
MIMO – An Infrastructure for Monitoring and

Managing Distributed Middleware
Environments�

Günther Rackl, Markus Lindermeier, Michael Rudorfer, and Bernd Süss

LRR-TUM
Lehrstuhl für Rechnertechnik und Rechnerorganisation, Institut für Informatik

Technische Universität München, 80290 München, Germany
rackl@in.tum.de

Abstract. This paper presents the MIMO MIddleware MOnitoring sys-
tem, an infrastructure for monitoring and managing distributed, hetero-
geneous middleware environments. MIMO is based on a new multi-layer-
monitoring approach for middleware systems, which classifies collected
information using several abstraction levels. The key features of MIMO
are its openness, flexibility, and extensibility. MIMO’s research contribu-
tion is to enable easy integration of heterogeneous middleware platforms,
to be suited for large classes of online tools covering both monitoring and
management functionality, and therefore to be applicable for tools sup-
porting the complete software lifecycle. In addition to the core MIMO
system we outline exemplary instrumentation techniques for integrating
CORBA and DCOM platforms, and present the MIVIS visualization tool
demonstrating the features of the MIMO infrastructure.

1 Introduction and Overview

Developing and maintaining large distributed software environments is one of
the major challenges in computer science at the time. The usage of middleware
platforms abstracting from diverse and heterogeneous computing platforms is a
common approach to handle the complexity of such systems. Middleware plat-
forms include general purpose distributed object-computing environments [1]
like CORBA or DCOM, message-oriented middleware (MOM), transaction pro-
cessing monitors (TPMs), or meta-computing infrastructures like Globus [2].

A main drawback deploying all kinds of these platforms is the lacking support
for online tools which allow to monitor and manage the environments, especially
when various types of middleware products are combined within one computing
environment. Monitoring and management tools should cover the whole software
lifecycle, i.e the development and the deployment phases of middleware-based
software products.

In the past, several monitoring systems have been developed for specific kinds
of middleware products [3,4]. But, most systems are limited to one single type
� Research supported by German Science Foundation (DFG) SFB 342 (TP A1).

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 71–87, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



72 Günther Rackl et al.

of middleware platform, only concentrate on specific aspects of these platforms,
and are therefore only suited for a small class of tools.

This paper presents the MIMO MIddleware MOnitor infrastructure, a mon-
itoring and management system that addresses the following issues:

– Support for the whole software lifecycle: In order to be able to build tools for
the complete software lifecycle, information on all abstraction levels of the
system has to be gathered. This includes low-level information, e.g. needed
for debugging purposes during software development, as well as high-level
information for application management issues during software deployment.
MIMO solves this problem by introducing a multi-layer-monitoring model
that is used to classify data collected from the observed system.

– Integration of monitoring and management functionality: Supporting the
complete software lifecycle allows us to use a single system for monitoring
and management tasks; as the term “monitoring” is mostly used for low-level
aspects, and “management” rather for high-level administrative tasks, the
multi-layer-model makes it possible to build both kinds of tools only using
MIMO1.

– Integration of heterogeneous middleware platforms: MIMO is designed to
enable monitoring of different middleware platforms simultaneously. This is
done by introducing a generic interface for middleware platforms to MIMO,
such that heterogeneous systems can be easily integrated. As interoperable
applications are getting more and more popular (see e.g. CORBA-COM
bridges), the ability to observe heterogeneous systems simultaneously is one
of the key features for future monitoring systems.

As requirements for monitoring and management tools are very diverse, espe-
cially when allowing to observe heterogeneous components simultaneously, there
is no common definition of tool functionality or behavior. Therefore, the MIMO
approach is based on defining a general infrastructure, i.e. a framework [5] for
tools. This framework consists of basic monitoring system components which
offer defined and generic interfaces both for tools and middleware platforms.
Furthermore, access patterns defining how to make use of the components and
interfaces are defined. This combination of components and patterns makes it
possible to keep MIMO very generic and configurable, and thus allows to use it
for very diverse purposes without altering the core MIMO implementation.

This paper is organized as follows: Section 2 introduces the multi-layer-
monitoring approach on which MIMO is based. Section 3 presents the core
MIMO infrastructure, section 4 explains how information can be gathered from
various middleware platforms, and section 5 presents the MIVIS visualization
tool, an example for a fundamental tool making use of MIMO. Section 6 out-
lines an example scenario showing the usage of MIMO and MIVIS, and section
7 finally summarizes and concludes the paper.
1 In the following, we will not distinguish between the term “monitoring” and “man-

agement” anymore; we will mostly use the term “monitoring”, which shall cover
both classes of systems and tools.



MIMO 73

Related Work

Basic work on monitoring systems has be done in the OMIS project [6]. However,
OMIS is mainly aimed at lower-level monitoring of parallel applications using a
message-passing communication paradigm.

For CORBA, there are several management systems, which are mostly com-
mercial products tied to specific CORBA implementations. These include
e.g. ObjectObserver by Black&White Software, CORBA-Assistant by Fraun-
hofer Institute, or IONA’s OrbixManager. An overview of these systems can be
found in [4]. The main drawback of all these products is the lacking generic-
ity which allows to deal with heterogeneity in a way MIMO does, because they
are mostly tailored to one specific middleware product. Moreover, all of them
only allow to monitor the server-side of CORBA applications, client-side activity
cannot be observed explicitly.

2 Multi-Layer-Monitoring

This section describes the system model and multi-layer-monitoring approach,
on which the MIMO system is based.

2.1 Distributed Middleware Environment Model

Figure 1 shows an illustration of a typical distributed middleware environment
that we consider. The system to be monitored consists of six abstraction layers,
from which the monitor collects information and provides it to tools only by
means of the tool-monitor interface.

Fig. 1. Layer Model of the Distributed Environment



74 Günther Rackl et al.

The highest abstraction level within the system is the application level. Here,
only complete applications are of interest for the monitoring system. Within an
application, the whole functionality exported by the components is described by
interfaces. These interfaces are defined in an abstract way in the interface layer.
The implementation of the behavior described by these interfaces is done by ob-
jects within the distributed object layer. These objects may still be considered
as abstract entities residing in a global object space. In order to enable commu-
nication between the distributed objects, some type of middleware is required.
Especially, a mechanism to define and uniquely identify objects within the ob-
ject space is needed. All commonly used middleware standards use some kind
of globally unique object references. For example, CORBA uses Interoperable
Object References (IORs) to identify CORBA objects [7], Sun’s Java Remote
Method Invocation RMI uses Uniform Resource Locators (URLs), and Microsoft
DCOM [8] generates so-called Globally Unique Identifiers (GUIDs) or monikers.
As objects on the distributed object level are still abstract entities, they need
to be implemented in a concrete programming language. This implementation
of the objects is considered in the subsequent implementation layer. Obviously,
objects may be implemented using some O-O language, but also non-O-O lan-
guages may be used, e.g. for integrating legacy code. Finally, the implementation
objects are executed within a run-time environment which can be an operating
system or a virtual machine on top of an operating system that is being executed
by the underlying hardware nodes.

For various middleware platforms, this abstract model can be mapped to
concrete entity types related to the respective middleware environments like
e.g. CORBA or DCOM; Figure 2 shows the CORBA mapping of the MLM,
where the main entities of interest are CORBA objects; see [9] for details.

Fig. 2. CORBA Mapping



MIMO 75

2.2 Multi-Layer Monitoring

For the monitoring system, two aspects are important: First, it has to be possi-
ble to gather data on all abstraction levels in order to serve as an information
source for all kinds of online tools. And secondly, the mappings between the
different layers are of great importance. As all entities within a specific layer are
mapped onto appropriate entities within the layer on the next lower level until
the hardware layer is reached, keeping track of these mappings is essential be-
cause the relationships between entities in two adjacent layers are not necessarily
one-to-one relationships.

Tools making use of the monitoring system may be very diverse and therefore
operate only on specific abstraction levels (e.g. a visualizer might be interested
in interfaces and CORBA objects). For other tools, mappings between layers can
be of special interest (e.g. for performance analysis, the process distribution on
the nodes can be decisive).

As a consequence, a multi-layer monitoring (MLM) approach [9] which
closely reflects the structure of distributed object-environment is well suited for a
large class of online tools. For obtaining information from all abstraction layers,
specialized modules adapted to requirements of the layer to be observed can be
inserted into the monitoring system. Thus, the monitor is kept very modular and
flexible and can easily be adjusted to changes of the distributed environment.

3 MIMO

This section introduces the principle design of MIMO’s components and inter-
faces. An important issue for the overall design of MIMO was the genericity of
the approach; this means that MIMO is kept open to integrate various types
of middleware platforms, and to make it suitable for building any kind of tool.
As requirements for different middleware and tools can be very diverse, MIMO
itself is designed to depend as little as possible on concrete implementations
and semantics of events. Hence, only little information about common entities
within the environment is stored by MIMO, and flexibility is gained by tools and
intruders being adjusted to each other.

MIMO itself is completely implemented in Java (Java 2 platform), making
use of the ORBacus 3.2 [10] CORBA implementation.

3.1 Monitoring and Management Scenario

The MIMO MIddleware MOnitor provides a framework for online monitoring
and management tools which is compliant to the multi-layer-monitoring ap-
proach. The fundamental architecture relies on the separation of the tools from
the monitoring system and the observed applications [6]. Figure 3 illustrates
the resulting 3-tier model, which shows tools making use of MIMO by means
of a tool-monitor-interface, while MIMO collects information from the moni-
tored applications by means of intruders or adapters which communicate with



76 Günther Rackl et al.

Fig. 3. 3-Tier Model of the Monitoring Architecture

MIMO through a intruder-monitor-interface. The difference between intruders
and adapters is that intruders are transparently integrated into the application
(without rebuilding the application), while adapters might be built by inserting
code into the application (and rebuilding it).

An important aspect in this context is that MIMO makes it possible to
monitor both the client- and server-side of distributed applications. Most of the
existing management tools are limited to server-side monitoring and administra-
tion; MIMO’s approach in contrast is layed out for client-side instrumentation
too, which in most cases is implemented by proxy-instrumentation techniques.

Finding and Accessing MIMO Communication with MIMO is exclusively
handled by CORBA communication. So, when tools or intruders/adapters are
being started, they first need to get an IOR for the respective MIMO interfaces in
order to be able to communicate with MIMO. Therefore, every running MIMO
instance publishes its IOR at a CORBA naming service whose IOR is being
stored at a fixed URL which the clients need to access via http; this URL is kept
constant, so that clients can even find MIMO and the appropriate naming service
when they get restarted with different IORs over time. As multiple instances of
MIMO might be running at the same time, every registration at the naming
service includes the hostname on which the MIMO instance is running; thus,
client (tools, intruders/adapters) can easily choose a local MIMO instance, if it
exists.

3.2 MIMO Architecture

An illustration of the basic MIMO architecture is shown in Figure 4. Every
instance of MIMO keeps information about the current system state, i.e. data
about the applications currently attached to this instance via the
intruders/adapters. Furthermore, information about currently attached tools
and their active requests is stored. Information can also be exchanged between
various MIMO instances, but it is only stored once at the MIMO instance whose
intruder/adapter provided the data.



MIMO 77

Fig. 4. MIMO Communication: Interfaces and Event Channels

Tool-Monitor-Interaction The only entrance point for tools to MIMO is the
tool-monitor-interface, which is a CORBA IDL interface that basically provides
methods for attaching to and detaching from MIMO, and for starting and stop-
ping requests.

When requests are started, the result can either be returned synchronously
if this is possible (e.g. for system state queries), or in an event-based manner,
which is necessary for passing results of asynchronously occurring events (e.g. in-
teractions between entities). Events are passed from MIMO to the tool through
a CORBA event channel which is set up during the attachment of the tool. For
example, a tool might issue the simple command

request(”get objects”, < appl1, appl2 >, objList),

which provides a list of all objects belonging to applications appl1 and appl2
as an out parameter in objList. Or, as an asynchronous request, the tool might
get notified whenever obj2 makes use of the interface ifc1 with the request

start request(tid, ”get interactions”, < ifc1, obj2 >),

where tid is the tool-identifier which is needed to select the corresponding event
channel for passing the interaction-events from MIMO to the tool.

Intruder/Adapter-Monitor-Interaction The entrance point for adapters
and intruders is the intruder-monitor-interface, which provides methods for at-
taching and detaching intruders/adapters. After initialization, communication
between MIMO and the clients is only handled via two CORBA event channels
which are set up at startup. Event channels are mandatory because an asyn-
chronous way of interaction is needed in order to influence the observed system



78 Günther Rackl et al.

as little as possible. Whenever an “interesting” event occurs within the moni-
tored application, the intruder builds a CORBA event and passes it to MIMO
via the monitor-intruder event channel. Similarly, whenever MIMO needs to pass
information to the intruder, e.g. for configuring the intruder, it passes a CORBA
event to the intruder via its intruder-monitor event channel. This way of com-
munication results in a decoupled intruder/adapter-MIMO interaction scheme.
Moreover, it is very flexible due to the standardized protocol which allows for
easy integration of different types of middleware platforms which need to be
attached by very different intruder/adapter implementations.

4 Instrumentation of CORBA and DCOM Platforms

Enabling different middleware platforms to be observed by MIMO needs some
kind of instrumentation to get information out of the respective applications.
Instrumentation techniques can be very diverse, and consequently no general
approach that is suitable for all kinds of middleware products can be given,
but some basic mechanisms are shown here. Nevertheless, MIMO is kept open
and allows for using other instrumentation techniques, whenever they provide
information in the standardized way through the interfaces and event channels.

This section outlines two exemplary approaches to connect CORBA or
DCOM applications to MIMO; however, the general techniques can easily be
transferred to other similar middleware environments. Fundamental data to be
collected from CORBA and DCOM applications contain information about all
existing instances of distributed objects (i.e. CORBA or DCOM objects) within
the system, and their interactions (i.e. method calls to such objects). The fol-
lowing examples concentrate on gathering these data.

4.1 Instrumenting CORBA Applications

As mentioned above, data collection in MIMO can either be done by an adapter
or an intruder. Here, we outline both approaches for instrumenting CORBA
applications.

CORBA Adapter The CORBA adapter basically consists of a Java class pro-
viding a library of methods for communicating with MIMO. This includes func-
tions for attaching and detaching to/from MIMO easily, and for sending and
receiving CORBA events to and from MIMO. Events can be any kind of infor-
mation sent to MIMO, but for common tasks the following predefined functions
exist:

– Object creation and deletion
– Interaction between objects
– Any other calls to CORBA middleware functions



MIMO 79

These event types can easily be generated from within the application code
by calling the MIMO adapter functions. Adapters can be useful when the source
code is available, and when knowledge about the application domain can be used
to instrument the application manually in a way to get specifically interesting
events.

CORBA Intruder When the application cannot be rebuild, or instrumentation
needs to be inserted transparently, the CORBA intruder can be used. It is based
on the instrumentation of the used CORBA library (in our case the ORBacus
C++ library). With this technique, wrapper functions for the original CORBA
methods are created and inserted into the library. The original functions are
renamed and called by the MIMO wrappers. The approach is implemented by
using symbol replacement inside the CORBA library.

The problem with this approach is to find the appropriate CORBA methods
which need to be wrapped in order to get the required information. For our
CORBA intruder, the idea is as follows:

– For startup purposes, CORBA initialization functions like ORB::init need
to be wrapped for enabling the attachment to MIMO.

– To get information about newly created or deleted objects, keeping track of
the reference counter functions (duplicate and release) is a convenient way;
when the reference counter reaches zero, the CORBA object gets deleted.
Furthermore, observing the creation of client-side proxies is also possible by
looking at the string to object operation which instantiates a proxy for a
given CORBA object.

– Interactions between objects finally result in a call to a CORBA request’s
invoke (or related send oneway and send deferred) method. Thus, wrap-
ping this method allows us to observe all method calls to any CORBA ob-
jects.

– Any other CORBA method call can be instrumented, if given circumstances
need to access it.

Hence, this proceeding enables to monitor different aspects of CORBA systems.
The advantage is that information can be gathered at different levels of detail,
depending on the granularity required by a given tool.

Performance data evaluating the overhead introduced by the CORBA in-
truder will be available for a final version of the paper.

4.2 Instrumenting DCOM Applications

In DCOM, no direct way exists to get information about method calls to DCOM
objects. While there is no difference implementing objects for in-process, out-
of-process or remote access, there is a big difference in how they are called.
Out-of-process and remote calls base on the RPC protocol and a pair of proxy
and stub, in-process calls are direct procedure calls without any participation of
the COM library. Gathering information about all kinds of COM calls requires
other mechanisms than instrumenting the COM library.



80 Günther Rackl et al.

DCOM Wrapper The best way to achieve this goal is to use a wrapper for
each monitored object. This provides scalability because only calls of interest
are recorded. The wrapper has to provide hooks for requests orthogonal to the
method call. These requests could not only be auditing requests but also security
checks etc2. The approach applied in MIMO is based on a universal delegator ob-
ject [12,13], and trace hooks [14]. To work properly, the wrapper has to be called
instead of the original object, such that it can process the call first. Therefore,
the registry is manipulated to set up a special class factory for the monitored
object. This class factory first creates the monitored object using the original
class factory, then creates and initializes the wrapper with the object and gives
back a pointer to the wrapper. Once this is set up, the wrapper analyzes the call
stack every time a method call is received. Then it checks whether only to pre-
process the call or to pre- and postprocess it. It sends the required information
to the hook and forwards the call to the original object after changing the return
address to itself. The wrapper and the hook themselves are in-process objects
tied to the original object’s thread (Figure 5).

Original
IFoo

Universal
Delegator

IFoo

Delegator
Hook

IBar IBar

Fig. 5. DCOM Delegator

To work with MIMO, some additional work is required. Therefore, a univer-
sal framework was designed which supports any kinds of information sources and
any kinds of information processors. One component is a CORBA-COM bridge-
object, which provides the interface to MIMO. The main information source
is the combination of the wrapper (Universal Delegator) and the hook (Trace-
Hook). Other sources could be objects reading the event log or performance
data. The overall scenario is showh in Figure 6.

Performance and Limitations Performance tests have been carried out to
get an evaluation of the overhead of this solution. As the wrapper approach
implies a process switch during the call, it is only applicable for out-of-process
or remote calls, and not for in-process calls (as the overhead in this case would
2 In COM+, which ships with Windows2000, such a wrapper will be integrated into

the COM+ event service [11].



MIMO 81

Object Context

Any Object
Universal
Delegator

UDTrace
Hook

COMService

Publisher

CorbaCOM

Publisher

Event
Subscriber

Perform
Subscriber

COMLog

MIMO

Corba
Event

Channel

Fig. 6. Overview of the DCOM Instrumentation Approach

be tremendous). The measured overhead of the DCOM wrapper framework was
2.9 for out-of-process (but still local) calls, and 1.6 for remote calls. These values
show that it might not be useful to collect all available data, but to build a more
“intelligent” wrapper which only gathers information on request; this issue is an
implementation problem which will be solved in a future version of the wrapper.
More details can be found in [15].

5 MIVIS Visualization Tool

Here we describe the visualization tool MIVIS (MImo VISualizer). Our goal was
to develop a visualization tool that is based upon the multi-layer-monitoring
concept described earlier. It interacts with MIMO and presents data it receives
in an advantageous way to the user. Amongst the requirements for MIVIS were
scalability, uncomplicated extensibility, platform independence, an ergonomic
user interface, and the possibility of having several displays at a time.

A general problem of visualization is scalability: Huge amount of data have to
be presented in a way which allow the observer to keep track of the information
offered. Thus, there has to be the possibility to reduce data by means of filtering
mechanisms. MIVIS realizes this reduction by its selection mechanism which
provides a kind of filtering based on the multi-layer-monitoring model.



82 Günther Rackl et al.

5.1 MIVIS Concepts

All entities in the monitored application are shown inside the selection frame (see
Figure 7). Each layer of the multi-layer-monitoring model is represented in one

Fig. 7. MIVIS Displays



MIMO 83

tab of a tabbed pane. The user can select entities within the different layers and
thus control the granularity of his visualization. To gain an overall survey she
can monitor the system on the application layer or the hardware layer without
being bothered by details. To get more insight in the internals of the application
she can pick out a few interesting entities and go up or down to adjacent layers
to get more detailed information;

5.2 Implementation

To fulfill the requirement of uncomplicated extensibility of the visualization tool,
it is split into a main program and several JavaBeans software components. The
main program takes care of the communication with MIMO and the processing
of the data, and the JavaBeans do the graphical display.

All JavaBeans are discovered by MIVIS at startup time, and get dynami-
cally integrated into the GUI. If a different type of display is needed, a user can
program that display type using Java and turn it into a JavaBean. This compo-
nent is placed into a specific directory so that MIVIS can find and use it. The
main program does not have to be changed at all, the only requirement is that
the JavaBean implements a minimal interface that enables the main program to
communicate with the bean.

The bean-specific properties can be set by the user. MIVIS knows about
these properties by means of the introspection mechanism and provides editors
to change the settings of these properties. Additional editors for properties of
a special data type can be placed inside the JavaBean and used instead of the
standard editors. All properties together with their editors are shown inside the
Option Frame (see Figure 7). Hence, MIVIS allows the user to edit properties
which the tool itself does not know from the beginning. This approach offers a
very dynamic and flexible way to configure the behavior of various display types;
the concept of separating the display types from the main program makes it very
easy to generate new display types for MIVIS without the need of changing the
original code.

5.3 MIVIS Displays

So far, three display types have been implemented: text display, scroll display
and call frequency display. These three displays types can be seen in Figure 7.

– The text display prints out the events that are monitored in plain text, what
can basically be used for logging purposes; details that might not be visible
in a graphical display can be looked up here at a later time.

– The scroll display visualizes communication between entities. The selected
entities are displayed on the y-axis in a coordinate system. The x-axis shows
the time. When an entity communicates with another entity, an arrow be-
tween the two is shown in the coordinate system.

– The call frequency display visualizes communication in a different way: Only
cumulative data containing the number of calls are of interest are shown as
a vertical beam for each caller and for each called entity.



84 Günther Rackl et al.

These displays are only fundamental aspects of an application that might be of
interest, but others can easily be added by programming new JavaBeans.

In this sense, MIVIS can be seen as a general framework for GUI-based
MIMO-tools which provides the basic monitoring functionality, and can be ex-
tended with additional JavaBeans to fulfill any further monitoring requirements.

More details about MIVIS can be found in [16].

6 Example Scenario

To test MIVIS in a real-world scenario we picked a simple library application,
which represents a 3-tier client-server application with distributed data.

– The first tier consist of clients that can do various operations, such as search-
ing for books, inserting new book into the library etc; these clients can be
located on different machines.

– The second tier keeps the client interfaces which provide the business logic
of the application; they basically process the client requests, make database
queries to the third layer, assemble the results, and pass them back to the
clients. Client interfaces can also be located on several machines.

– The third tier contains library managers, which contain the actual library
databases. Different managers store information about different books.
Again, the library managers can be distributed over a set of nodes.

When a client starts a request, for example a search for a certain book, the
following things occur: The client selects a free client interface at random to
process the request. The client interface contacts all library managers that are
known to it and requests the information about the book. It waits for the answers
of the library managers and combines all answers to the final result which is sent
back to the client.

In our test scenario, clients periodically start search requests. Each call from
a client to a client interface is followed by several calls from the selected client
manager to all library managers. In our example we have three library man-
agers, so there are three calls from the client interface for each client request. In
Figure 7, every call is displayed as an arrow from the caller to the called entity.
As the time between the calls is very short, all arrows for one request seem to
be one line in this coarse illustration. In Figure 8, we can see that the vertical
beam for the calls from the client interface is three times the size of the one for
the calls from the client and for each library manager (because for each client
call, the client interface invokes every library manager).

Hence, his example briefly demonstrates how to use MIVIS to visualize the
behavior of distributed middleware applications. Clearly, in practice more so-
phisticated scenarios have to be analyzed, but the general approach to inves-
tigate request sequences in n-tier client-server applications is a very important
and helpful feature, either for debugging, performance analysis, or management
purposes.



MIMO 85

Fig. 8. MIVIS 3-tier Library Example

7 Conclusion

In this paper, we have presented the MIMO infrastructure for monitoring and
managing distributed middleware environments, and the MIVIS visualization



86 Günther Rackl et al.

tool demonstrating basic MIMO functionality, and which serves as a framework
for further tool extensions.

MIMO is based on a new multi-layer-monitoring approach for middleware
systems which allows us to handle complex middleware systems on several ab-
straction levels. This provides the possibility to build online tools supporting
the complete software lifecycle while integrating monitoring and management
functionality. The integration of different middleware platforms is reached by in-
troducing a standardized intruder-monitor-interface. To our knowledge, no other
monitoring infrastructure reaching this high degree of flexibility over several di-
mensions has been developed up to now.

What still needs to be completed is the distribution of MIMO itself (including
synchronization and event ordering issues, similar to OCM project [17]), and the
capability to dynamically insert code into intruders in order to reach an even
higher flexibility.

The main research contribution is motivated by the fact that common mid-
dleware environments and tool requirements are too diverse to be handled by a
single, static monitoring system. Instead, we propose and implement an open and
flexible monitoring and management infrastructure, which only provides basic
monitoring services, but is open to be extended easily.

References

1. Günther Rackl, Ivan Zoraja, and Arndt Bode. Distributed Object Computing:
Principles and Trends. In International Conference on Software in Telecommuni-
cations and Computer Networks – SoftCOM ’99, pages 121–132, Oct 1999. 71

2. I. Foster and C. Kesselman. The Globus project: A status report. In Proceedings
of the Heterogeneous Computing Workshop, pages 4–18. IEEE Computer Society
Press, 1998. 71

3. Ivan Zoraja, Günther Rackl, and Thomas Ludwig. Towards Monitoring in Par-
allel and Distributed Environments. In International Conference on Software in
Telecommunications and Computer Networks – SoftCOM ’99, pages 133–141, Oct
1999. 71

4. Bernfried Widmer and Wolfgang Lugmayr. A Comparison of three CORBA Man-
agement Tools. In Wolfgang Emmerich and Volker Gruhn, editors, Engineering
Distributed Objects (EDO’99), pages 12–21, Los Angeles, May 1999. 71, 73

5. Ralph E. Johnson. Frameworks = (components + patterns). Communications of
the ACM, 40(10):39–42, Oct 1997. 72

6. Thomas Ludwig, Roland Wismüller, Vaidy Sunderam, and Arndt Bode. OMIS
— On-Line Monitoring Interface Specification (Version 2.0), volume 9 of Research
Report Series, Lehrstuhl für Rechnertechnik und Rechnerorganisation (LRR-TUM),
Technische Universität München. Shaker, Aachen, 1997. 73, 75

7. OMG (Object Management Group). The Common Object Request Broker: Archi-
tecture and Specification — Revision 2.2. Technical report, February 1998. 74

8. Microsoft Corporation. DCOM Architecture. Technical report, 1998. 74
9. Günther Rackl. Multi-Layer Monitoring in Distributed Object-Environments. In

Lea Kutvonen, Hartmut König, and Martti Tienari, editors, Distributed Appli-
cations and Interoperable Systems II — IFIP TC 6 WG 6.1 Second Interna-
tional Working Conference on Distributed Applications and Interoperable Systems



MIMO 87

(DAIS’99), pages 265–270, Helsinki, June 1999. Kluwer Academic Publishers. 74,
75

10. Object Oriented Concepts Inc. ORBacus, Nov 1999. http://www.ooc.com/ob/.
75

11. David S. Platt. Understanding COM+. Microsoft Press, 1999. 80
12. Keith Brown. Building a Lightweight COM Interception Framework, Part 1: The

Universal Delegator. Microsoft Systems Journal, Jan 1999. 80
13. Keith Brown. Building a Lightweight COM Interception Framework Part 2: The

Guts of the UD. Microsoft Systems Journal, Feb 1999. 80
14. Simon Fell. Activation tricks. WWW, July 1999.

http://www.zaks.demon.co.uk/com/activation.htm. 80
15. Bernd Süss. Konzepte und Mechanismen zum on-line Monitoring von DCOM-

Anwendungen. Diploma thesis, Technische Universität München, 1999. In german.
81

16. Michael Rudorfer. Visualisierung des dynamischen Verhaltens verteilter objekt-
orientierter Anwendungen. Diploma thesis, Technische Universität München, 1999.
In german. 84

17. Roland Wismüller, Jörg Trinitis, and Thomas Ludwig. OCM — A Monitoring
System for Interoperable Tools. In Proc. 2nd SIGMETRICS Symposium on Parallel
and Distributed Tools SPDT’98. ACM Press, 1998. 86


	Introduction and Overview
	Multi-Layer-Monitoring
	Distributed Middleware Environment Model
	Multi-Layer Monitoring

	MIMO
	Monitoring and Management Scenario
	Finding and Accessing MIMO

	MIMO Architecture
	Tool-Monitor-Interaction
	Intruder/Adapter-Monitor-Interaction


	Instrumentation of CORBA and DCOM Platforms
	Instrumenting CORBA Applications
	CORBA Adapter
	CORBA Intruder

	Instrumenting DCOM Applications
	DCOM Wrapper
	Performance and Limitations


	MIVIS Visualization Tool
	MIVIS Concepts
	Implementation
	MIVIS Displays

	Example Scenario
	Conclusion

