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Abstract. Many business processes are both long running and transac-
tional in nature. They are also mostly multi-user processes. Implemen-
tations such as the CORBA OTS (Object Transaction Services) mod-
eled on the lock-based systems used for classic transactions do not fully
support the requirements of such processes, and as a result, application
developers must develop custom-built infrastructure – on an application-
by-application basis – to support users’ transactional expectations. This
paper presents a novel approach to implementing long-lived transactions
within distributed object environments. We propose the use of the unit-
of-work (UOW) transaction model and framework, an advanced nested
transaction model that enables concurrent access to shared data with-
out locking resources. The UOW approach describes a well-structured
distributed object architecture that can easily be integrated with dis-
tributed object systems. The framework offers uniform (i.e., application
independent) structural transaction support for long running business
processes and provides them with the semantics of traditional, short,
transactions. Use of the framework enables object developers to focus
on business logic, with the framework infrastructure providing functions
required to support the desired semantics. We discuss the framework
programming model, how it provides transactional behavior to long run-
ning business processes and some of the research challenges still ahead
of us.

1 Introduction

Many business processes, such as mortgage application processing or insurance
policy underwriting, can run for several days to a month or even longer. Typi-
cally, more than one person is involved in the business process. The process may
start with data that is not fully validated, and that will be “cleaned up” over the
course of the process; in such cases a business often does not wish to allow other
processes to see the new information until it is sufficiently correct. If a customer
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backs out or changes her mind, the business may want the capability to easily
throw away unfinished work which it does not want cluttering its database.

The Long Running Unit Of Work (or LRUOW) framework provides struc-
tural transactional support for such long running business processes (LRBP). A
principal contribution of the framework is that a LRBP is treated as a single long
running transaction, rather than as a series of loosely connected short transac-
tions (the approach often used to implement business processes today). Frame-
work users interact with units of work (or UOW) that represent an application-
level structure following the structure of work done at a given enterprise. Once
started, a UOW may be suspended (with its state stored persistently) and sub-
sequently resumed. It continues to exist until it completes, which it may do by
committing or by rolling back. The current version of the LRUOW framework
has been implemented as a set of container managed, entity, Enterprise Java
Beans [1] running on top of the IBM Websphere Advanced platform [2].

Traditional transaction processing (TP) monitors such as CICS, Encina, and
Tuxedo, and databases such as DB2 and Oracle have successfully abstracted an
application design philosophy that separates the business logic of a flat transac-
tion from the transactional function (ACID1) provided by the underlying system.
However, an LRBP cannot be naively implemented on a traditional TP system
because of the interaction between the following important LRBP characteris-
tics:

– long duration (in contrast to traditional, short, transactions)
– concurrent access (in contrast to batch jobs or single-user systems)

Batch systems (in which a job is the equivalent of a long transaction) and
single-user systems (such as a spread sheet application, in which the time be-
tween saves corresponds to a non-ACID transaction) do lock resources and files
for moderate lengths of time (minutes to hours). Such exclusive usage is accept-
able because nobody else competes for the resources. While TP monitors and
databases allow concurrent usage, concurrency is provided by locking out other
users when another user accesses the resource. If one application locks data for
a long time, other applications that need the data must wait until the first ap-
plication completes and releases its lock. Long running applications (anything
over a few seconds) are thus unacceptable for a traditional transaction system.

Because an LRBP is multi-user it must be able to deal with concurrent ac-
cess, and because it is long, no single user can be permitted to lock the data for
the duration of the business process. Traditional TP monitors and databases,

1 The ACID properties are
Atomicity = the transaction is either executed entirely or not executed at all
Consistency= transactions transform a persistent data store from one consistent
state to another
Isolation= transactions do not read intermediate results of other non-committed
transactions
Durability = once a transaction is committed, its effects are guaranteed to endure
despite failures
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in other words, do not fully support an LRBP’s requirements, and as a re-
sult, application developers must develop custom-built infrastructure – on an
application-by-application basis – to support users’ transactional expectations.
Such infrastructures typically intermingle business logic with transactional func-
tion. By analogy to traditional TP monitors, the goal of the LRUOW framework
is to provide infrastructure that implements common transactional functions for
long running business processes. By providing LRBP developers with a consistent
set of transactional methods that are independent of business logic, development
and maintenance effort is reduced. Note that the LRUOW framework does not
intend by itself to provide full support for long running business processes, but
only to provide transactional functionalities (see Section 6).

The LRUOW framework provides three major pieces of functionality to the
LRBP application developer.

– packaging control of business activities into a UOW so the set of activities
can be committed or rolled-back as a unit

– visibility control so that the objects created or updated are only visible
within well defined scopes rather than visible to everyone

– concurrency control that manages the possibility that two users might add
or change the same data in conflicting ways

The paper starts with an example of a long running business process. This exam-
ple is used throughout the paper to illustrate our presentation of the LRUOW
framework. The way a LRBP is divided into UOWs is explained in Section 3.
Section 4 discusses how we control the visibility of the work done within the
scope of a UOW. Section 5 shows how transactional behavior is provided by the
framework. We conclude with a discussion on other components needed to fully
support LRBPs and how they relate to our framework.

2 Example of a Long Running Business Process

This section presents a (greatly simplified) LRBP example in which an insurance
company underwrites car policies. This example will be used in the next sections
to illustrate the different features of the framework. The LRBP begins when a
customer calls the company and requests coverage for her car. For its part,
the company must create a new Policy object; it will contain relationships to
new Car and Customer objects. The agent can get some information at the
time of the call (Car VIN, make, model and Customer name and address), but
much information can be collected only after various long running activities have
completed: e.g., a credit check (Customer credit status), a car inspection (Car
image), and a Department of Motor Vehicle (DMV) driver violations check. The
object model and task dependency graph are shown in Figure 1. The application
developers want the ACID properties that UOWs, like traditional, short running
transactions, provide. Thus, in our example, the insurance company:

– wants the Policy object, comprised of the Car and Customer objects, to be
created in “all or nothing” fashion (atomicity).
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– wants the state of the business to move only from one valid state (valid states
are defined by the business) to another (consistency).

– does not want the intermediate states of the new Car and Customer objects
to be visible to other parts of the business as the information has not been
validated yet (isolation).

– wants the final and intermediate results to be permanent in spite of failures
(durability).

We will use this example to illustrate the LRUOW programming model and
implementation in the following sections.

Customer

setName()
setAddress()
setViolations()
setCreditRating()
getName()
getAddress()
getViolations()
getCreditRating()

Policy

Car

setMake()
setModel()
setImage()
getMake()
getModel()
getImage()

Object model Task dependency graph

Phone Call

DMVCredit Check Car Inspection

Decision

Fig. 1. Example: Object Model and Task Dependency Graph

3 Programming Model Overview

A key feature of the LRUOW programming model is that business logic is sepa-
rated from the long running transaction semantics. Business object providers, in
other words, concentrate on developing the function required by the long running
business process: the framework is responsible for ensuring that long running
transaction semantics are provided when the objects are actually deployed. In
the client (application writer) view of the programming model, a LRBP contains
only two types of object: the unit of work (or UOW) object which represents a
nestable long running transaction (provided by the framework), and various base
objects (arbitrary, non UOW-aware, objects provided by business developers).
The framework takes those base objects and creates versions that are associated
with the UOWs. It transparently maps method invocations under a given UOW
context onto the set of objects associated with the UOW.

The LRUOW framework regards a LRBP as a directed, acyclic graph, whose
nodes consist of units of work (or UOW), each of which is a nestable long running
transaction [3]. Each UOW has one parent UOW (except for the root UOW



A Distributed Object Oriented Framework to Offer Transactional Support 335

refered to as enterprise level UOW) and may have multiple children UOWs. The
enterprise UOW owns all objects in the system and is never committed. Each
sub-task of the LRBP shown in the task dependency graph of Figure 1 is mapped
to a node in the uow tree (Figure 2).

Enterprise 
UOW

New Policy 
UOW

Inspection 
UOW

DMV 
UOW

Credit Check 
UOW

Phone Call 
UOW

Decision 
UOW

Fig. 2. UOW Tree: Note that, at a given time, only some of the leaf nodes may
exist. Figure 3 and Figure 4 show snapshots of the UOW tree at different times

All activities done within the course of a LRBP are done within the context
of some UOW. The UOW context is established when the client either obtains,
or creates a new UOW, and joins the UOW using join() on the UOW object.
Subsequent method invocations are performed within the scope of that UOW.
This compares to a conventional transaction begin, or, to calling begin() on
the Current object in a CORBA OTS transaction [4]. A transaction can be
committed or rolled back by invoking the respective method on the UOW object.
In our example, the new policy LRBP is initiated by requesting that the parent
(or enterprise level) UOW create a child new policy UOW. Isolation is provided
during the course of the LRBP because nodes in the UOW tree obey the following
visibility rules [5]:

– The state of all objects in the scope of a parent UOW is visible to all children
of that parent.

– When a child UOW commits, state changes done to all objects within the
scope of the child UOW become visible to the parent UOW.

– State changes performed by a child UOW are not visible to its siblings until
the child UOW commits.

An object’s state and its visibility are modified over time as UOWs are
created, committed, or rolled back. Continuing our example, Figure 3 represents
a snapshot of the UOW tree as the phone call UOW (a child of the new policy
UOW) commits. As a result, the Car and Customer objects that were created
in the course of the customer’s phone call become visible (and made persistent).
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Car Customer

New Policy

Car Customer

New Policy

Car Customer

Phone Call Commit

Pre-Commit Post-Commit
Time

Fig. 3. UOW Tree: Effect of committing the Phone Call UOW (dotted lines are
used when the objects are not visible within the scope of the given UOW)

Figure 4 is a snapshot of the LRUOW tree as one of the 2nd-level tasks (the
car inspection) completes: the changes made to its version of the car (Car.image)
are propagated to the parent’s version. The car image was not visible to the
inspection UOW’s siblings until the commit.

Credit Check

Customer

Car Customer

New Policy

Car Customer

DMV

Car

Inspection

Car Customer

New Policy

Car Customer

DMV

Commit
car.setImage(image)

Customer

Credit Check

Pre-Commit Post-Commit
Time

Fig. 4. UOW Tree: Effect of committing the Inspection UOW
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4 Visibility and Isolation Enforcement:
Facade & Version Objects

The framework uses a client/server model. In the client view of the LRUOW
programming model, user interactions occur only with UOW objects and base
objects; they rely on the framework to transparently map method invocations
onto the set of objects associated with their UOW. The framework must enforce
the protection implied by the visibility rules and, when a participant commits,
must propagate the objects’ state changes to the parent UOW.

The server implements this transparent mapping by ensuring that the client
never actually accesses a base object instance. Instead, the client accesses a
facade object that, in turn, delegates the client’s method invocations to ver-
sion objects that are associated with individual UOWs. The transaction context
(UOW context) is implicitly propagated between the distributed EJB compo-
nents that participate in the transaction, using request interceptors. UOW con-
text propagation compares to propagation of transactional contexts in CORBA
OTS transactions using implicit propagation mode.

As shown in Figure 5, each instance of a base object (e.g., a Car with VIN =
42) is associated with an instance of a facade object which wraps the set of version
object instances. Each currently active UOW in which a client has referenced a
facade object instance has an associated version object in the facade’s version
set. Through use of reflection techniques, the framework automatically generates
facade and version objects from the base object. Users input the base objects
as a Jar file containing, for example, Car and CarHome interfaces and CarBean
and CarKey implementations. Based on this input, the framework generates the
corresponding CarFacade and CarVersion EJBs, deploying them into a relational
database container.

The fact that a client actually invokes methods on a facade requires the
facade to extend the Car interface (as shown in Figure 5): the facade then maps
from the client’s UOW context (e.g., inspection UOW) to the corresponding Car
version to which it delegates the method invocation. A Car version identity is
determined by the specific Car semantics and a UOW identifier. A Car version
has the Car interface, and uses the framework-independent implementation of
the car (CarImpl) that is provided by the business developer (see Figure 5).
The framework’s task of generating the server-side facade and version objects
on behalf of the client is made easier when base objects follow the Bridge design
pattern [6]. Since clients code to an interface (e.g., Car in Figure 5), the server-
side (facade) objects need only provide a shallow wrapping implementation to
satisfy the contract with the client. At run-time, the server substitutes a facade
for the base object.

4.1 Lifecycle

Although Figure 5 shows how the client view of a base object is actually imple-
mented on the server by facade and version objects, it does not explain how the
client gets a reference to a facade in the first place.
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CarFacade

setImage(img)
"Inspection" UOW

Client

CarVersion
"Inspection"

UOW

CarVersion
"New Policy"

UOW
setImage(img)

Car

setMake()
setModel()
setImage()
getMake()
getModel()
getImage()

CarFacade

createVersion()
findVersion()
removeVersion()
commit()
replay()

CarVersion**

CarImpl
make : String
model : String
image : Image

Fig. 5. Delegation of client methods / Facade and Version Car Objects

In addition to providing the base object interface and implementation (the
Car and CarImpl objects), the LRUOW programming model requires the busi-
ness object provider to supply an interface specifying how base object instances
are created, located (queried), and removed. Our implementation follows the
factory design pattern [6], so that clients access base object lifecycle function
by invoking methods on the associated factory class. The LRUOW framework
extends the base factory interface (e.g., with a CarFacadeFactory) such that the
server returns facade objects to the client instead of the base object.

The challenge addressed by the framework is how the programming model
used by LRBP participants – in which a single user accesses single instances of
base objects – is supplied in an environment of concurrent, multi-user, access
to sets of version objects. Users should be able to program as if there is only
a single instance of a given object (e.g., a car with VIN = 42 where VIN is a
unique key), even though the object accessed is actually one of a set of versions
whose relationships are determined by the structure of the LRBP unit of work
tree.

The key concept is that a business object’s existence is defined relative to a
specific UOW, so that an object may exist with respect to UOW1 and not exist
with respect to UOW2. The reason for this has to do with the visibility rules
discussed in Section 3 which we can now restate in terms of facade objects:

A business object exists with respect to UOWi if and only if a non-deleted ver-
sion, associated with UOWi, exists in the facade’s set of versions or the business
object exists with respect to the parent of UOWi in the LRUOW tree.

In our implementation, the facade and factory collaborate to provide business
objects to clients. A client can get a reference to a facade in one of two ways:
through object creation and through query (object location). Often, however,
a child UOW will invoke business methods on an object whose reference was
obtained in a parent UOW. The facade transparently creates a new version
(to be associated with the child UOW) the first time that one of its business
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methods are invoked. If the business object does not exist with respect to the
client’s UOW, the facade throws an exception. This code path (unlike the ones
for creation and location through query) is managed entirely by the facade, and
does not involve the factory object.

(a)

uow
1

root uow

uow
2

uow
11

VIN=42

carFactory.create(VIN=42)

uow1

root uow

uow
2

uow
11

carFactory.create(VIN=42)

VIN=42

VIN=42

(b)

uow
1

root uow

uow
2

uow
11

carFactory.create(VIN=42)

VIN=42

VIN=42

(c)

Fig. 6. (a) Client creation of a car, no pre-existing Facade car. (b) Client creation
of a car, with a pre-existing version visible to client. This is an illegal state that
results in an exception (c) Client creation of a car, with a pre-existing version
that is not visible to the client. The resulting clash on commit is dealt with in
Section 5

Creation Suppose that the base Car semantics specify that a new Car is created
when a client invokes CarFactory.create(VIN = 42). Figure 6 shows how the
framework deals with various scenarios; note that, in these figures, the client is
associated with UOW11.

– No CarFacade with the specified VIN exists with respect to any UOW: i.e.,
there are no versions of a car with the specified VIN in existence (Figure 6a).
• the CarFactory creates a FacadeCar with (VIN = 42).
• the CarFacade creates a CarVersion that will be associated with UOW11,

and inserts it into the set of version objects.
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– A CarFacade with the specified VIN exists with respect to UOW11 (Fig-
ure 6b), because a version is associated with its parent UOW1 – even though
it does not exist with respect to UOW2.
• the CarFactory determines that CarFacade with (VIN = 42) exists.
• the CarFacade determines that it is visible to UOW11. Since the object

already exists, the facade must therefore throw a creation exception; this
will be rethrown by the factory to the client.

– A CarFacade with the specified VIN does not exist with respect to UOW11 –
even though the facade object exists (Figure 6c). Even though sibling UOW2

has already created a car with the specified VIN, because UOW2 has not yet
committed (and propagated its state into UOW0) the car does not yet exist
with respect to UOW11. The impending clash when the last child commits
is discussed in Section 5.
• the CarFactory determines that CarFacade with (VIN = 42) exists.
• the CarFacade determines that it is not visible to UOW11.
• the CarFacade creates a CarVersion that will be associated with UOW11,

and inserts it into the set of version objects.

In order to separate a client’s UOW context (which can change over the course
of a LRBP) from the specific version object that is accessed at any given time,
the factory returns the facade – which is responsible for mapping the client’s
UOW to a specific version – instead of returning the newly created version.

Location through Query Object location is the mirror image of object cre-
ation: i.e., a facade object instance can be located by a client if and only if the
facade is visible to the client’s UOW.

Removal A client can remove a business object if and only if it is visible to
the client’s UOW. Object removal is, in this sense, similar to object location.
However, although the facade object cannot be actually removed until the top-
level UOW commits, from the client’s viewpoint once the remove method is
invoked, the object no longer exists. For example, in Figure 6c, if UOW2 deletes
the CarFacade with (VIN = 42), and commits into UOW0, the facade no longer
exists with respect to UOW1 and UOW11. It is therefore valid for UOW11 to
subsequently create a car with (VIN = 42).

To deal with such situations, whenever a client removes an object, the facade
marks the associated version as deleted but does not remove the object from its
set of versions (nor does it remove it from persistent storage). This tag allows
the framework to recognize when an existing, but deleted, object actually exists
with respect to a specific UOW.

5 UOW Transactional Behavior and Concurrency
Management

The challenge faced in providing transactional behavior for a LRBP is that lock-
ing resources on behalf of one LRBP participant prevents other participants from
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accomplishing their portion of work. On the other hand, not locking resources is
unacceptable because it implies that participants cannot be given any guaran-
tees about resource consistency. Our framework uses the following approach to
provide UOW transactional behavior.

A UOW executes in two phases: a long-running phase (termed the rehearsal),
and a short-running phase (termed the performance). Users accomplish work
during UOW rehearsal; but, as its name suggests, no work is actually commit-
ted (in a transactional sense) during this phase. More precisely, although user
work can be made persistent (so that if the system crashes, user activity will
resume from the last syncpoint), the UOW does not commit and make its work
visible to a parent UOW context until the user invokes UOW.commit(). If a
participant instead invokes UOW.rollback(), her work will be rolled back in tra-
ditional “all or none” fashion. The purpose of the rehearsal phase is to allow long
running, concurrent, activity to occur without locking resources – while, at the
same time, the system creates a persistent copy of the information needed to re-
solve conflicts at commit time (performance time). Because each UOW operates
on a private set of data (the versions discussed in Section 4), protection from
concurrent activity is automatically provided, making lock constraints unneces-
sary. The performance phase is in effect a short, traditional transaction (with
ACID properties) which modifies the versions of the objects in the parent UOW.
Thus, the LRUOW framework can be implemented on top of existing transaction
middleware products: the only requirement is that the system support external
transactional coordination (e.g., theX/Open XA interface).

During the performance phase, the framework must deal with the concur-
rency issues which were ignored during the rehearsal phase. We have included
two different concurrency control mechanisms. Both mechanisms seek to mini-
mize the possibility of not being able to commit because of irreconcilable con-
current activity. Both mechanisms include the concept that not all differences
between rehearsal and performance results are irreconcilable. The mechanisms
vary in whether the work needs to be on the front end or on the back end, their
impact on analysis and design, the types of problems they can be applied to, and
the way you go about manually resolving a concurrency problem if the system
can’t resolve it.

5.1 Predicate & Transform Approach

As mentioned above, the framework creates during the rehearsal phase of the
UOW a persistent copy of the information needed to resolve conflict at com-
mit time. In this first approach, the information kept is the user activity or
operational log. Facade objects record method invocations in an operational log;
entries contain sufficient information to enable subsequent method replay (see
Figure 7). Object state changes are preserved by logging method invocations;
arguments to these methods are recorded in the log using serialization tech-
niques. The original method invocation is later replayed using dynamic method
invocation. We must deal with one subtlety: if a client invokes method1 and
that method, in turn, calls method2, we log only method1 rather than logging
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both methods. Replay of method1 implicitly replays method2: if method2 were
to also be logged, the system would incorrectly apply method2 twice. To prevent
such behavior, the system associates a logging depth with a given uow which is
incremented each time a method is logged within that uow’s scope. Log depth is
decremented when the logging operation completes. An operational log record
is created only if a uow’s log depth corresponds to a top-level logging operation.
One benefit of this approach is that facade objects are independently responsible
for determining that an operation should be logged: the LRUOW framework is
responsible for determining the runtime nesting of method invocations, and thus
whether an individual invocation should be explicitly or implicitly logged.

CarFacade

setImage(img)
"Inspection" UOW

Client

CarVersion
"Inspection"

UOW

CarVersion
"New Policy"

UOW
setImage(img)

Operational Log Record
Unit of Work "Inspection"

Object "CarFacade"

Method "void setImage(Img)"

Arguments img

Return value void

Fig. 7. Operational Log Record (there is one record per highest level transform
invoked)

The operational log is a compressed copy of the LRBP in the sense that
user think time, business process time, and other activities that add to the
UOW’s clock time (in contrast to actual business method execution time) are
omitted. At performance time, the system begins a short transaction, replays
the operational log, and commits the transaction to the underlying datastore if
the replay is successful. Operational log replay is done with respect to a UOW’s
parent’s data. For example, when the inspection UOW of Figure 4 commits, the
set of methods that were invoked against its Car object are reinvoked against
the Car version associated with the new policy UOW. After the UOW commits,
the state of the parent UOW’s versions has been updated, and reflects the state
of the child UOW’s versions. So, although concurrency is not an issue during
rehearsal (because the inspection UOW manipulated its private Car version),
the framework must deal with concurrency during performance since it is at
this time that the inspection UOW Car version must be resolved with its parent
new policy UOW Car version. Although the framework allows state changes to
be applied only from within leaf UOWs, we must potentially resolve conflicts
between sibling UOWs.
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One approach is to log all methods (and their results) and allow a UOW to
commit only if the rehearsal phase result matches the performance phase result.
This has the advantage of being straightforward: a transaction is clearly not
affected by concurrent activity if the state of all of its objects is determined only
by the transaction’s activity. Unfortunately, this semantic – equivalent to that
of optimistic transactions [7] – can result in unnecessary transaction rollbacks.
For example, in a debit transaction, what is important is that there are sufficient
funds to cover the withdrawal – not the precise amount of funds in the account.
As long as an account can cover all concurrent withdrawals, we do not want
to rollback the transactions. Under the optimistic semantics, if the performance
phase replays the fund withdrawals in a sequence that differs from the rehearsal
phase, the difference in state (e.g., balance = getBalance()) is detected and
the transaction aborted. Such behavior is especially unacceptable in the case
of long running transactions: users will not be happy to be told that several
weeks of work must be aborted despite the fact that the state transformations
are compatible!

To achieve greater concurrency than what is offered by optimistic seman-
tics, the LRUOW uses the concept of predicates and transforms. This approach
is based on the concept of field calls. Field calls are a mechanism for increas-
ing concurrency of short transactions by reducing the “product” of the amount
of data and length of time, in which transaction locks must be held[5]. Field
calls are more general (and allow more concurrency) than either optimistic or
timestamp locking schemes. A field call consists of a predicate/transform pair
consisting of (1) a predicate, which is checked at the time of the call and at
commit time, and (2) a transform, which modifies transaction data in some way.
The predicate test uses a shared-mode lock, and the lock is released as soon as
the predicate is tested, thus allowing other transactions to read or update the
data. If the predicate is false at the time of the field call, the transaction aborts.
Otherwise, when the transaction is at phase 1 commit, it acquires exclusive locks
on data involved in transforms, and the predicate is tested again. If it is false, the
transaction aborts (no need to undo the transaction); otherwise the transform
is applied (phase 2 of the commit), and the locks are released.

The LRUOW predicate/transform approach extends the field calls concept
to long running processes. The application programmer has to code in terms
of predicates and transforms (see below). Programmers must therefore be more
aware of the fact that the LRUOW is running as a concurrent, transactional, pro-
gram. This contrasts with the programming model of classic, short, transactions
where application developers are almost completely oblivious of the transaction
framework: all that is required is transaction demarcation and code to deal with
situations where the transaction fails to commit. Note, however, that classic
transactions often relax classic serializability semantics so as to achieve greater
performance. Techniques such as cursor stability give greater concurrency at
the cost of similarly forcing programmers to be aware of, and deal with the fact,
that their application executes concurrently with other applications [5]. Different
techniques to alleviate the strictness of serializability by allowing some degree
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of inconsistency have been investigated before. One of them, epsilon serializ-
ability (ESR) allows read-only transactions that can handle a certain amount of
inconsistency to exploit that property in order to increase concurrency [8,9]. Up-
date transactions must be serializable amongst themselves. ESR works through a
high-level specification of inconsistency whereas our approach allows fine-grained
specifications of inconsistency that can be coded in many cases within the meth-
ods of the object itself and can be exploited by update transactions.

What is a LRUOW Transform? A transform is any state transforming
method on an object. State transforming methods are replayed so as to transform
the parent version to reflect the transforms applied to the child version.

What is a LRUOW Predicate? A LRUOW predicate is a piece of code
checking some arbitrarily complex condition on a number of objects. It protects
and validates one or several transform invocations. The simplest case of LRUOW
predicates are classic predicates that perform pre-condition or post-condition
validation. For example, a debit method on an account object will include a test
of the account balance.

Account::debit(x) {
If (this.balance < x) throw exception;
Else this.balance -= x;}

The business developer will use such predicates to validate the single-pass
code logic (by single pass, we refer to code execution that, in order to be valid,
executes only once). This predicate will implicitly be logged as part of the debit
transform and replayed during the performance phase. The replay will be suc-
cessful if the current parent UOW account version has sufficient balance. So, as
long as there are sufficient funds in the account, sibling UOWs can invoke the
debit method, and still successfully commit to the parent UOW. The key idea is
that a UOW will be rolled back 2 by the system only if a transform cannot be
replayed (against its parent’s state) because an associated predicate is no longer
true. Transforms are therefore logged with the best performance achieved when
the programmer specifies the least restrictive set of predicates. Concurrency will
not be a problem – i.e., the replay will succeed – as long as the predicates as-
sociated with the child’s transforms are not violated by the current state of the
parent’s version. For example, since the phone call UOW of Figure 3 creates new
Customer and Car objects, there is no conflict between the parent’s state (which
does not contain these Customer and Car objects): the performance phase sim-
ply recreates the objects in the parent new policy UOW’s scope. Of course one
could imagine that there is a limit in the number of customers that an insurance
company wants to consider. In this case, a predicate on createCustomer() will
assert that the total number of current customers is less than the maximum
2 Note that a non successful replay may also result in compensating actions needing
to be initiated (see Section 6).
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allowed. Only the business developer with knowledge of the desired semantics
can specify which predicates, if any, should be associated with the transform.

In addition to regular pre/post conditions, predicates may have to be used
to protect code with respect to two pass issues: i.e., issues that arise because
of the way that performance-phase code derives from rehearsal-phase code and
because of the manner in which state is derived during performance. For exam-
ple, selectors of branch conditions that determine execution (i.e., values which
control the sequencing of logged transforms) may need to be protected. The de-
fault assumption made by the framework is that differences between get results
do not matter – and thus need not be replayed – since read operations cannot
cause conflict among concurrent applications. But, when read-only data might
affect the outcome of a UOW (e.g., the application path differs based on an
attribute value, so that the commit does require that the attribute have a speci-
fied relationship to some value), the corresponding get methods can be specified
as a predicate. The framework recognizes special ApplicationPredicate objects
(APO) whose methods are always logged when invoked (like transforms). This
enables the framework to supply persistence for predicates in exactly the same
way that it provides persistence for transforms. An example is:

long netWorth = aCustomer.getNetWorth();
//invocation of a read method
CustomerAPO.assertGetNetWorth(netWorth, aCustomer);

where CustomerAPO.assertGetNetWorth() is a utility transform that throws
an exception if the result of invoking GetNetWorth on the customer object and
netWorth are not equal in value. During rehearsal, the value of netWorth is
(trivially) equal to that of getNetWorth since netWorth was just derived from
that method. During performance, this transform will be replayed among all
the other transforms, and the stored (rehearsal) value of netWorth compared
against the current value of getNetWorth. If the values do not match, the uow
predicate detects that the rule is violated, and an exception is thrown. Note that
the framework will generate a generic FooApplicationPredicate object for every
class Foo provided by the application writer. In particular, for every non-void
method x() of Foo, the generic FooApplicationPredicate has a corresponding
method assertX() to assert that invoking x() on Foo returns the same value at
rehearsal and performance time (as illustrated by the customer example above).
Less generic predicates will be coded by the application developer.

5.2 Conflict Detection/Resolution Approach

The second concurrency mechanism the framework offers is conflict detection
and resolution (CD/R). The information kept by the framework in this case is
not an operational log, but snapshots of the objects as they are first versioned in
the child UOW (see Section 4). Upon commit, a process goes through and checks
to see if any data in the parent UOW has changed since the object was copied
to the child UOW. If no changes are found, the parent versions are updated to
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reflect the data in the leaf UOW. If any changes are found, a conflict has been
detected. A conflict manager is then invoked. The conflict manager is passed a list
of participants in conflict. Its job is to select the resolution manager(s) that will
be charged with resolving the conflict. As resolution managers are invoked, they
apply the business logic necessary to resolve conflicts and arrive at the desired
parent data state (in a similar way to what the manual procedures accomplish
in a single-threaded multi-user system). Conflict and resolution managers have
to implement an interface defined by the framework. A given uow is associated
to one conflict manager and one or more resolution managers.

6 Further Challenges

The LRUOW framework provides structural transactional support for long run-
ning business processes. There are other aspects/issues however with LRBPs.
Workflow systems [10] for example are concerned with the routing and sequenc-
ing of work among individuals and groups. The workflow system assists in defin-
ing resources, assigning resources, or initiating tasks. It acts as the controller of
the overall business process. It takes a business process and breaks it into tasks
(nodes in a process network), and defines a list of persons or programs that can
perform tasks. Workflow systems manage recovery of the state of the workflow
by reliably knowing which tasks have started and which have completed. They
do not address recovery of resources manipulated in workflow tasks, nor provide
an approach for handling contention when different tasks concurrently access
shared data. The LRUOW framework addresses precisely these issues by provid-
ing transactional properties (including concurrency and durability) as well as an
application model that is familiar to developers. This functionality can be pro-
grammed into workflow, but generally requires considerable custom work with
high associated development and maintenance costs. Currently, the difficulty in
custom coding of transactional constructs often leads developers to change nat-
ural workflow task definition or task relationships. For instance, because locking
and visibility are complicated issues, a process – which may actually contain
much parallel activity – will be serialized so as to sidestep the problem. Or, to
avoid making “in process” data visible to other processes, much data will be
inserted into separate containers instead of writing to a common database. The
LRUOW framework greatly assists with such transactional concerns. Use of the
LRUOW framework within a workflow can thus lead to a simplified workflow
network, smaller workflow containers, a greater degree of parallelism, and less
custom work.

Another issue with long running business processes is that some of the ac-
tions performed in the context of such processes (e.g., sending a letter to a
customer) cannot be rolled-back. They can at best be compensated (e.g., send-
ing a second letter to the customer asking to ignore the first one). The concept
of compensation has been widely used in another approach to the problem of
long running activities referred to as sagas [11]. A saga consists of a sequence of
subtransactions T1,..., Tn and a corresponding sequence of compensation trans-
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actions C1,..., Cn−1 such that if the desired full sequence T1,...,Tn fails in Ti then,
by aborting Ti and executing Ci−1,..., C1, all trace of the overall transaction is
removed. Like the LRUOW approach, sagas do not hold long term locks on data;
unlike the LRUOW approach, sagas do not enforce visibility rules with the result
that other transactions see intermediate results of any subsequence of T1,..., Tn.
Compensating transactions are a convenient and easily understood way of back-
ing out transactions in simple systems. But they often need to be hand-coded,
which makes it impractical to deploy sagas in large, complex, business systems.
Also since humans must occasionally participate in the compensation process,
the recovery process cannot be fully automated. The LRUOW framework by re-
stricting the visibility of the work done in the course of the LRBP, and allowing
to rollback (in case of failure) many of the actions performed, simplify the design
of the compensation scheme.

Both the integration with workflow system and compensating schemes are
currently being investigated.

Another area of investigation are strategies to integrate legacy systems. In
order to provide ACID semantics to long running business processes, the frame-
work makes a basic assumption: namely, that (during the performance phase) all
resources used in the LRUOW can be externally coordinated to run in a single,
short-running, classic transaction. A large set of systems meet this requirement
– e.g., those that support the X/Open XA interface. However, many legacy data-
stores cannot be coordinated externally, and may not even supply transactions
internally. One challenge that we must address, therefore, is whether precise se-
mantics can be assigned to long running business processes that run on such
systems.
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