. Rafaelsen and F. Eliassen

stream videoConfProducer {
sink flow a {

audio a1 {encoding:PCMA,
rate:{8000,16000}};};

sink flow v {
v1: Video[encoding:H.261,

rate:(2..24)};};
constraint a|(a&v) }; //end stream

and the interface type audioTalk offered by a potential participant of the binding

stream audioTalk {
source flow a {

audio a1 {encoding:{PCMA,GSM},
rate: 8000 }; }; //end flow

constraint a }; //end stream

The absence of a flow configuration constraint means that all element types of the
flow are required. The above interface types are compatible because they have a
common configuration {{a}} where the label a refers the audio flow in both stream
interfaces, and the two audio flows are compatible. By closer inspection it can be seen
that the audio flow of audioTalk is fully strict compatible to the audio flow of
videoConfProducer.

Stream conformance relationship. The MBS conformance rules express
conditions for substitutability of stream interfaces. If the stream interface T conforms
to the stream interface S, then S may be replaced transparently by T. A stream
interface T conforms to a stream interface S if and only if SI(S) ⊆ SI(T) and for
each stream configuration of T that is also a stream configuration of S there exists a
bijection between the set of flows in the two configurations such that for each pair in
the bijection the flow of S is a subtype of the flow of T.

The kind of flow subtype relationship required is subject to application policy. For
example, when trading for binding types, the client of the trader must specify the
required relationship as a parameter to the look_up method of the trader.

The following example illustrates a case where a video source mpgSource is
upgraded to support additional playback rates, video encodings and audio, all
encapsulated in the stream interface mpg_mjpgSource such that
mpg_mjpgSource conforms to mpgSource.

stream mpgSource {
source flow mpgFlow {

video h {encoding:mpeg,rate:{20,25};}; };
constraint mpgFlow }; //end stream

stream mpg_mjpgSource {
source flow mpgFlow {

video h {encoding:mpeg,rate:{20,25,30};};};
source flow mjpgFlow {

video hj {encoding:mjpeg,rate:{20,25,30};};
audio au {encoding:{PCMA,GSM},rate:8000};};

constraint mpgFlow | mjpgFlow }; //end stream

The stream interface mpg_mjpgSource conforms to mpgSource because the
structural interpretation of mpgSource (which is{{mpgFlow}}) is a subset of the

Trading and Negotiating Stream Bindings 295

structural interpretation of mpg_mjpgSource (which is
{{mpgFlow},{mjpgFlow}}), and the video flow labeled mpgFlow in the stream
interface mpgSource is a (strict) flow subtype of the video flow labeled mpgFlow
in the stream interface mpg_mjpgSource.

2.3 Binding Types

Our approach for specifying binding types is similar to the RIVUS template language
[9], the main difference being that binding requirements are specified using the stream
flow type model referred to above.

A binding type is defined as a 5-tuple �Τ,Ρ,Μ,∆,Ε� where Τ denotes a set of role
types, Ρ a set of roles, Μ a set role matching requirements (one for each role), ∆ a set
of role causalities, and Ε a set of role cardinality requirements.

A role type τ is defined as a set of stream interface types, i.e. τ={T1,…,Tn}. A role
defines binding object roles and is specified as a role name and a role type, r: τ. For
example, a video conference binding type could define the roles talk and listen
where the role talk could be of the role type {videoConfProducer}.

Role matching requirements apply to local bindings and specify for each role of the
binding type the kind of type matching required when an interface is offered to fulfil
the role. The kind of matching that can be specified is either a subtype or a
compatibility relationship. Thus we model role matching requirements as a set of pairs
{<r1,m1>,…,<rn,mn>} where ri is a role name an mi is a match kind.

A binding type may support several instances of each role. Binding behaviour
defines causalities between instances of roles. We model role causality as a tuple
<C,r1,r2,m> where C specifies a causality option, r1 and r2 are roles, and m specifies
whether conversion between r1 and r2 is supported by the binding. Conversion is
supported if m=conv, otherwise m=no_conv. Conversion is required if the roles r1

and r2 have incompatible roles types. Conversion may be required in those cases
where alternative behaviour is specified at the corresponding interfaces (e.g.
alternative encodings) and the behaviour of r1 is allowed to be incompatible with the
behaviour of r2 as a result of local binding negotiation. For example, suppose the type
of r1 and r2 is both video, and the type video specifies a flow with the two
alternative encodings mpeg and mjpeg. If during local binding of r1 to an
application object interface a configuration with mpeg is negotiated, and during local
binding of r2 to another application object interface a configuration with mjpeg is
negotiated, then a conversion between mpeg and mjpeg is needed. This might, for
example, be realized as a suitable transcoder running within an active network.

As in [9] we define three options for how roles can be mapped together. Specifying
<ONE-ONE,r1,r2,m> means that the binding object creates a one to one mapping
between a single instance of role r1 and a single instance of role r2, while <ONE-
MANY,r1,r2,m> means that the binding object creates a one to many mapping
between a single instance of role r1 and all instances of role r2. Finally, <MANY-
MANY,r1,r2,m> means that the binding object creates a mapping between all
instances of role r1and r2.

296 H. O. Rafaelsen and F. Eliassen

Role cardinality is a specification of the number of instances of a particular role the
binding object can support [9]. It is modeled as a pair <r,i> where r is a role and i
is a range where the minimum value states the number of instances of the role that is
needed for the binding object to make sense, while the maximum states the largest
number of instances of the role the binding object is willing to support. An example is
the specification <talk,2..10>.

Example: The following is an example of a specification of a binding type
supporting audio/video conferencing. We will later refer to this specification by the
name AVConf. The specification defines two role types
AVConfProducer={AVTalk} and AVConfConsumer={AVListen} where

stream AVTalk = {
sink flow a {

audio a1 {encoding:{PCMA,GSM};
rate:{8000,16000};};};

sink flow v {
video v1 {encoding:H.261;

rate:(2..24);};
constraint a|(a&v) }; //end stream

stream AVListen {
source flow a {

audio a1 {encoding:{PCMA,GSM};
rate:{8000,16000};};};

source flow v {
video v1 {encoding:H.261;

constraint a|(a&v) }; //end stream

Note that the causalities of the flows are specified as they are provided by the
binding. This means that a source flow of an audio conference participant (a talker)
must locally bind to a corresponding sink flow offered by the binding (in this case to
the flows of AVTalk)

The binding roles of the specification are

gen : AVConfProducer
rcv : AVConfConsumer

The role matching requirements are
<gen,fully_strict_compatible>
<rcv,fully_strict_compatible>,

while the role causality requirement of the binding type offer is

<MANY-MANY,gen,rcv,conv>,

and the role cardinality requirements are <gen,2..20> and <rcv,2..20>.

3 Trading Binding Types

In this section we present a trading model for selecting binding types from binding
type requirement specifications. The trading model is based on the notion
conformance between binding types.

Trading and Negotiating Stream Bindings 297

3.1 Binding Type Conformance

An application selects a binding type by stating binding type requirements to a trader
that compares the requirements to binding type offers. A binding type requirement
specification is with one exception only, identical to a definition of a binding type as
outlined above, while a binding type offer is simply a binding type specification.
Selection is based on a conformance relationship between binding type requirements
and binding type offers. The result of the selection is the identification of a set of
binding factories that are all capable of instantiating binding objects with properties
conforming to those specified by the client. A conformance relationship for binding
types must be based on conformance of stream interfaces and notions of role
matching, role causality, and role cardinality satisfaction.

While a role matching requirement of a binding type offer is specified as a pair
<r,m>, the role matching requirement of a binding type requirement is specified as a
triple <r,m,σ> where σ indicates whether a stricter role matching requirement than
m is acceptable (σ=narrow) or not (σ=no_narrow). It is easy to show that strict
subtype logically implies (�) all other match kinds, relaxed subtype logically implies
fully and partially relaxed compatibility, full compatibility logically implies partial
compatibility, and strict compatibility logically implies relaxed compatibility. Thus,
<r, full_compatibility> satisfies <r, relaxed_compatibility,
narrow > .

Definition 1 (role matching satisfaction) A role matching requirement <r1, m1>
of a binding type offer, satisfies a role matching requirement <r2, m2, σ > of a
binding type requirement if and only if m1=m2, or σ = narrow and m1 � m2. ❏

Definition 2 (role causality satisfaction) A role causality <C,r1,r2,m> is
satisfied by a role causality <C’,s1,s2,n> if and only if C = C’, s1 conforms to
r1, s2 conforms to r2, and if m≠n, then n=conv. ❏

Definition 3 (role type conformance) A role type τ={T1,…,Tn} conforms to a
role type σ={S1,…,Sn} if and only if there exists a bijection β between τ and σ such
that for all (Ti,Sj) ∈ β, Ti conforms to Sj. ❏

Definition 4 (binding type conformance) A binding type offer ΒΒΒΒ1111 =
�Τ1111,Ρ1111,Μ1111,∆1111,Ε1111� conforms to a binding type requirement ΒΒΒΒ2222 = �Τ2222,Ρ2222,Μ2222,∆2222,Ε2222� if
and only if there exists a bijection β between the sets of role causalities ∆1 1 1 1 and ∆2 2 2 2 such
that for all (δ,ε) ∈ β with δ = <C1,r1,s1,m1> and ε = <C2,r2,s2,m2>, δ satisfies
ε, and the role cardinality requirements <r1,i1> and <s1,j1> in Ε1111 satisfies the
corresponding role cardinality requirements <r2,i2> and <s2,j2> in Ε2222 such that i2

⊆ i1 and j2 ⊆ j1, and the role matching requirements <r1,m1> and <s1,n1> in
Μ1111 satisfies the corresponding role matching requirements <r2,m2, σ2> and
<s2,n2,µ2> in Μ2222. ❏

The kind of binding type conformance described above may be characterized as
structural since conformance largely is determined by comparing the syntactic
structure of binding type specifications (although for flows, attribute values are also
compared). The analogy to this approach in the world of operational interfaces is
signature matching [20]. A drawback of pure signature matching is that we might get
false positives since semantics is not taken into account. This can be compensated in

298 H. O. Rafaelsen and F. Eliassen

the case of stream bindings by “standardizing” the names of generic element types and
their attributes. This is the approach taken, for example, by the Internet Engineering
Task Force on a real time transport protocol [23] in which profiles standardize sets of
attributes for certain media types and specific payload types such as audio and video
encodings, are assigned unique names by an appropriate Internet authority.

3.2 Example

The following is a simple specification of a binding type requirement for an audio
conference binding. We will later refer to this binding type by the name audioConf.
We define two role types audioConfProducer={audioTalk} and
audioConfConsumer= {audioListen} where

stream audioTalk {
sink flow a {

audio a1 {encoding:{PCMA};rate: 8000};};
constraint a }; //end stream

stream audioListen {
source flow a {

audio a1 {encoding:{PCMA};rate: 8000};};
constraint a }; //end stream

The corresponding binding roles are
talk : audioConfProducer
listen : audioConfConsumer

The role matching requirements are

<talk,partially_relaxed,narrow>
<listen,partially_relaxed,narrow>,

while the role causality required by the audio conference application is

<MANY-MANY,talk,listen,no_conv>,

and the role cardinality requirements are <talk,2..6> and <listen,2..6>.
Taken as a binding type offer, it is easy to show that the binding type specification

referred to as AVConf in section 2.3, satisfies the above binding type requirement
AudioConf according to definition 4. We basically need to show that the role
causality requirements of the binding type offer, <MANY-MANY,gen,rcv,conv>,
satisfies the role causality requirements of the binding type requirement, <MANY-
MANY,talk,listen,conv>, and that role cardinality and role matching
requirements of corresponding roles are satisfied.

3.3 Architecture of Trading Binding Types

Architecturally a binding trader can be considered as an object service of middleware
platforms. The basic idea is that developers of binding factories register their
implementations at the binding trader. The information that must be registered
includes a specification of the binding type offer together with information on how to
activate the corresponding binding factory.

Trading and Negotiating Stream Bindings 299

An application may interrogate the trader to inquire about binding factories that
may create bindings satisfying the requirements of the application. For example, a
multimedia database may automatically generate the specification of the binding type
requirement based on meta-data describing the result of the query and QoS
requirements of the corresponding database clients [18]. Parameters of the inquire
operation to the trader must include a specification of a binding type requirement.

The result of the inquire operation will typically be a reference to (the service
interface of) a binding factory that is capable of instantiating bindings with properties
conforming to the specified requirements. The application may now call the create
method of the binding factory. Parameters of the method call include specifications of
the interfaces to be bound, and the roles in which the interfaces are offered by the
application. Upon completing the execution of the method, the binding factory returns
a reference to the control interface of the binding.

3.4 Trader Implementation Issues

The main challenge of our approach is its computational complexity. Although a
full implementation of a binding trader has not been made yet, some earlier results
might indicate its complexity. In [8] is presented an algorithm that determines
compatibility and subtype relationships between flows. The algorithm has polynomial
complexity in the number of element types of a flow. On a Sun Ultra 2 workstation
running Solaris 2.5.1 the execution time is demonstrated to be in the order of 1 ms to
determine the presence of a flow type relationship for flow types with 5 element types
or less, while flow types with 30 element types require about 50 ms execution time. It
is expected, though, that flow types with more than 5 element types will not be very
common.

Determining binding type conformance means matching r × s binding roles for
“correspondence” where r and s are the number of different role types in each
binding type. For each pair of role types to be compared, m × n flow types need to be
compared for some flow type relationship where m and n are the number of flows in
each stream interface. In an attempt to estimate the required execution time on the Sun
Ultra for determining the presence of binding type conformance, suppose each binding
type is composed of 4 different role types, and each role type is composed of one
stream interface having 4 flow types. Then a rough estimate of the required execution
time is in the order of a few hundreds of ms.

The performance of the trader task of finding a first conforming binding type offer
now largely depends on the efficiency with which binding type offers likely to
conform to the requirements can be located in the trader’s database. This will narrow
down the set of candidates that will be considered in detail such that all members of
the set have a similar structure as the binding type requirement. In our future work we
will investigate whether this can be efficiently achieved through proper indexing based
on a classification of the most discriminating properties of stream bindings.

An alternative to comparing syntactic structure as part of the trader look_up
operation, is declared conformance. This is the approach taken by the ODP/CORBA

300 H. O. Rafaelsen and F. Eliassen

Trader [22] in which service type offers and corresponding interface types are
(manually) registered in a service type repository as unique names. The registration
also encompasses information about which already registered service types the new
service type conforms to. One advantage of this approach is the obvious reduced
computational complexity. However, disadvantages are that only pre-registered
conformance relationships can be detected by the trader, and that importers can only
refer to registered service type offers in the trader look_up method, i.e. all
applications have to know in advance the kind of stream bindings they potentially may
need.

In our future work we will therefore look for ways to combine the above two
approaches to trader implementations.

4 Negotiating Local Binding Behaviour

After having traded a binding type and corresponding binding factory (BF) as outlined
in section 3.2, the BF type checks each application interface and the corresponding
role of the binding type. The type checking is performed by computing the common
flow properties of each pair of corresponding flows in the two interfaces. The result is
a new interface specification representing the common behaviour supported by both
interfaces [8]. We refer to this interface as the intersection interface.

In those cases where the intersection interface specifies alternative behaviours, it
becomes necessary to choose the (initial) interface behaviour to be used for each local
binding. The intersection interface may specify alternative behaviours with respect to
stream interface configurations (see section 2.2), for each flow alternative flow
configurations (see section 2.1), and for each possible flow configuration alternative
quality behaviour (c.f. set valued attributes described in section 2.1).

If the selected binding type does not support conversion between causally related
interfaces, the negotiations at one local binding will be constrained by the alternative
behaviours that are possible at causally connected interfaces. Otherwise, it is a matter
of BF policy how the negotiation at causally related interfaces are mutually
constrained.

In the following we focus on the issue of negotiating individual flow quality
behaviour.

4.1 Policy Specification

In order to support automatic negotiation of flow quality behaviour, we extend the
flow type model of [6] with policy specifications that can be associated to each flow
of a stream interface. A policy specification effectively specifies an order on the
quality interpretation of a flow type. This ordering can be taken to represent user
priorities with respect to desirable properties of the flow. The ordering is used as a
basis for negotiation of the (initial) flow quality behaviour to be used for the local
binding.

Trading and Negotiating Stream Bindings 301

The alternative quality behaviours of a flow configuration is given by the set of
quality attribute values associated to the flow elements of the flow. Given a set of
attributes A1, .., An such that the value of Ai is a set of values {v1, .., vm}. The Cartesian
product Α1 × … × An gives the total set of possible behaviours of the flow with respect
to the properties A1, ... , An as a set of n-tuples. This we refer to as the interpretation of
A1, .., An . A policy specification specifies a priority order on this set of n-tuples.

For example, suppose after type checking two interfaces to be bound, the
intersection includes a flow having the following alternative behaviours with respect
to the attributes depth, framerate, and size:

depth {24,16,8};
framerate {30,25,20,15};
size {800x600,640x480,320x200};

A language for specifying policies of flow quality should allow the specification of
arbitrary orderings of the Cartesian product of depth, framerate and size. On
the other hand, such a language should not force a user to enumerate explicitly the
ordering of all possible combinations of attribute values. The Cartesian product of the
above attributes, for example, will give a total of 36 possible unordered (or arbitrary
ordered) combinations.

Hence such a language should allow the users to specify orderings in a simple, yet
expressive way. Our policy specification language is an attempt to achieve this. The
language specifies value ranges for attributes assuming that attribute domains are
totally ordered (either implicitly or explicitly specified). If no policy is specified for a
flow, a default ordering is assumed derived from the ordering of the attribute domains.
Otherwise the default ordering can be overridden with fine granularity, by specifying
short attribute ranges, or with coarser granularity by specifying larger attribute ranges.
In the extreme case a user could explicitly specify the complete ordering by
consistently applying value ranges of length 1.

In our first version of a flow policy language, a policy specification is given by a
list of selection statements. Each selection statement defines an ordered partition of
the interpretation of the attributes. The total ordering is then achieved by
concatenating each partition in the order given by the list of selection statements. A
typical policy specification will have a structure as shown below.

A11r11, A12r12,..., A1jr1j;
A21r21, A22r12,..., A2jr2j;
...
Ai1ri1, Ai2ri2,..., Aijrij;

Aij denotes an attribute name, while rij denotes an attribute value range. A range is
written as (v,w) where v and w are atomic attribute values. The position of the
same attribute name might vary from selection element to selection element in the list.

The ordering implied by each selection statement is obtained by looping through a
set of nested loops, where the left most attribute given corresponds to the outer most
loop, and the right most corresponds to the inner most loop. Thus, all attribute values

302 H. O. Rafaelsen and F. Eliassen

of Ai,j+1 will be used before starting to using “lower” values of Ai,j. The range (v,w)
for a given attribute, specifies the range of values to be used for this attribute in this
selection. For example, the selection statement

Depth(24, 16), size(800x600,800x600), framerate(25,20)

specifies that we first want to select qualities with depth between 24 and 16, size of
800x600 and framerate between 25 and 20. Since framerate is listed rightmost, the
selector will first try out combination with lower frame rates, before starting to reduce
the depth.

Example: Below we show an example of a policy specification and the
corresponding ordering of the interpretation of the flow attributes given above.

1: size(800x600, 640x480), depth(24, 16),
framerate(30, 20);

2: size(640x480, 320x200), framerate(30, 15),
depth(24, 16);

3: depth(16, 8), framerate([20, 15),
size(320x200, 320x200);

Gives,
depth framerate size

1: 24 30 800x600
24 25 800x600
24 20 800x600
16 30 800x600
16 25 800x600
16 20 800x600
24 30 640x480
24 25 640x480
24 20 640x480
16 30 640x480
16 25 640x480
16 20 640x480

2: 24 30 640x480
...

3:
...
8 15 320x200

4.2 Negotiation

In this section we consider policy specifications as a foundation for QoS. In general, a
variety of possible QoS negotiation protocols can be considered. In the MULTE-ORB
architecture, QoS negotiation protocols are embedded within binding factories. Thus
different BFs might support different negotiation protocols. In the following we
discuss policy specification in the context of a simple, hypothetical negotiation

Trading and Negotiating Stream Bindings 303

protocol. For the sake of the discussion, we do not pay any attention to the efficiency
of the protocol, but rather approach the issues in a principled manner. Possible
optimizations are addressed in section 4.3 below.

Our approach to QoS negotiation is to take the ordering of alternative flow QoS
behaviours implied by a policy specification as the users priorities in the negotiation.
In the example above, the user gives priority to 24 bits pr pixel, 30 frames pr second,
and a frame size of 800x600 pixels. The main principle of the QoS negotiation
protocol is first to suggest a QoS level corresponding to the users first priority of QoS.
If this can not be achieved, then the second priority of QoS is tried, and so on.

This simple protocol is sufficient for application scenarios where a single user
retrieves a stream form a server, e.g. a video on demand server. In this case alternative
QoS parameter configurations will be tried. Configurations might be rejected due to
lack of resources. Alternatives are tried until either one configuration achieves enough
resources to create the binding, or all the configurations fails. In the latter case, the
binding attempt fails.

In other situations, when there are multiple receivers, there has to be a negotiation
in order to agree on a common QoS parameter configuration (assuming no conversion
such as scaling or transcoding of flows is supported). Below we outline such a
negotiation protocol.

The negotiation protocol aims at finding a QoS parameter configuration that
satisfies all the participants of the binding. In general, the various binding participants
will specify different policies of flow QoS behaviour. Hence, in this case the goal of
the protocol should be to find a QoS parameter configuration that is a “best fit”
according to some metric. Again one might consider many different metrics for
balancing the QoS parameter configuration between conflicting requirements. In the
following we describe one possible metric that could be used as a basis for the
negotiation.

Given that the negotiation is to be over a set of QoS attributes A1, .., An , the
starting point for the negotiation is the interpretation of A1, .., An. Additionally, each
participant specifies its own ordering of this interpretation as a flow QoS policy. Each
QoS parameter configuration has a distance from the top of the list. A given QoS
parameter’s aggregated distance, is the sum of its distances from the top of the priority
list over all participants lists. One possible metric to determine the “best fit” QoS
parameter configuration, is to choose the configuration for which the aggregated
distance to the top of the priority list is the shortest for all participants. If some
configurations have the same aggregated distance, then the aggregated relative
distance from the top is computed for these configurations. Relative distance is
computed as a configuration’s distance from the top in percents. This relative distance
is used to find the inter distance between the configurations. The configuration with
the shortest inter distance is considered the best. This corresponds to those
configurations which have a relative height closest to each other. If there still are more
than one candidate, one of them can be selected at random.

Below we give an example of the negotiation protocol for two receivers. Suppose
user A and user B have the following flow QoS policies:

304 H. O. Rafaelsen and F. Eliassen

A B
depth rate size depth rate size
24 30 800x600 16 30 640x480
24 25 800x600 16 25 640x480
16 30 800x600 16 20 640x480
16 25 800x600 16 30 320x200
16 30 640x480 16 25 320x200
16 25 640x480 16 20 320x200
...

From the above priorities and a “best fit” metric as described above, we see that the
best configuration is (16,30,640x480), having an aggregated height of 6 while the
second best is (16,25,640x480), having an aggregated height of 8. Thus, a binding
supporting the quality (16,30,640x480) will be tried created first. If the BF is
unable to create this binding, due to lack of available resources, a binding supporting
(16,25,640x480) will then be tried created. This will continue until either the BF
is able to create the binding, or it fails to create any binding due to lack of resources.

4.3 Design Issues of Negotiation Protocol

The above approach to a QoS negotiation protocol for a single flow did not
consider efficiency. The protocol as it stands might result in several rounds of message
exchanges in order to find a QoS parameter configuration. The reason for this is the
way resources are handled. The protocol finds a possible candidate configuration, and
then tries to allocate resources to support the binding for each of the binding parties. If
there is insufficient resources at any of the participants, the binding attempt for this
configuration will fail, and a new attempt has to be made.

The scalability of the negotiation protocol can be measured by the complexity of
the algorithms and the number of messages which have to be sent. The number of
messages exchanged will depend on how fast a “best fit” can be found. For this
reason, it will be important to develop a negotiation protocol which takes the current
resource situation into account when creating priority lists. Thus, an optimization of
the above protocol would be to have participants reserve sufficient resources before
they announce their policies. This might lead to participants having to remove some of
their configurations, due to lack of resources, before they start the negotiation
protocol. We may refer to the resulting policy at a resource adapted policy (RAP).
The result of this requirement will be that once the participants find a configuration,
they will have enough resources to create the binding.

With this new approach, a two-party negotiation for a single flow requires a two-
way handshake. One participant announces its RAP, and the other participant
subsequently intersects its RAP with the received RAP and communicates back its
selected configuration provided the intersection was non-empty. For a multi-party
negotiation a three-way handshake is required. First the initiator has to ask participants
for their RAPs. Once the result of all participants have been collected, the initiator will
select the configuration that is the “best fit” for all of the participants, if such a

Trading and Negotiating Stream Bindings 305

configuration can be found. Then it will inform the participants of the selected
configuration, or it will inform that it failed to create the binding. Thus, using RAP
specifications, the protocol will scale linearly to the number of participants, with
regard to message exchanges. A challenge for further work will be to develop an
efficient algorithm to calculate RAP specifications. Since the calculation of RAPs is
done at each participant’s node, scalability will not depend on this algorithm.

The scalability of the protocol will also depend on the efficiency of the “best fit”
algorithm. Thus, it is important to design an algorithm that scales well with the
number of participants. We are currently in the process of designing such an
algorithm. The results of this work will be reported elsewhere.

5 Related Work

Stream interfaces have been adopted in the work on Open Distributed Processing [11],
TINA-DPE [12] and OMG [13]. Compatibility and subtyping rules for stream
interfaces, however, have been deemed outside the scope of the RM-ODP standard
[11]. In the work of TINA-C, the need for a compatibility relationship for stream
flows that is more relaxed than equivalence, is recognized, but no definition is offered
[12]. A recent proposal for audio/video support in CORBA [14], also introduces the
notion of flow end-point compatibility. QoS parameters beyond media encoding are
not considered.

Microsoft's ActiveMovie framework [10] also includes the notion of "compatibility
negotiation" between "pins" (connection points that carry flows between different
processing objects). The subject of this negotiation is data compatibility rather than
QoS. There is no support for distribution.

QML is a recent proposal for a QoS specification language [5]. The semantics of
QML is similar to our stream and flow type model, and from our judgement should be
capable of specifying quality properties of stream interfaces. Its applicability has been
demonstrated for operational interfaces only. This work does not consider automatic
support of QoS negotiation from QML specifications.

Other work that considers QoS specifications and/or negotiations includes [16], [2],
[4], [19] and [21]. However, the focus of our work is different. These works do not
provide anything corresponding to a type model of streams and bindings, including
type relationships such as subtype, compatibility and conformance, and the derivation
of automatic systems support such as QoS negotiation from high-level interface
specifications.

6 Conclusions and Future Work

In this paper we introduced a trading model for selecting appropriate explicit stream
bindings based on statements of binding type requirements provided by the
application. We showed how an earlier proposed type model for stream flows can be

306 H. O. Rafaelsen and F. Eliassen

extended to support binding type selection based on a notion of binding type
conformance. In this scheme a set of binding factories are located based on a
specification of the required properties of the binding. The located binding factories
are all capable of instantiating binding objects with properties conforming to those
specified by the client.

Furthermore, in those cases where binding objects specify alternative behaviour at
its supported interfaces, we also introduced the notion of policy specification
supporting automatic negotiation to choose the actual interface behaviour to be used at
each interface. Finally, we demonstrated the usefulness of a trading facility and policy
specifications as indicated above, through a number of examples.

In our future work we will address some of the limitations of the current model. In
particular this includes automatic negotiation of stream interface configurations and
flow configurations. Furthermore, the integration of resource management into the
binding framework is a matter of high priority. In our current work we assume the
availability of a resource manager that only supports simple reservation requests that
can either be accepted or rejected depending on the availability of resources. This
might force binding factories to make repeated reservation requests corresponding to
different QoS parameter configurations. When one request is rejected, the binding
factory will have to try again with a different QoS requirement. In future work we will
give binding factories the possibility to examine the resource situation through the
resource managers. Knowledge of available resources can be used by binding factories
to reason about which QoS parameter configurations can currently be supported before
making reservation requests.

References

1. Blair, G. S. et al. (1997) Adaptive Middleware for Mobile Multimedia
Applications. Network and Operating System Support for Digital Audio and Video
(NOSSDAV '97), St Louis, USA, 1997.

2. Campbell, T. (1996) A Quality of Service Architecture. PhD Thesis, Lancaster
University.

3. Coulson, G., Blair G. S., Stefani, J. B., , Horn, F., Hazard, L. (1992) Supporting
the Real-Time Requirements of Continuous Media in Open Distributed
Processing. Technical Report MPG-92-35, Lancaster University.

4. Dini, P., Hafid, A. (1997) Towards Automatic Trading of QoS Parameters in
Multimedia Distributed Applications, In proceedings of IEEE/IFIP
ICODP/ICDP Conference, Toronto, Canada, 166 – 179.

5. Frølund,, S., Koistinen, J (1998) Quality-of-Service Specification in Distributed
Object Systems, Distributed Systems Engineering Journal, Vol.5, No.4

6. Eliassen, F., Nicol, J. R. (1996) Supporting Interoperation of Continuous Media
Objects. Theory and Practice of Object Systems: special issue on Distributed
Object Management (ed. G. Mitchell), Vol.2, No.2, Wiley, 1996, 95-117.

Trading and Negotiating Stream Bindings 307

7. Eliassen, F. (1997) A Conformance Relationship for Stream Interfaces, 2nd Int’l
Conf on Formal Methods in Open Object-based Distributed Systems
(FMOODS’97), Canterbury July 21-23, Chapman & Hall.

8. Eliassen, F., Mehus, S. (1998) Type Checking Stream Flow Endpoints.
Middleware’98, The Lake District, England, 16-18 Sept, Chapman & Hall, 305 -
322.

9. Lindsey, D., Linington, P.F. (1995) RIVUS: A Stream Template Language for
Capturing Multimedia Requirements, Lecture Notes in Computer Science (LNCS
1052), Springer Verlag, pp. 259 – 277.

10. Microsoft (1996), Microsoft ActiveMovie: Software Development Kit, Beta
Release, June 1996.

11. ITU-T X.901 | ISO/IEC 10746-1 (1995) ODP Reference Model Part 1: Overview.
Draft International Standard.

12. TINA-C (1995) TINA Object-Definition Language, Version 1.3. TINA-C
Deliverable.

13. Object Management Group (1996) Control and Management of A/V Streams
Request for Proposal. OMG Document: telecom/96-08-01.

14. IONA Technologies, Plc, Lucent Technologies, Inc, Siemens-Nixdorf, AG (1997)
Control and Management of A/V Streams Request for Proposal. OMG RFP
Submission, OMG Document: telecom/97-05-07.

15. Kristensen, T., Plagemann, T. (1999) Extending the Object Request Broker
COOL with Flexible QoS Support, Technical Report UniK – Center for
Technology, University of Oslo.

16. Nahrstedt, K., Smith, J. M. (1995) The QoS Broker, IEEE Multimedia, 2(1),
pp. 53-67.

17. Plagemann, T. (1994), A Framework for Dynamic Protocol Configuration”,
Dissertation at Swiss Federal Institute of Technology, Computer Engineering and
Networks Laboratory, Zurich, Switzerland, Sept. 1994.

18. Plagemann, T., Eliassen, F., Goebel, V., Kristensen, T., Rafaelsen, H. O.
(1999), Adaptive QoS Aware Binding of Persistent Objects, in IEEE Proceedings
of International Symposium on Distributed Objects and Applications (DOA’99),
Edinburgh, Scotland.

19. Vogt C., Wolf, L. C., Herrtwitch, R. G., Wittig, H. (1998), HeiRAT - Quality of
Service management for distributed multimedia systems, Multimedia systems,
6(3), ACM/Springer, pp. 152-166.

20. Zaremski, A.M., Wing, J. M. (1995), Signature matching: a tool for using
software libraries, ACM Trans. Softw. Eng. Methodol., Vol.4, No.2, pp. 146-170.

21. Zinky, A., Bakken, D.E., Schantz, R.D. (1997), Architectural Support for Quality-
of-Service for CORBA Objects, Theory and Practice of Object Systems, Vol.3,
No.1, Wiley.

22. ISO/IEC 13235-1 (1998) Information technology - Open Distributed Processing -
Trading function: Specification.

23. Schulzrinne, H., Casner, R., Frederick, R., Jacobsen, V. (1996), RTP: A transport
protocol for real-time applications, IETF, rfc 1889.

	1 	Introduction
	2 	Model of Bindings and Streams (MBS)
	2.1 	Flow Type Model
	2.2 	Stream Type Model
	2.3 	Binding Types

	3 	Trading Binding Types
	3.1 	Binding Type Conformance
	3.2 	Example
	3.3 	Architecture of Trading Binding Types
	3.4 	Trader Implementation Issues

	4 	Negotiating Local Binding Behaviour
	4.1 	Policy Specification
	4.2 	Negotiation
	4.3 	Design Issues of Negotiation Protocol

	5 	Related Work
	6 	Conclusions and Future Work
	References

